158
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Mapping of surface hydrothermal mineral alterations and geological structures related to geothermal systems in the Songwe region, SW Tanzania

ORCID Icon, &
Pages 45-59 | Received 25 Oct 2023, Accepted 21 Dec 2023, Published online: 19 Jan 2024

References

  • Alarifi, S. S., Abdelkareem, M., Abdalla, F., Abdelsadek, I. S., Gahlan, H., Al-Saleh, A. M., & Alotaibi, M. (2022). Fusion of multispectral remote-sensing data through GIS-Based overlay method for revealing potential areas of hydrothermal mineral resources. Minerals, 12(12), 1577. https://doi.org/10.3390/min12121577
  • Alexander, K. B. (2021, October 1–11). Hydrogeological controls on stratovolcanic geothermal systems in the Western Branch of the East African rift system. Proceedings World Geothermal Congress 2020+1. https://pangea.stanford.edu/ERE/db/WGC/papers/WGC/2020/12074.pdf
  • Alexander, K. B., Cumming, W., & Marini, L. (2016, November 2-4). Technical review of geothermal potential of Ngozi and songwe geothermal prospects, Tanzania. The 6th African Rift Geothermal Conference. Addis Ababa, Ethiopia. https://www.researchgate.net/publication/310330259
  • Aretouyap, Z., Nouck, P. N., & Nouayou, R. (2016). A discussion of major geophysical methods used for geothermal exploration in Africa. Renewable and Sustainable Energy Reviews, 58, 775–781. https://doi.org/10.1016/j.rser.2015.12.277
  • Bahrami, Y., Hassani, H., & Maghsoudi, A. (2021). Investigating the capabilities of multispectral remote sensors data to map alteration zones in the Abhar area, NW Iran. Geosystem Engineering, 24(1), 18–30. https://doi.org/10.1080/12269328.2018.1557083
  • Beygi, S., Talovina, I. V., Tadayon, M., & Pour, A. B. (2021). Alteration and structural features mapping in Kacho-Mesqal zone, Central Iran using ASTER remote sensing data for porphyry copper exploration. International Journal of Image and Data Fusion, 12(2), 155–175. https://doi.org/10.1080/19479832.2020.1838628
  • Chen, Q., Zhao, Z., Zhou, J., Zhu, R., Xia, J., Sun, T., Zhao, X., & Chao, J. (2022). ASTER and GF-5 satellite data for mapping hydrothermal alteration minerals in the longtoushan Pb-Zn Deposit, SW China. Remote Sensing, 14(5), 1253. https://doi.org/10.3390/rs14051253
  • Chepchumba, M. C., Raude, J. M., & Sang, J. K. (2019). Geospatial delineation and mapping of groundwater potential in Embu County, Kenya. Acque Sotterranee - Italian Journal of Groundwater, 8(2), 39–51. https://doi.org/10.7343/as-2019-369
  • Climate Analytics. (2022). Renewable energy transition in Sub-Saharan Africa. Climate Analytics.
  • Cŕosta, A. P., De Souza Filho, C. R., Azevedo, F., & Brodie, C. (2003). Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis. International Journal of Remote Sensing, 24(21), 4233–4240. https://doi.org/10.1080/0143116031000152291
  • Delvaux D.F, & Hanon M. (1993). Neotectonics of the Mbeya Area, Sw Tanzania. Mus. Roy. Afr. Centr, Vol. 97
  • Delvaux, D., & Khan, M. A. (1996). Tectonics, sedimentation and volcanism in the East African rift system: Introduction. Journal of African Earth Sciences, 26(3), 1996–1999. https://doi.org/10.1016/S0899-5362(98)00019-0
  • Delvaux, K., Sierralta, M., Wittenberg, A., Mayalla, J. W., Kabaka, K., & Makene, C. (2010, April 25–29). Surface exploration of a viable geothermal resource in Mbeya Area, Sw Tanzania. Part I: Geology of the Ngozi-Songwe geothermal system. Proceedings World Geothermal Congress, Bali, Indonesia.
