88
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Recovery of lead from the leaching residue derived from zinc production plant: process optimization and kinetic modeling

, &
Pages 14-26 | Received 15 Aug 2023, Accepted 05 Dec 2023, Published online: 13 Dec 2023

References

  • Abkhoshk, E., Jorjani, E., Al-Harahsheh, M. S., Rashchi, F., & Naazeri, M. (2014). Review of the hydrometallurgical processing of non-sulfide zinc ores. Hydrometallurgy, 149, 153–167. https://doi.org/10.1016/j.hydromet.2014.08.001
  • Adebayo, A. O., & Olasehinde, E. F. (2015). Leaching kinetics of lead from galena with acidified hydrogen peroxide and sodium chloride solution. Mineral Processing & Extractive Metallurgy, 124(3), 137–142. https://doi.org/10.1179/1743285515Y.0000000001
  • Andrews, D., Raychaudhuri, A., & Frias, C. (2000). Environmentally sound technologies for recycling secondary lead. Journal of Power Sources, 88(1), 124–129. https://doi.org/10.1016/S0378-7753(99)00520-0
  • Behnajady, B., Moghaddam, J., & Rashchi, F. (2012). Determination of the optimum conditions for the leaching of lead from zinc plant residues in NaCl–H2SO4–Ca (OH)2 media by the Taguchi method. Industrial & Engineering Chemistry Research, 51(10), 3887–3894. https://doi.org/10.1021/ie202571x
  • Bezera, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., & Escaleira, L. A. (2008). Review response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76(5), 965–977. https://doi.org/10.1016/j.talanta.2008.05.019
  • Desai, Y., Srivastava, R. R., Srivastava, V. K., Kaushik, G., & Singh, V. K. (2023). Hydrometallurgical recovery of critical metals from an incinerated fly ash of municipal solid waste from western India. Geosystem Engineering, 26(5), 208–217. https://doi.org/10.1080/12269328.2023.2201296
  • Fan, Y., Liu, Y., Niu, L., Zhang, W., & Zhang, T. (2021). High purity metal lead recovery from zinc direct leaching residue via chloride leaching and direct electrolysis. Separation and Purification Technology, 263, 118329. https://doi.org/10.1016/j.seppur.2021.118329
  • Farahmand, F., Moradkhani, D., Safarzadeh, M. S., & Rashchi, F. (2009). Brine leaching of lead-bearing zinc plant residues: Process optimization using orthogonal array design methodology. Hydrometallurgy, 95(3–4), 316–324. https://doi.org/10.1016/j.hydromet.2008.07.012
  • Golpayegani, M. H., & Abdollahzadeh, A. A. (2017). Optimization of operating parameters and kinetics for chloride leaching of lead from melting furnace slag. Transactions of Nonferrous Metals Society of China, 27(12), 2704–2714. https://doi.org/10.1016/S1003-6326(17)60299-1
  • Gottesfeld, P., & Pokhrel, A. K. (2011). Review: Lead exposure in battery manufacturing and recycling in developing countries and among children in nearby communities. Journal of Occupational and Environmental Hygiene, 8(9), 520–532. https://doi.org/10.1080/15459624.2011.601710
  • Habashi, F. (1970). Principles of Extractive Metallurgy (Vol. 2). Gordon and Breach, Science Publishers, Inc.
  • Habashi, F. (1999). A textbook of Hydrometallurgy (2nd ed.). Métallurgie Extractive. Québec/Laval University Bookstore “Zone”.
  • Havuz, T., Dönmez, B., & Çelik, C. (2010). Optimization of removal of lead from bearing-lead anode slime. Journal of Industrial & Engineering Chemistry, 16(3), 355–358. https://doi.org/10.1016/j.jiec.2009.10.001
  • Hollabaugh, C. L. (2007). Chapter 2 modification of Goldschmidt’s geochemical classification of the elements to include arsenic, mercury, and lead as biophile elements. Developments in Environmental Science, 5, 9–31. https://doi.org/10.1016/S1474-8177(07)05002-4
  • Hosseinzadeh, M., Entezari Zarandi, A., Pasquier, L. C., & Azizi, A. (2021). Kinetic investigation on leaching of copper from a low‑grade copper oxide deposit in sulfuric acid solution: A case study of the crushing circuit reject of a copper heap leaching plant. Journal of Sustainable Metallurgy, 7(3), 1154–1168. https://doi.org/10.1007/s40831-021-00408-5
  • Jung, M., & Mishra, B. (2016). Kinetic and thermodynamic study of aluminum recovery from the aluminum smelter baghouse dust. Journal of Sustainable Metallurgy, 2(3), 257–264. https://doi.org/10.1007/s40831-016-0056-6
  • Levenspiel, O. (1999). Chemical reaction Engineering (Third ed.). John Wiley & Sons, Inc. https://www.bau.edu.jo/UserPortal/UserProfile/PostsAttach/57412_6499_1.pdf
