957
Views
0
CrossRef citations to date
0
Altmetric
Review Article

The prospect of antimicrobial peptides from Bacillus species with biological control potential against insect pests and diseases of economic importance in agriculture, forestry and fruit tree production

ORCID Icon, , , , , , & show all
Article: 2312115 | Received 17 Oct 2023, Accepted 26 Jan 2024, Published online: 10 Feb 2024

References

  • Cerda R, Avelino J, Gary C, et al. Primary and secondary yield losses caused by pests and diseases: assessment and modeling in coffee. PLoS One. 2017;12(1):1. doi: 10.1371/journal.pone.0169133.
  • Brown B, Wylie F. Diseases and pests of Australian Forest nurseries: past and present. In: Proceedings of the First Meeting of IUFRO Working Party S.2.07–09 (Diseases and Insects in Forest Nurseries), Sutherland, J.R., Glover,S.G. (Eds). August 23-30, 1990, Victoria, British Colombia, Canada. The Pacific Forestry Centre (Forestry Canada, Pacific and Yukon Region), Victoria, British Colombia, Canada, 1991. p. 3–31.
  • Pimentel D. Green revolution agriculture and chemical hazards. Sci Total Environ. 1996;188: S86–S98. doi: 10.1016/0048-9697(96)05280-1.
  • Dhaliwal G, Jindal V, Dhawan A. Insect pest problems and crop losses: changing trends. Indian J Ecol. 2010;37:1–7.
  • Abubakar Y, Tijjani H, Egbuna C, et al. Pesticides, history, and classification. In: Egbuna C, Sawicka B, editors. Natural remedies for pest, disease and weed control. Cambridge (MA): Academic Press; 2020. p. 29–42.
  • Kole R, Roy K, Panja B, et al. Use of pesticides in agriculture and emergence of resistant pests. IJAH. 2019;58(2-SPL):53–70. doi: 10.36062/ijah.58.2SPL.2019.53-70.
  • Hawkins NJ, Bass C, Dixon A, et al. The evolutionary origins of pesticide resistance. Biol Rev Camb Philos Soc. 2019;94(1):135–155. doi: 10.1111/brv.12440.
  • Guedes RNC, Walse SS, Throne JE. Sublethal exposure, insecticide resistance, and community stress. Curr Opin Insect Sci. 2017;21:47–53. doi: 10.1016/j.cois.2017.04.010.
  • Thakore Y. The biopesticide market for global agricultural use. Ind Biotechnol. 2006;2(3):194–208. doi: 10.1089/ind.2006.2.194.
  • Zaller JG. Daily poison: pesticides-an underestimated danger. Springer Nature: Cham, Switzerland; 2020, 315.
  • Kumar V, Kumar P. Pesticides in agriculture and environment: impacts on human health. In: Kumar V, Kumar R, Singh J, Kumar P. editors. Contaminants in agriculture and environment: health risks and remediation. Haridwar, India: Agriculture and Environmental Science Academy. 2019. p. 76.
  • Berini F, Katz C, Gruzdev N, et al. Microbial and viral chitinases: attractive biopesticides for integrated pest management. Biotechnol Adv. 2018;36(3):818–838. doi: 10.1016/j.biotechadv.2018.01.002.
  • Copping LG, Menn JJ. Biopesticides: a review of their action, applications and efficacy. Pest Manag Sci. 2000;56(8):651–676. doi: 10.1002/1526-4998(200008)56:8<651::AID-PS201>3.0.CO;2-U.
  • Gupta S, Dikshit A. Biopesticides: an ecofriendly approach for pest control. J Biopest. 2010;3:186.
  • Ferreira VB, Estrella LF, Alves MGR, et al. Residues of legacy organochlorine pesticides and DDT metabolites in highly consumed fish from the polluted Guanabara Bay, Brazil: distribution and assessment of human health risk. J Environ Sci Health B. 2020;55(1):30–41. doi: 10.1080/03601234.2019.1654808.
  • Bempah CK, Asomaning J, Boateng J. Market basket survey for some pesticides residues in fruits and vegetables from Ghana. J Microbiol Biotechnol Food Sci. 2020;9:850–871.
  • Scheepmaker J, Butt T. Natural and released inoculum levels of entomopathogenic fungal biocontrol agents in soil in relation to risk assessment and in accordance with EU regulations. Biocontrol Sci Technol. 2010;20(5):503–552. doi: 10.1080/09583150903545035.
