132
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Insight to the cesium entrapment by natural shale: implications to geological disposal of nuclear waste

, , , , &
Pages 1-13 | Received 03 Nov 2023, Accepted 05 Dec 2023, Published online: 12 Dec 2023

References

  • Abdel-Karim, A. A. M., Zaki, A. A., Elwan, W., El-Naggar, M. R., & Gouda, M. M. (2016). Experimental and modeling investigations of cesium and strontium adsorption onto clay of radioactive waste disposal. Applied Clay Science, 132, 391–401. https://doi.org/10.1016/j.clay.2016.07.005
  • Arora, A., Banerjee, S., & Dutta, S. (2015). Black shale in late jurassic Jhuran formation of Kutch: Possible indicator of oceanic anoxic event. Journal of the Geological Society of India, 85(3), 265–278. https://doi.org/10.1007/s12594-015-0215-6
  • Ayoub, A., Pfingsten, W., Podofillini, L., & Sansavini, G. (2020). Uncertainty and sensitivity analysis of the chemistry of cesium sorption in deep geological repositories. Journal of Applied Geochemistry, 117, 104607. https://doi.org/10.1016/j.apgeochem.2020.104607
  • Belousov, P., Semenkova, A., Egorova, T., Romanchuk, A., Zakusin, S., Dorzhieva, O., Tyupina, E., Izosimova, Y., Tolpeshta, I., Chernov, M., & Krupskaya, V. (2019). Cesium sorption and desorption on glauconite, bentonite, zeolite, and diatomite. Minerals, 9(10), 625. https://doi.org/10.3390/min9100625
  • Biswas, S. (1982). Rift basins in western margin of India and their hydrocarbon prospects with special reference to Kutch basin. AAPG Bulletin, 66(10), 1497–1513. https://doi.org/10.1306/03B5A976-16D1-11D7-8645000102C1865D
  • Biswas, S. (1987). Regional tectonic framework, structure and evolution of the western marginal basins of India. Tectonophysics, 135(4), 307–327. https://doi.org/10.1016/0040-1951(87)90115-6
  • Biswas, S. (2005). A review of structure and tectonics of Kutch basin, western India, with special reference to earthquakes. Current Science, 88(10), 1592–1600.
  • Biswas, S. K., & Deshpande, S. V. (1968). Basement of the Mesozoic sediments of Kutch, western India. Bulletin of the Geological Mining and Metallurgy Society of India, 40, 1–7 .
  • Bostick, B. C., Vairavamurthy, M. A., Karthikeyan, K., & Chorover, J. (2002). Cesium adsorption on clay minerals: An EXAFS spectroscopic investigation. Environmental Science and Technology, 36(12), 2670–2676. https://doi.org/10.1021/es0156892
  • Bradbury, M. H., & Baeyens, B. (1998). A physicochemical characterisation and geochemical modelling approach for determining porewater chemistries in argillaceous rocks. Geochimica et cosmochimica acta, 62(5), 783–795. https://doi.org/10.1016/S0016-7037(97)00387-6
  • Brookins, D. G. (1976). (1976)Shale as a repository for radioactive waste: The evidence from Oklo. Environmental Geology, 1(5), 255–259. https://doi.org/10.1007/BF02676715
  • Carniel, L. C., Conceição, R. V., Dani, N., Stefani, V. F., Balzaretti, N. M., & Dos Reis, R. (2014). Structural changes of potassium-saturated smectite at high pressures and high temperatures: Application for subduction zones. Applied Clay Science, 102, 164–171. https://doi.org/10.1016/j.clay.2014.09.037
  • Chandrasekaran, A., Rajalakshmi, A., Ravisankar, R., & Kalarasai, S. (2015). Analysis of beach rock samples of Andaman Island, India by spectroscopic techniques. Egyptian Journal of Basic and Applied Sciences, 2(1), 55–64. https://doi.org/10.1016/j.ejbas.2014.12.004