  • Dhodhi, M. K., Saghri, J. A., Ahmad, I., & Ul-Mustafa, R. (1999). D-ISODATA: A distributed algorithm for unsupervised classification of remotely sensed data on network of workstations. Journal of Parallel and Distributed Computing, 59(2), 280–301. https://doi.org/10.1006/jpdc.1999.1573
  • Gupta H, & Roy S. (2006). Geothermal energy: An alternative resource for the 21st century. Elsevier.
  • Gupta, R. P., Tiwari, R. K., Saini, V., & Srivastava, N. (2013). A simplified approach for interpreting principal component images. Advances in Remote Sensing, 02(2), 111–119. https://doi.org/10.4236/ars.2013.22015
  • Hewson, R., Mshiu, E., Hecker, C., van der Werff, H., van Ruitenbeek, F., Alkema, D., & van der Meer, F. (2020). The application of day and night time ASTER satellite imagery for geothermal and mineral mapping in East Africa. International Journal of Applied Earth Observation and Geoinformation, 85(November 2019), 1–13. https://doi.org/10.1016/j.jag.2019.101991
  • Hinz, N., Cumming, B., & Sussman, D. (2018October –November 31–2). Exploration of fault-related deep-circulation geothermal resources in the western branch of the East African rift system: Examples from Uganda and Tanzania. 7th African Rift Geothermal Conference Kigali, Rwanda. https://www.researchgate.net/publication/339137489
  • Hosseinjani, M., & Tangestani, M. H. (2011). Mapping alteration minerals using sub-pixel unmixing of aster data in the Sarduiyeh area, SE Kerman, Iran. International Journal of Digital Earth, 4(6), 487–504. https://doi.org/10.1080/17538947.2010.550937
  • IRENA. (2019). United Republic of Tanzania country overview. World Energy Transitions, 1–18.
  • IRENA. (2022). World energy transitions outlook 2022. World Energy Transitions. https://irena.org/Digital-Report/World-Energy-Transitions-Outlook-2022%0Ahttps://irena.org/publications/2021/March/World-Energy-Transitions-Outlook
  • Julia, F., Vladimir, L., Sergey, R., & David, Z. (2014). Effects of hydrothermal alterations on physical and mechanical properties of rocks in the Kuril-Kamchatka Island arc. Engineering Geology, 183, 80–95. https://doi.org/10.1016/j.enggeo.2014.10.011
  • Kalberkamp, U., Mnjokava2, T. T., Mayalla, J. W., Kabaka, K., & Working Group, G. (2010, April 25–29). Surface exploration of a viable geothermal resource in Mbeya Area, SW Tanzania. Part III: Geophysics. Proceedings World Geothermal Congress, Bali, Indonesia.
  • Kilembe Elias A, & Rosendahl, Bruce. R (1992). Structure and stratigraphy of the Rukwa rift. Tectonophysics, 209(1–4), 143–158. https://doi.org/10.1016/0040-1951(92)90016-Y
  • Kraml, M., Mnjokava2, T. T., Mayalla, J. W., Kabaka, K., & Working Group, G. (2010, April 25–29). Surface exploration of a viable geothermal resource in Mbeya Area, SW Tanzania. Part II: Geochemistry. Proceedings World Geothermal Congress, Bali, Indonesia.
  • Kraml, M., Ochmann, N., Leible, D., Kling, T., Chiragwile, S. A., & Jodocy, M. (2014, November 1–10). Results of the pre-feasibility study on Ngozi Geothermal Project in Tanzania. ARGEO-C5 Conference, Arusha, Tanzania.