  • Bren A, Hart Y, Dekel E, et al. The last generation of bacterial growth in limiting nutrient. BMC Syst Biol. 2013;7(1):27. doi: 10.1186/1752-0509-7-27.
  • Köhl J, Booij K, Kolnaar R, et al. Ecological arguments to reconsider data requirements regarding the environmental fate of microbial biocontrol agents in the registration procedure in the European Union. BioControl. 2019;64(5):469–487. doi: 10.1007/s10526-019-09964-y.
  • Ajuna HB, Kim I, Han YS, et al. Aphicidal activity of Bacillus thuringiensis strain AH-2 against cotton aphid (Aphis gossypii). Entomol Res. 2021;51(4):151–160. doi: 10.1111/1748-5967.12481.
  • Bonaterra A, Badosa E, Daranas N, et al. Bacteria as biological control agents of plant diseases. Microorganisms. 2022;10(9):1759. doi: 10.3390/microorganisms10091759.
  • Lee J, Kim S, Jung H, et al. Exploiting bacterial genera as biocontrol agents: mechanisms, interactions and applications in sustainable agriculture. J Plant Biol. 2023;66(6):485–498. doi: 10.1007/s12374-023-09404-6.
  • Moon J-H, Won S-J, Maung CEH, et al. The role of Lysobacter antibioticus HS124 on the control of fall webworm (Hyphantria cunea drury) and growth promotion of Canadian poplar (Populus canadensis moench) at Saemangeum reclaimed land in Korea. Microorganisms. 2021;9(8):1580. doi: 10.3390/microorganisms9081580.
  • Kwon J-H, Won S-J, Moon J-H, et al. Control of fungal diseases and increase in yields of a cultivated jujube fruit (Zizyphus jujuba miller var. Inermis rehder) orchard by employing Lysobacter antibioticus HS124. Forests. 2019;10(12):1146. doi: 10.3390/f10121146.
  • Simon J-C, Marchesi JR, Mougel C, et al. Host-microbiota interactions: from holobiont theory to analysis. Microbiome. 2019;7(1):5. doi: 10.1186/s40168-019-0619-4.
  • Dolatabadian A. Plant–microbe interaction. Biology. 2020;10(1):15. doi: 10.3390/biology10010015.
  • Ali SAM, Sayyed R, Mir MI, et al. Induction of systemic resistance in maize and antibiofilm activity of surfactin from Bacillus velezensis MS20. Front Microbiol. 2022;13:879739. doi: 10.3389/fmicb.2022.879739.
  • Bargabus R, Zidack N, Sherwood J, et al. Characterisation of systemic resistance in sugar beet elicited by a non-pathogenic, phyllosphere-colonizing Bacillus mycoides, biological control agent. Physiol Mol Plant Pathol. 2002;61(5):289–298. doi: 10.1006/pmpp.2003.0443.
  • Chen L, Wang X, Ma Q, et al. Bacillus velezensis CLA178-induced systemic resistance of rosa multiflora against crown gall disease. Front Microbiol. 2020;11:587667. doi: 10.3389/fmicb.2020.587667.
  • Chung EJ, Hossain MT, Khan A, et al. Bacillus oryzicola sp. nov., an endophytic bacterium isolated from the roots of rice with antimicrobial, plant growth promoting, and systemic resistance inducing activities in rice. Plant Pathol J. 2015;31(2):152–164. doi: 10.5423/PPJ.OA.12.2014.0136.
  • Lam VB, Meyer T, Arias AA, et al. Bacillus cyclic lipopeptides iturin and fengycin control rice blast caused by Pyricularia oryzae in potting and acid sulfate soils by direct antagonism and induced systemic resistance. Microorganisms. 2021;9(7):1441. doi: 10.3390/microorganisms9071441.
  • Ongena M, Jourdan E, Adam A, et al. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol. 2007;9(4):1084–1090. doi: 10.1111/j.1462-2920.2006.01202.x.
  • Zhao H, Shao D, Jiang C, et al. Biological activity of lipopeptides from Bacillus. Appl Microbiol Biotechnol. 2017;101(15):5951–5960. doi: 10.1007/s00253-017-8396-0.
  • Villegas-Escobar V, González-Jaramillo LM, Ramírez M, et al. Lipopeptides from Bacillus sp. EA-CB0959: active metabolites responsible for in vitro and in vivo control of Ralstonia solanacearum. Biol Control. 2018;125:20–28. doi: 10.1016/j.biocontrol.2018.06.005.