  • Chaudhuri, A., Chatterjee, A., Banerjee, S., & Ray, J. (2021). Tracing multiple sources of sediments using trace element and nd isotope geochemistry: Provenance of the Mesozoic succession in the Kutch basin, western India. Geological Magazine, 158(2), 359–374. https://doi.org/10.1017/S0016756820000539
  • Cherif, M. A., Martin-Garin, A., Gerard, F., & Bildstein, O. (2017). A robust and parsimonious model for caesium sorption on clay minerals and natural clay materials. Journal of Applied Geochemistry, 87, 22–37. https://doi.org/10.1016/j.apgeochem.2017.10.017
  • Chorover, J., Choi, S., Rotenberg, P., Serne, R. J., Rivera, N., Strepka, C., Thompson, A., Mueller, K. T., & O’Day, P. A. (2008). Silicon control of strontium and cesium partitioning in hydroxide-weathered sediments. Geochimica et cosmochimica acta, 72(8), 2024–2047. https://doi.org/10.1016/j.gca.2008.01.026
  • Christidis, G., & Koutsopoulou, E. (2013). A simple approach to the identification of trioctahedral smectites by X-ray diffraction. Clay Minerals, 48(5), 687–696. https://doi.org/10.1180/claymin.2013.048.5.22
  • Desai, B. G., & Biswas, S. K. (2018). Postrift deltaic sedimentation in western Kachchh basin: Insights from ichnology and sedimentology. Palaeogeography, Palaeoclimatology, Palaeoecology, 504, 104–124. https://doi.org/10.1016/j.palaeo.2018.05.013
  • Desai, B. G., Patel, S. J., Shukla, R., & Surve, D. (2008). Analysis of ichnoguilds and their significance in interpreting ichnological events: A study from Jhuran formation (upper jurassic), western Kachchh. Journal of the Geological Society of India, 72(4), 458–466.
  • Dumat, C., Quiquampoix, H., & Staunton, S. (2000). Adsorption of cesium by synthetic clay-organic matter complexes: Effect of the nature of organic polymers. Environmental Science and Technology, 34(14), 2985–2989. https://doi.org/10.1021/es990657o
  • Folk, R. L. (1968). Petrology of sedimentary rocks. Hemphill Publication Company.
  • Fujikawa, Y., & Fukui, M. (1997). Radionuclide sorption to rocks and minerals: Effects of pH and inorganic anions. Part 1. Sorption of cesium, cobalt, strontium and manganese. Radiochimica Acta, 76(3), 153–162. https://doi.org/10.1524/ract.1997.76.3.153
  • Fuller, A. J., Shaw, S., Ward, M. B., Haigh, S. J., Mosselmans, J. F. W., Peacock, C. L., Stackhouse, S., Dent, A. J., Trivedi, D., & Burke, I. T. (2015). Caesium incorporation and retention in illite interlayers. Applied Clay Science, 108, 128–134. https://doi.org/10.1016/j.clay.2015.02.008
  • Fürsich, F. T., & Pandey, D. K. (2003). Sequence stratigraphic significance of sedimentary cycles and shell concentrations in the upper jurassic–lower cretaceous of Kachchh, western India. Palaeogeography, Palaeoclimatology, Palaeoecology, 193(2), 285–309. https://doi.org/10.1016/S0031-0182(03)00233-5
  • Fürsich, F., Pandey, D., Callomon, J., Jaitly, A., & Singh, I. (2001). Marker beds in the jurassic of the Kachchh basin, western India: Their depositional environment and sequence-stratigraphic significance. Journal of the Palaeontological Society, 46, 173–198. https://www.researchgate.net/publication/284145515_Marker_beds_in_the_Jurassic_of_the_Kachchh_Basin_Western_India_Their_depositional_environment_and_sequence-stratigraphic_significance#full-text