  • Lenoir, J. L., Liégeois, J. P., Theunissen, K., & Klerkx, J. (1994). The Palaeoproterozoic Ubendian shear belt in Tanzania: geochronology and structure. Journal of African Earth Sciences, 19(3), 169–184. https://doi.org/10.1016/0899-5362(94)90059-0
  • Li, M., Zang, S., Zhang, B., Li, S., & Wu, C. (2014). A review of remote sensing image classification techniques: The role of Spatio-contextual information. European Journal of Remote Sensing, 47(1), 389–411. https://doi.org/10.5721/EuJRS20144723
  • Loughlin, W. P. (1991). Principal component analysis for alteration mapping. Photogrammetric Engineering & Remote Sensing, 57(9), 1163–1169.
  • Mahboob, M. A., Genc, B., Celik, T., Ali, S., & Atif, I. (2019). Mapping hydrothermal minerals using remotely sensed reflectance spectroscopy data from landsat. Journal of the Southern African Institute of Mining and Metallurgy, 119(3), 279–289. https://doi.org/10.17159/2411-9717/2019/v119n3a7
  • Mahwa, J., Li, D. J., Ping, J. H., Leng, W., Tang, J. B., & Shao, D. Y. (2022). Mapping the spatial distribution of fossil geothermal manifestations and assessment of geothermal potential of the Tangyin rift, Southeast of Taihang Mountain in China. Journal of Mountain Science, 19(8), 2241–2259. https://doi.org/10.1007/s11629-022-7329-2
  • Malainine, C. E., Raji, O., Ouabid, M., Khouakhi, A., Bodinier, J. L., Laamrani, A., El Messbahi, H., Youbi, N., & Boumehdi, M. A. (2022). An integrated ASTER-based approach for mapping carbonatite and iron oxide-apatite deposits. Geocarto International, 37(22), 6579–6601. https://doi.org/10.1080/10106049.2021.1953617
  • Mars, J. C., & Rowan, L. C. (2006). Regional mapping of phyllic- and argillic-altered rocks in the zagros magmatic arc, Iran, using advanced spaceborne thermal emission and reflection radiometer (ASTER) data and logical operator algorithms. Geosphere, 2(3), 161–186. https://doi.org/10.1130/GES00044.1
  • Mshiu, E. E. (2020). Mapping of the geological structures using Digital Elevation Model (DEM)-derived flow direction: A case study of Rungwe Volcanic Province, Southwest Tanzania. Tanzania Journal of Science, 46(1), 101–115.
  • Nalbant, S. S., & Alptekln Ӧ. (1995). The use of landsat thematic mapper imagery for analysing lithology and structure of Korucu-Duğla area in Western Turkey. International Journal of Remote Sensing, 16(13), 2357–2374. https://doi.org/10.1080/01431169508954563
  • Noori, L., Pour, A. B., Askari, G., Taghipour, N., Pradhan, B., Lee, C. W., & Honarmand, M. (2019). Comparison of different algorithms to map hydrothermal alteration zones using ASTER remote sensing data for polymetallic vein-type ore exploration: Toroud–Chahshirin Magmatic Belt (TCMB), North Iran. Remote Sensing, 11(5), 495. https://doi.org/10.3390/rs11050495
  • Noorollahi, Y., Ghasempour, R., & Jalilinasrabady, S. (2015). A GIS based integration method for geothermal resources exploration and site selection. Energy Exploration and Exploitation, 33(2), 243–258. https://doi.org/10.1260/0144-5987.33.2.243
  • Nur, S., Martha, A., Josephat, S., Mahecha, A., Mshiu, E., & Bertotti, G. (2022). Identification of water – rock interaction of surface thermal water in Songwe medium temperature geothermal area, Tanzania. Environmental Earth Sciences. https://doi.org/10.1007/s12665-022-10594-4
  • Nzaro, M. A. (1970). Geothermal resources of Tanzania. Geothermics, 2(Part 2), 1039–1043. https://doi.org/10.1016/0375-6505(70)90412-8