  • Ongena M, Jacques P. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 2008;16(3):115–125. doi: 10.1016/j.tim.2007.12.009.
  • Chen X-H, Scholz R, Borriss M, et al. Difficidin and bacilysin produced by plant-associated Bacillus amyloliquefaciens are efficient in controlling fire blight disease. J Biotechnol. 2009;140(1-2):38–44. doi: 10.1016/j.jbiotec.2008.10.015.
  • Miao S, Liang J, Xu Y, et al. Bacillaene, sharp objects consist in the arsenal of antibiotics produced by Bacillus. J Cell Physiol. 2023:1–15. doi: 10.1002/jcp.30974.
  • Salazar F, Ortiz A, Sansinenea E. A strong antifungal activity of 7-O-succinyl macrolactin a vs macrolactin a from Bacillus amyloliquefaciens ELI149. Curr Microbiol. 2020;77(11):3409–3413. doi: 10.1007/s00284-020-02200-2.
  • Choub V, Won S-J, Ajuna HB, et al. Antifungal activity of volatile organic compounds from Bacillus velezensis CE 100 against Colletotrichum gloeosporioides. Horticulturae. 2022;8(6):557. doi: 10.3390/horticulturae8060557.
  • Zhao P, Li P, Wu S, et al. Volatile organic compounds (VOCs) from Bacillus subtilis CF-3 reduce anthracnose and elicit active defense responses in harvested litchi fruits. AMB Exp. 2019;9(1):119. doi: 10.1186/s13568-019-0841-2.
  • Li X-Y, Mao Z-C, Wu Y-X, et al. Comprehensive volatile organic compounds profiling of Bacillus species with biocontrol properties by head space solid phase microextraction with gas chromatography-mass spectrometry. Biocontrol Sci Technol. 2015;25(2):132–143. doi: 10.1080/09583157.2014.960809.
  • Saxena AK, Kumar M, Chakdar H, et al. Bacillus species in soil as a natural resource for plant health and nutrition. J Appl Microbiol. 2020;128(6):1583–1594. doi: 10.1111/jam.14506.
  • Won S-J, Moon J-H, Ajuna HB, et al. Biological control of leaf blight disease caused by Pestalotiopsis maculans and growth promotion of Quercus acutissima Carruth container seedlings using Bacillus velezensis CE 100. Int J Mol Sci. 2021;22(20):11296. doi: 10.3390/ijms222011296.
  • Moon J-H, Won S-J, Maung CEH, et al. Bacillus velezensis CE 100 inhibits root rot diseases (Phytophthora spp.) and promotes growth of Japanese cypress (Chamaecyparis obtusa Endlicher) seedlings. Microorganisms. 2021;9(4):821. doi: 10.3390/microorganisms9040821.
  • Hong S, Kim TY, Won S-J, et al. Control of fungal diseases and fruit yield improvement of strawberry using Bacillus velezensis CE 100. Microorganisms. 2022;10(2):365. doi: 10.3390/microorganisms10020365.
  • Moon J-H, Ajuna HB, Won S-J, et al. Entomopathogenic potential of Bacillus velezensis CE 100 for the biological control of termite damage in wooden architectural buildings of Korean cultural heritage. Int J Mol Sci. 2023;24(9):8189. doi: 10.3390/ijms24098189.
  • Moon J-H, Ajuna HB, Won S-J, et al. The anti-termite activity of Bacillus licheniformis PR2 against the subterranean termite, Reticulitermes speratus kyushuensis Morimoto (Isoptera: Rhinotermitidae). Forests. 2023;14(5):1000. doi: 10.3390/f14051000.
  • Syed T, Askari M, Meng Z, et al. Current insights on vegetative insecticidal proteins (Vip) as next generation pest killers. Toxins. 2020;12(8):522. doi: 10.3390/toxins12080522.
  • Palma L, Muñoz D, Berry C, et al. Molecular and insecticidal characterization of a novel cry-related protein from Bacillus thuringiensis toxic against Myzus persicae. Toxins. 2014;6(11):3144–3156. doi: 10.3390/toxins6113144.
  • Dimopoulou A, Theologidis I, Benaki D, et al. Direct antibiotic activity of bacillibactin broadens the biocontrol range of Bacillus amyloliquefaciens MBI600. Msphere. 2021;6(4):e0037621. doi: 10.1128/mSphere.00376-21.