  • Li, C., Li, S., Guo, P., Li, Y., & Liu, X. (2023). Recycling lead from copper plant residue (CPR) using brine leaching–precipitation-calcination process. Chemosphere, 345, 140489. https://doi.org/10.1016/j.chemosphere.2023.140489
  • Li, W., Zhan, J., Fan, Y., Wei, C., Zhang, C., & Hwang, J. Y. (2017). Research and Industrial application of a process for direct reduction of molten high-lead smelting slag. JOM, 69(4), 784–789. https://doi.org/10.1007/s11837-016-2236-z
  • Liao, M. X., & Deng, T. L. (2004). Zinc and lead extraction from complex raw sulfides by sequential bioleaching and acidic brine leach. Minerals Engineering, 17(1), 17–22. https://doi.org/10.1016/j.mineng.2003.09.007
  • Mishra, G., Dash, B., Sheik, A., & Subbaiah, T. (2021). Recovery of lead as lead sulphide from anode slime using hydrometallurgical technique. Journal of the Institution of Engineers (India): Series D, 102(2), 489–494. https://doi.org/10.1007/s40033-021-00288-9
  • Motamedizadeh, M., Azizi, A., & Bahri, Z. (2021). Recycling lead from a zinc plant residue (ZPR) using brine leaching and cementation with aluminum powder. Environmental Science and Pollution Research, 28(31), 42121–42134. https://doi.org/10.1007/s11356-021-13643-w
  • Nozari, I., & Azizi, A. (2020). Experimental and kinetic modeling investigation of copper dissolution process from an Iranian mixed oxide/sulfide copper ore. Journal of Sustainable Metallurgy, 6(3), 437–450. https://doi.org/10.1007/s40831-020-00291-6
  • Raghavan, R., Mohanan, P. K., & Swarnkar, S. R. (2000). Hydrometallurgical processing of lead-bearing materials for the recovery of lead and silver as lead concentrate and lead metal. Hydrometallurgy, 58(2), 103–116. https://doi.org/10.1016/S0304-386X(00)00108-0
  • Ruşen, A., Sunkar, A. S., & Topkaya, Y. A. (2008). Zinc and lead extraction from Çinkur leach residues by using hydrometallurgical method. Hydrometallurgy, 93(1–2), 45–50. https://doi.org/10.1016/j.hydromet.2008.02.018
  • Seyed Ghasemi, S. M., & Azizi, A. (2018). Alkaline leaching of lead and zinc by sodium hydroxide: Kinetics modeling. Journal of Materials Research and Technology, 7(2), 118–125. https://doi.org/10.1016/j.jmrt.2017.03.005
  • Silwamba, M., Ito, M., Hiroyoshi, N., Tabelin, C. B., Hashizume, R., Fukushima, T., Park, I., Jeon, S., Igarashi, T., Sato, T., Chirwa, M., Banda, K., Nyambe, I., Nakata, H., Nakayama, S., & Ishizuka, M. (2020). Recovery of lead and zinc from zinc plant leach residues by concurrent dissolution-cementation using zero-valent aluminum in chloride medium. Metals, 10(4), 531. https://doi.org/10.3390/met10040531
  • Turan, M. D., Altundoğan, H. S., & Tümen, F. (2004). Recovery of zinc and lead from zinc plant residue. Hydrometallurgy, 75(1), 169–176. https://doi.org/10.1016/j.hydromet.2004.07.008
  • Wang, L., Mu, W. N., Shen, H. T., & Liu, Y. C. (2015). Leaching of lead from zinc leach residue in acidic calcium chloride aqueous solution. International Journal of Minerals, Metallurgy & Materials, 22(5), 460–466. https://doi.org/10.1007/s12613-015-1094-y
  • Xie, H., Xiao, X., & Li, S. (2022). One-stage ultrasonic-assisted calcium chloride leaching of lead from zinc leaching residue. Chemical Engineering & Processing - Process Intensification, 176, 108941. https://doi.org/10.1016/j.cep.2022.108941
  • Xie, H., Zhang, L., Li, H., Koppala, S., Yin, S., Li, S., Yang, K., & Zhu, F. (2019). Efficient recycling of Pb from zinc leaching residues by using the hydrometallurgical method. Materials Research Express, 6(7), 075505. https://doi.org/10.1088/2053-1591/ab11b9
  • Xing, P., Wang, C., Wang, L., Ma, B., & Chen, Y. (2019). Hydrometallurgical recovery of lead from spent lead-acid battery paste via leaching and electrowinning in chloride solution. Hydrometallurgy, 189, 105134. https://doi.org/10.1016/j.hydromet.2019.105134
  • Ye, M., Yan, P., Sun, S., Han, D., Xiao, X., Zheng, L., Huang, S., Chen, Y., & Zhuang, S. (2017). Bioleaching combined brine leaching of heavy metals from lead-zinc mine tailings: Transformations during the leaching process. Chemosphere, 168, 1115–1125. https://doi.org/10.1016/j.chemosphere.2016.10.095
  • Zhang, W., Yang, J., Wu, X., Hu, Y., Yu, W., Wang, J., Dong, J., Li, M., Liang, S., Hu, J., & Kumar, R. V. (2016). A critical review on secondary lead recycling technology and its prospect. Renewable and Sustainable Energy Reviews, 61, 108–122. https://doi.org/10.1016/j.rser.2016.03.046

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.