  • Osinowo, O. O., Gomy, A., & Isseini, M. (2021). Mapping hydrothermal alteration mineral deposits from landsat 8 satellite data in Pala, Mayo Kebbi Region, Southwestern Chad. Scientific African, 11, e00687. https://doi.org/10.1016/j.sciaf.2020.e00687
  • Roberts, E. M., O’Connor, P. M., Stevens, N. J., Gottfried, M. D., Jinnah, Z. A., Ngasala, S., Choh, A. M., & Armstrong, R. A. (2010). Sedimentology and depositional environments of the Red Sandstone group, Rukwa Rift Basin,Southwestern Tanzania: New insight into cretaceous and paleogene terrestrial ecosystems and tectonics in sub-equatorial Africa. Journal of African Earth Sciences, 57(3), 179–212. https://doi.org/10.1016/j.jafrearsci.2009.09.002
  • Sabins, F. F. (1999). Remote sensing for mineral exploration. Ore Geology Reviews, 14(3–4), 157–183. https://doi.org/10.1016/S0169-1368(99)00007-4
  • Schwartz, G. M. (1959). Hydrothermal alteration. Economic Geology, 54(2), 161–183. https://doi.org/10.2113/gsecongeo.54.2.161
  • Semkiwa, P., Kalkreuth, W., Utting, J., Mayagilo, F., Mpanju, F., & Hagemann, H. (1998). The geology, petrology, palynology and geochemistry of Permian coal basins in Tanzania. 1. Namwele-Mkomolo, Muze and Galula coalfields. International Journal of Coal Geology, 36(1–2), 63–110. https://doi.org/10.1016/S0166-5162(97)00020-7
  • Simmons, S. F. A., & Browne, P. R. L. (2000). Hydrothermal minerals and precious metals in the Broadlands-Ohaaki geothermal system: Implications for understanding low-sulfidation epithermal environments. Economic Geology, 95(5), 971–999. https://doi.org/10.2113/gsecongeo.95.5.971
  • Testa, F. J., Villanueva, C., Cooke, D. R., & Zhang, L. (2018). Lithological and hydrothermal alteration mapping of epithermal, porphyry and tourmaline breccia districts in the argentine andes using ASTER imagery. Remote Sensing, 10(2), 1–45. https://doi.org/10.3390/rs10020203
  • Tiercelin, J. J., Chorowicz, J., Bellon, H., Richert, J. P., Mwanbene, J. T., & Walgenwitz, F. (1988). East African rift system: Offset, age and tectonic significance of the tanganyika-rukwa-malawi intracontinental transcurrent fault zone. Tectonophysics, 148(3–4), 241–252. https://doi.org/10.1016/0040-1951(88)90133-3
  • Yalcin, M., Kilic Gul, F., Yildiz, A., Polat, N., & Basaran, C. (2020). The mapping of hydrothermal alteration related to the geothermal activities with remote sensing at Akarcay Basin (Afyonkarahisar), using aster data. Arabian Journal of Geosciences, 13(21). https://doi.org/10.1007/s12517-020-06083-2
  • Yang, Browne, P. R. L., Huntington, J. F., Walshe, J. L., & Yang, K. (2001). Characterising the hydrothermal alteration of the Broadlands–Ohaaki geothermal system, New Zealand, using short-wave infrared spectroscopy. Journal of Volcanology and Geothermal Research, 106(1–2), 53–65. https://doi.org/10.1016/S0377-0273(00)00264-X
  • Yang, K., Huntington, J. F., Browne, P. R. L., & Ma, C. (2000). An infrared spectral reflectance study of hydrothermal alteration minerals from the Te Mihi sector of the Wairakei geothermal system, New Zealand. Geothermics, 29(3), 377–392. https://doi.org/10.1016/S0375-6505(00)00004-3
  • Zhang, T., Yi, G., Li, H., Wang, Z., Tang, J., Zhong, K., Li, Y., Wang, Q., & Bie, X. (2016). Integrating data of ASTER and landsat-8 OLI (AO) for hydrothermal alteration mineral mapping in duolong porphyry cu-au deposit, Tibetan Plateau, China. Remote Sensing, 8(11), 890. https://doi.org/10.3390/rs8110890

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.