  • Soni R, Keharia H. Phytostimulation and biocontrol potential of gram-positive endospore-forming Bacilli. Planta. 2021;254(3):49. doi: 10.1007/s00425-021-03695-0.
  • Yánez-Mendizabal V, Viñas I, Usall J, et al. Endospore production allows using spray-drying as a possible formulation system of the biocontrol agent Bacillus subtilis CPA-8. Biotechnol Lett. 2012;34(4):729–735. doi: 10.1007/s10529-011-0834-y.
  • Sadfi N, Cherif M, Fliss I, et al. Evaluation of bacterial isolates from salty soils and Bacillus thuringiensis strains for the biocontrol of Fusarium dry rot of potato tubers. J Plant Pathol. 2001; 83, 101–117.
  • Devi PV, Duraimurugan P, Chandrika K. Bacillus thuringiensis-based nanopesticides for crop protection. In: Koul O, editor. Nano-biopesticides today and future perspectives. Cambridge, MA, USA: Academic Press; 2019. p. 249–260.
  • Fira D, Dimkić I, Berić T, et al. Biological control of plant pathogens by Bacillus species. J Biotechnol. 2018;285:44–55. doi: 10.1016/j.jbiotec.2018.07.044.
  • Geissler M, Heravi KM, Henkel M, et al. Lipopeptide biosurfactants from Bacillus species. In: Douglas GH, Daniel KYS, Ashby RD, editors. Biobased surfactants. 2nd ed. Urbana (IL): AOCS Press; 2019. p. 205–240.
  • Théatre A, Cano-Prieto C, Bartolini M, et al. The surfactin-like lipopeptides from bacillus spp.: natural biodiversity and synthetic biology for a broader application range. Front Bioeng Biotechnol. 2021;9:623701. doi: 10.3389/fbioe.2021.623701.
  • Liu X, Ren B, Gao H, et al. Optimization for the production of surfactin with a new synergistic antifungal activity. PLoS One. 2012;7(5):e34430. doi: 10.1371/journal.pone.0034430.
  • Zeriouh H, de Vicente A, Pérez-García A, et al. Surfactin triggers biofilm formation of Bacillus subtilis in melon phylloplane and contributes to the biocontrol activity. Environ Microbiol. 2014;16(7):2196–2211. doi: 10.1111/1462-2920.12271.
  • Stoll A, Salvatierra-Martínez R, González M, et al. The role of surfactin production by Bacillus velezensis on colonization, biofilm formation on tomato root and leaf surfaces and subsequent protection (ISR) against Botrytis cinerea. Microorganisms. 2021;9(11):2251. doi: 10.3390/microorganisms9112251.
  • Park G, Nam J, Kim J, et al. Structure and mechanism of surfactin peptide from Bacillus velezensis antagonistic to fungi plant pathogens. Bull Korean Chem Soc. 2019;40(7):704–709. doi: 10.1002/bkcs.11757.
  • Meena KR, Kanwar SS. Lipopeptides as the antifungal and antibacterial agents: applications in food safety and therapeutics. Biomed Res Int. 2015;2015:473050–473059. doi: 10.1155/2015/473050.
  • Thérien M, Kiesewalter HT, Auria E, et al. Surfactin production is not essential for pellicle and root-associated biofilm development of Bacillus subtilis. Biofilm. 2020;2:100021. doi: 10.1016/j.bioflm.2020.100021.
  • Sarwar A, Hassan MN, Imran M, et al. Biocontrol activity of surfactin a purified from Bacillus NH-100 and NH-217 against rice bakanae disease. Microbiol Res. 2018;209:1–13. doi: 10.1016/j.micres.2018.01.006.
  • Bouchard-Rochette M, Machrafi Y, Cossus L, et al. Bacillus pumilus PTB180 and Bacillus subtilis PTB185: production of lipopeptides, antifungal activity, and biocontrol ability against Botrytis cinerea. Biol Control. 2022;170:104925. doi: 10.1016/j.biocontrol.2022.104925.
  • Ma Z, Zhang S, Zhang S, et al. Isolation and characterization of a new cyclic lipopeptide surfactin from a marine-derived Bacillus velezensis SH-B74. J Antibiot. 2020;73(12):863–867. doi: 10.1038/s41429-020-0347-9.