  • Gaboreau, S., Claret, F., Crouzet, C., Giffaut, E., & Tournassat, C. (2012). Caesium uptake by Callovian–oxfordian clayrock under alkaline perturbation. Journal of Applied Geochemistry, 27(6), 1194–1201. https://doi.org/10.1016/j.apgeochem.2012.02.002
  • Gens, R., Lalieux, P., De Preter, P., Dierckx, A., Bel, J., Boyazis, J.-P., & Cool, W. (2003). HLW disposal in boom clay: Overview of the Belgian Programme.The Second safety assessment and feasibility interim report. SAFIR 2 Report, 807(1), 469–474. MRS Online Proceedings Library https://doi.org/10.1557/PROC-807-917
  • Grambow, B. (2016). Geological disposal of radioactive waste in clay. Elements, 12(4), 239–245. https://doi.org/10.2113/gselements.12.4.239
  • Guo, R. (2023). Calculation of thermal-hydraulic-mechanical response of a deep geological repository for radioactive used fuel in granite. International Journal of Rock Mechanics & Mining Sciences, 170, 105435. https://doi.org/10.1016/j.ijrmms.2023.105435
  • Gupt, C. B., Bordoloi, S., Sekharan, S., & Sarmah, A. K. (2020). Adsorption characteristics of Barmer bentonite for hazardous waste containment application. Journal of Hazardous Materials, 396, 122594. https://doi.org/10.1016/j.jhazmat.2020.122594
  • Hamilton, L., Scowcroft, B., Ayers, M., Bailey, V., Carnesale, A., Domenici, P., Eisenhower, S., Hagel, C., Lash, J., & Macfarlane, A. (2012).America’s nuclear future: Report to the Secretary of Energy, Blue Ribbon Commission, 1–158,
  • Hlavay, J., Jonas, K., Elek, S., & Inczedy, J. (1978). Characterization of the particle size and the crystallinity of certain minerals by IR spectrophotometry and other instrumental methods-II. Investigations on quartz and feldspar. Clays and Clay Minerals, 26(2), 139–143. https://doi.org/10.1346/CCMN.1978.0260209
  • IAEA. (2006).Geological disposal of radioactive waste: IAEA safety standards series issue, 47 pp., Vienna, (Report no. WS-R-4.STI/PUB/123).
  • Kulkarni, J., Parab, H., Srivastava, A. K., Nikam, T. D., Kumar, S. D., Borde, M., & Suprasanna, P. (2021). Exposure to NaCl enhances Cd2+ biosorption potential of Sesuvium portulacastrum (L.). Environmental Technology & Innovation, 23, 101753. https://doi.org/10.1016/j.eti.2021.101753
  • Lake, J. (1967). An iterative method of slit-correcting small angle X-ray data. Acta Crystallographica, 23(2), 191–194. https://doi.org/10.1107/S0365110X67002440
  • Lee, J., Kim, K., Kim, I., Ju, H., Jeong, J., Lee, C., Cho, D., & Kim, J.W. (2023). High-efficiency deep geological repository system for spent nuclear fuel in Korea with optimized decay heat in a disposal canister and increased thermal limit of bentonite. Nuclear Engineering & Technology, 55(4), 1540–1554. https://doi.org/10.1016/j.net.2023.02.031
  • Martinez-Moreno, M. F., Povedano-Priego, C., Morales-Hidalgo, M., Mumford, A. D., Ojeda, J. J., Jroundi, F., & Merroun, M. L. (2023). Impact of compacted bentonite microbial community on the clay mineralogy and copper canister corrosion: A multidisciplinary approach in view of a safe deep geological repository of nuclear wastes. Journal of Hazardous Materials, 458, 131940. https://doi.org/10.1016/j.jhazmat.2023.131940
  • Mazumder, S., Sen, D., Saravanan, T., & Vijayaraghavan, P. (2001). A medium resolution double crystal based small-angle neutron scattering instrument at Trombay. Current Science, 81(3), 257–262.