  • Li MS, Piccoli DA, McDowell T, et al. Evaluating the biocontrol potential of Canadian strain Bacillus velezensis 1B-23 via its surfactin production at various pHs and temperatures. BMC Biotechnol. 2021;21(1):31. doi: 10.1186/s12896-021-00690-x.
  • Grady EN, MacDonald J, Ho MT, et al. Characterization and complete genome analysis of the surfactin-producing, plant-protecting bacterium Bacillus velezensis 9D-6. BMC Microbiol. 2019;19(1):5. doi: 10.1186/s12866-018-1380-8.
  • Arjes HA, Vo L, Dunn CM, et al. Biosurfactant-mediated membrane depolarization maintains viability during oxygen depletion in Bacillus subtilis. Curr Biol. 2020;30(6):1011.e1016–1022.e1016. doi: 10.1016/j.cub.2020.01.073.
  • Arjes HA, Vo L, Dunn CM, et al. Biosurfactant production maintains viability in anoxic conditions by depolarizing the membrane in Bacillus subtilis. bioRxiv. 2019;720532.
  • Chen X, Lu Y, Shan M, et al. A mini-review: mechanism of antimicrobial action and application of surfactin. World J Microbiol Biotechnol. 2022;38(8):143. doi: 10.1007/s11274-022-03323-3.
  • Khan N, Maymon M, Hirsch AM. Combating Fusarium infection using Bacillus-based antimicrobials. Microorganisms. 2017;5(4):75. doi: 10.3390/microorganisms5040075.
  • Gong A-D, Li H-P, Yuan Q-S, et al. Antagonistic mechanism of iturin a and plipastatin a from Bacillus amyloliquefaciens S76-3 from wheat spikes against Fusarium graminearum. PLoS One. 2015;10(2):e0116871. doi: 10.1371/journal.pone.0116871.
  • Zhang R-S, Wang F-G, Qi Z-Q, et al. Iturins produced by Bacillus velezensis Jt84 play a key role in the biocontrol of rice blast disease. Biol Control. 2022;174:105001. doi: 10.1016/j.biocontrol.2022.105001.
  • Dunlap CA, Bowman MJ, Rooney AP. Iturinic lipopeptide diversity in the Bacillus subtilis species group–important antifungals for plant disease biocontrol applications. Front Microbiol. 2019;10:1794. doi: 10.3389/fmicb.2019.01794.
  • Ma Z, Wang N, Hu J, et al. Isolation and characterization of a new iturinic lipopeptide, mojavensin a produced by a marine-derived bacterium Bacillus mojavensis B0621A. J Antibiot. 2012;65(6):317–322. doi: 10.1038/ja.2012.19.
  • Xiao J, Guo X, Qiao X, et al. Activity of fengycin and iturin a isolated from Bacillus subtilis Z-14 on Gaeumannomyces graminis var. tritici and soil microbial diversity. Front Microbiol. 2021;12:682437. doi: 10.3389/fmicb.2021.682437.
  • Zhang D, Yu S, Zhao D, et al. Inhibitory effects of non-volatiles lipopeptides and volatiles ketones metabolites secreted by Bacillus velezensis C16 against alternaria solani. Biol Control. 2021;152:104421. doi: 10.1016/j.biocontrol.2020.104421.
  • Tang Z, Cao X, Zhang H. Production of iturin a by Bacillus velezensis ND and its biological control characteristics. J Basic Microbiol. 2023;63(2):179–189. doi: 10.1002/jobm.202200473.
  • Arrebola E, Jacobs R, Korsten L. Iturin a is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. J Appl Microbiol. 2010;108(2):386–395. doi: 10.1111/j.1365-2672.2009.04438.x.
  • Alvarez F, Castro M, Príncipe A, et al. The plant-associated Bacillus amyloliquefaciens strains MEP218 and ARP23 capable of producing the cyclic lipopeptides iturin or surfactin and fengycin are effective in biocontrol of sclerotinia stem rot disease. J Appl Microbiol. 2012;112(1):159–174. doi: 10.1111/j.1365-2672.2011.05182.x.
  • Singh P, Xie J, Qi Y, et al. A thermotolerant marine Bacillus amyloliquefaciens S185 producing iturin A5 for antifungal activity against Fusarium oxysporum f. sp. cubense. Mar Drugs. 2021;19(9):516. doi: 10.3390/md19090516.
  • Wang J, Qiu J, Yang X, et al. Identification of lipopeptide iturin a produced by Bacillus amyloliquefaciens NCPSJ7 and its antifungal activities against Fusarium oxysporum f. sp. niveum. Foods. 2022;11(19):2996. doi: 10.3390/foods11192996.
  • Zeriouh H, Romero D, Garcia-Gutierrez L, et al. The iturin-like lipopeptides are essential components in the biological control arsenal of Bacillus subtilis against bacterial diseases of cucurbits. Mol Plant Microbe Interact. 2011;24(12):1540–1552. doi: 10.1094/MPMI-06-11-0162.
  • Dang Y, Zhao F, Liu X, et al. Enhanced production of antifungal lipopeptide iturin a by Bacillus amyloliquefaciens LL3 through metabolic engineering and culture conditions optimization. Microb Cell Fact. 2019;18(1):68. doi: 10.1186/s12934-019-1121-1.
  • Yue H, Zhong J, Li Z, et al. Optimization of iturin a production from Bacillus subtilis ZK-H2 in submerge fermentation by response surface methodology. 3 Biotech. 2021;11(2):36. doi: 10.1007/s13205-020-02540-7.
  • Asaka O, Shoda M. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl Environ Microbiol. 1996;62(11):4081–4085. doi: 10.1128/aem.62.11.4081-4085.1996.
  • Mizumoto S, Hirai M, Shoda M. Enhanced iturin a production by Bacillus subtilis and its effect on suppression of the plant pathogen Rhizoctonia solani. Appl Microbiol Biotechnol. 2007;75(6):1267–1274. doi: 10.1007/s00253-007-0973-1.
  • Steller S, Vater J. Purification of the fengycin synthetase multienzyme system from Bacillus subtilis b213. J Chromatogr B Biomed Sci Appl. 2000;737(1-2):267–275. doi: 10.1016/s0378-4347(99)00481-8.
  • Yánez-Mendizábal V, Zeriouh H, Viñas I, et al. Biological control of peach brown rot (Monilinia spp.) by Bacillus subtilis CPA-8 is based on production of fengycin-like lipopeptides. Eur J Plant Pathol. 2012;132(4):609–619. doi: 10.1007/s10658-011-9905-0.
  • Guo Q, Dong W, Li S, et al. Fengycin produced by Bacillus subtilis NCD-2 plays a major role in biocontrol of cotton seedling damping-off disease. Microbiol Res. 2014;169(7-8):533–540. doi: 10.1016/j.micres.2013.12.001.
  • Wang F, Xiao J, Zhang Y, et al. Biocontrol ability and action mechanism of Bacillus halotolerans against Botrytis cinerea causing grey mould in postharvest strawberry fruit. Postharvest Biol Technol. 2021;174:111456. doi: 10.1016/j.postharvbio.2020.111456.
  • Chen M, Wang J, Liu B, et al. Biocontrol of tomato bacterial wilt by the new strain Bacillus velezensis FJAT-46737 and its lipopeptides. BMC Microbiol. 2020;20(1):160. doi: 10.1186/s12866-020-01851-2.
  • Jumpathong W, Intra B, Euanorasetr J, et al. Biosurfactant-producing Bacillus velezensis PW192 as an anti-fungal biocontrol agent against Colletotrichum gloeosporioides and Colletotrichum musae. Microorganisms. 2022;10(5):1017. doi: 10.3390/microorganisms10051017.
  • Liu Y, Teng K, Wang T, et al. Antimicrobial Bacillus velezensis HC6: production of three kinds of lipopeptides and biocontrol potential in maize. J Appl Microbiol. 2020;128(1):242–254. doi: 10.1111/jam.14459.
  • Hanif A, Zhang F, Li P, et al. Fengycin produced by Bacillus amyloliquefaciens FZB42 inhibits Fusarium graminearum growth and mycotoxins biosynthesis. Toxins. 2019;11(5):295. doi: 10.3390/toxins11050295.
  • Baindara P, Korpole S. Lipopeptides: status and strategies to control fungal infection. In: Basak A, Chakraborty R, Mandal S. editors. Recent trends in antifungal agents and antifungal therapy. New Delhi, India: Springer Nature, 2016. p. 97–121.
  • Suneeta P, Aiyanathan KEA, Nakkeeran S. Bacillomycins–the effective molecules in plant disease management. Int J Curr Microbiol Appl Sci. 2018;7(2):823–835. doi: 10.20546/ijcmas.2018.702.104.