  • Mazumder, S., Sen, D., Saravanan, T., & Vijayraghavan, P. (2002). The salient features of a newly developed medium-resolution double crystal based small-angle neutron scattering instrument at Trombay. Applied Physics A, 74(1), s183–s185. https://doi.org/10.1007/s003390201902
  • Metz, V., Geckeis, H., González-Robles, E., Loida, A., Bube, C., & Kienzler, B. (2012). Radionuclide behaviour in the near-field of a geological repository for spent nuclear fuel. Radiochimica Acta, 100(8–9), 699–713. https://doi.org/10.1524/ract.2012.1967
  • Nakao, A., Thiry, Y., Funakawa, S., & Kosaki, T. (2008). Characterization of the frayed edge site of micaceous minerals in soil clays influenced by different pedogenetic conditions in Japan and northern Thailand.Soil Sci. Plant Nutrition, 54(4), 479–489. https://doi.org/10.1111/j.1747-0765.2008.00262.x
  • Nayak, P. S., & Singh, B. (2007). Instrumental characterization of clay by XRF, XRD and FTIR. Bulletin of Materials Science, 30(3), 235–238. https://doi.org/10.1007/s12034-007-0042-5
  • Noli, F., Fedorcea, V., Misaelides, P., Cretescu, I., & Kapnisti, M. (2021). Cesium and barium removal from aqueous solutions in the presence of humic acid and competing cations by a Greek bentonite from Kimolos Island. Applied Radiation and Isotopes: Including Data, Instrumentation and Methods for Use in Agriculture, Industry and Medicine, 170, 109600. https://doi.org/10.1016/j.apradiso.2021.109600
  • Ozsoy, O., & Bekbolet, M. (2018). Surface interactions of Cs+ and Co2+ with bentonite. Environmental Science and Pollution Research, 25(4), 3020–3029. https://doi.org/10.1007/s11356-015-4103-9
  • Parab, H., Mahadik, P., Sengupta, P., Vishwanadh, B., & Kumar, S. D. (2020). A comparative study on native and gamma irradiated bentonite for cesium ion uptake. Progress in Nuclear Energy, 127, 103419. https://doi.org/10.1016/j.pnucene.2020.103419
  • Poinssot, C., Baeyens, B., & Bradbury, M. H. (1999). Experimental and modelling studies of caesium sorption on illite.Geochim. Geochimica et Cosmochimica Acta, 63(19–20), 3217–3227. https://doi.org/10.1016/S0016-7037(99)00246-X
  • Russell, J. D., & Fraser, A. R. (1994). Infrared methods. In M. J. Wilson (Ed.), Clay Mineralogy: Spectroscopic and chemical determinative methods (pp. 11–67). Springer.
  • Swift, P. N., & Bonano, E. J. (2016). Geological disposal of nuclear waste in tuff: Yucca Mountain (USA). Elements, 12(4), 263–268. https://doi.org/10.2113/gselements.12.4.263
  • Thury, M. (2002). The characteristics of the opalinus clay investigated in the Mont terri underground rock laboratory in Switzerland. Comptes Rendus Physique, 3(7–8), 923–933. https://doi.org/10.1016/S1631-0705(02)01372-5
  • Tsang, C. F., Neretnieks, I., & Tsang, Y. (2015). Hydrologic issues associated with nuclear waste repositories. Water Resources Research, 51(9), 6923–6972. https://doi.org/10.1002/2015WR017641
  • Van Loon, L. R., Baeyens, B., & Bradbury, M. H. (2009). The sorption behaviour of caesium on opalinus clay: A comparison between intact and crushed material. Journal of Applied Geochemistry, 24(5), 999–1004. https://doi.org/10.1016/j.apgeochem.2009.03.003
  • Vieira, Y., Netto, M. S., Lima, É. C., Anastopoulos, I., Oliveira, M. L., & Dotto, G. L. (2022). An overview of geological originated materials as a trend for adsorption in wastewater treatment. Geoscience Frontiers, 13(1), 101150. https://doi.org/10.1016/j.gsf.2021.101150
  • Von Berlepsch, T., & Haverkamp, B. (2016). Salt as a host rock for the geological repository for nuclear waste. Elements, 12(4), 257–262. https://doi.org/10.2113/gselements.12.4.257
  • Yardley, B., Ewing, R., & Whittleston, R. (2016). Deep-mined geological disposal of radioactive waste. Elements, 12(4), 233–237. https://doi.org/10.2113/gselements.12.4.233

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.