  • Lim SM, Yoon M-Y, Choi GJ, et al. Diffusible and volatile antifungal compounds produced by an antagonistic Bacillus velezensis G341 against various phytopathogenic fungi. Plant Pathol J. 2017;33(5):488–498. doi: 10.5423/PPJ.OA.04.2017.0073.
  • Xiao S, Chen N, Chai Z, et al. Secondary metabolites from marine-derived Bacillus: a comprehensive review of origins, structures, and bioactivities. Mar Drugs. 2022;20(9):567. doi: 10.3390/md20090567.
  • Jin P, Wang H, Tan Z, et al. Antifungal mechanism of bacillomycin D from Bacillus velezensis HN-2 against Colletotrichum gloeosporioides Penz. Pestic Biochem Physiol. 2020;163:102–107. doi: 10.1016/j.pestbp.2019.11.004.
  • Gong Q, Zhang C, Lu F, et al. Identification of bacillomycin D from Bacillus subtilis fmbJ and its inhibition effects against Aspergillus flavus. Food Control. 2014;36(1):8–14. doi: 10.1016/j.foodcont.2013.07.034.
  • Mácha H, Marešová H, Juříková T, et al. Killing effect of Bacillus velezensis FZB42 on a Xanthomonas campestris pv. Campestris (Xcc) strain newly isolated from cabbage Brassica oleracea Convar. capitata (L.): a metabolomic study. Microorganisms. 2021;9(7):1410. doi: 10.3390/microorganisms9071410.
  • Yuan J, Li B, Zhang N, et al. Production of bacillomycin-and macrolactin-type antibiotics by Bacillus amyloliquefaciens NJN-6 for suppressing soilborne plant pathogens. J Agric Food Chem. 2012;60(12):2976–2981. doi: 10.1021/jf204868z.
  • Xu Z, Shao J, Li B, et al. Contribution of bacillomycin D in Bacillus amyloliquefaciens SQR9 to antifungal activity and biofilm formation. Appl Environ Microbiol. 2013;79(3):808–815. doi: 10.1128/AEM.02645-12.
  • Jiao R, Cai Y, He P, et al. Bacillus amyloliquefaciens YN201732 produces lipopeptides with promising biocontrol activity against fungal pathogen Erysiphe cichoracearum. Front Cell Infect Microbiol. 2021;11:598999. doi: 10.3389/fcimb.2021.598999.
  • Gu Q, Yang Y, Yuan Q, et al. Bacillomycin D produced by Bacillus amyloliquefaciens is involved in the antagonistic interaction with the plant-pathogenic fungus Fusarium graminearum. Appl Environ Microbiol. 2017;83(19):e01075–01017. doi: 10.1128/AEM.01075-17.
  • Luna-Bulbarela A, Tinoco-Valencia R, Corzo G, et al. Effects of bacillomycin D homologues produced by Bacillus amyloliquefaciens 83 on growth and viability of Colletotrichum gloeosporioides at different physiological stages. Biol Control. 2018;127:145–154. doi: 10.1016/j.biocontrol.2018.08.004.
  • Luo C, Liu J, Bilal M, et al. Extracellular lipopeptide bacillomycin L regulates serial expression of genes for modulating multicellular behavior in Bacillus velezensis Bs916. Appl Microbiol Biotechnol. 2021;105(18):6853–6870. doi: 10.1007/s00253-021-11524-3.
  • Xu Z, Mandic-Mulec I, Zhang H, et al. Antibiotic bacillomycin D affects iron acquisition and biofilm formation in Bacillus velezensis through a Btr-mediated FeuABC-dependent pathway. Cell Rep. 2019;29(5):1192.e1195–1202.e1195. doi: 10.1016/j.celrep.2019.09.061.
  • Sarojini V, Cameron AJ, Varnava KG, et al. Cyclic tetrapeptides from nature and design: a review of synthetic methodologies, structure, and function. Chem Rev. 2019;119(17):10318–10359. doi: 10.1021/acs.chemrev.8b00737.
  • Choub V, Maung CEH, Won S-J, et al. Antifungal activity of cyclic tetrapeptide from Bacillus velezensis CE 100 against plant pathogen Colletotrichum gloeosporioides. Pathogens. 2021;10(2):209. doi: 10.3390/pathogens10020209.
  • Pinzón-Espinosa A, Martinez-Matamoros D, Castellanos L, et al. Cereusitin A, a cyclic tetrapeptide from a Bacillus cereus strain isolated from the soft coral Antillogorgia (syn. Pseudopterogorgia) elisabethae. Tetrahedron Lett. 2017;58(7):634–637. doi: 10.1016/j.tetlet.2017.01.002.
  • Kim TY, Hwang SH, Noh JS, et al. Antifungal potential of Bacillus velezensis CE 100 for the control of different Colletotrichum species through isolation of active dipeptide, cyclo-(D-phenylalanyl-D-prolyl). Int J Mol Sci. 2022;23(14):7786. doi: 10.3390/ijms23147786.
  • Jeong M-H, Lee Y-S, Cho J-Y, et al. Isolation and characterization of metabolites from Bacillus licheniformis MH48 with antifungal activity against plant pathogens. Microb Pathog. 2017;110:645–653. doi: 10.1016/j.micpath.2017.07.027.
  • May JJ, Wendrich TM, Marahiel MA. The dhb operon of Bacillus subtilis encodes the biosynthetic template for the catecholic siderophore 2, 3-dihydroxybenzoate-glycine-threonine trimeric ester bacillibactin. J Biol Chem. 2001;276(10):7209–7217. doi: 10.1074/jbc.M009140200.
  • Nithyapriya S, Lalitha S, Sayyed R, et al. Production, purification, and characterization of bacillibactin siderophore of Bacillus subtilis and its application for improvement in plant growth and oil content in sesame. Sustainability. 2021;13(10):5394. doi: 10.3390/su13105394.
  • Fukushima T, Allred BE, Sia AK, et al. Gram-positive siderophore-shuttle with iron-exchange from Fe-siderophore to apo-siderophore by Bacillus cereus YxeB. Proc Natl Acad Sci U S A. 2013;110(34):13821–13826. doi: 10.1073/pnas.1304235110.
  • Rabbee MF, Ali MS, Choi J, et al. Bacillus velezensis: a valuable member of bioactive molecules within plant microbiomes. Molecules. 2019;24(6):1046. doi: 10.3390/molecules24061046.
  • Wang C, Zhao D, Qi G, et al. Effects of Bacillus velezensis FKM10 for promoting the growth of Malus hupehensis Rehd. and inhibiting Fusarium verticillioides. Front Microbiol. 2019;10:2889. doi: 10.3389/fmicb.2019.02889.
  • Kesaulya H, Hasinu J, Tuhumury GN. Potential of Bacillus spp produces siderophores insuppressing thewilt disease of banana plants. IOP Conf Ser Earth Environ Sci. 2018;102:012016. doi: 10.1088/1755-1315/102/1/012016.
  • Shin J-H, Park B-S, Kim H-Y, et al. Antagonistic and plant growth-promoting effects of Bacillus velezensis BS1 isolated from rhizosphere soil in a pepper field. Plant Pathol J. 2021;37(3):307–314. doi: 10.5423/PPJ.NT.03.2021.0053.
  • Chen XH, Koumoutsi A, Scholz R, et al. Comparative analysis of the complete genome sequence of the plant growth–promoting bacterium Bacillus amyloliquefaciens FZB42. Nat Biotechnol. 2007;25(9):1007–1014. doi: 10.1038/nbt1325.
  • Dunyashev T, Laptev GY, Yildirim E, et al. Identification of genes associated with the synthesis of siderophores by the Bacillus subtilis. J Livest Sci. 2021;12(4):287–291. doi: 10.33259/JLivestSci.2021.287-291.
  • Chakraborty K, Francis A, Chakraborty RD, et al. Marine macroalga-associated heterotrophic Bacillus velezensis: a novel antimicrobial agent with siderophore mode of action against drug-resistant nosocomial pathogens. Arch Microbiol. 2021;203(9):5561–5575. doi: 10.1007/s00203-021-02513-1.
  • Chakraborty K, Kizhakkekalam VK, Joy M, et al. Bacillibactin class of siderophore antibiotics from a marine symbiotic Bacillus as promising antibacterial agents. Appl Microbiol Biotechnol. 2022;106(1):329–340. doi: 10.1007/s00253-021-11632-0.
  • Daw MA, Falkiner FR. Bacteriocins: nature, function and structure. Micron. 1996;27(6):467–479. doi: 10.1016/s0968-4328(96)00028-5.
  • Grinter R, Milner J, Walker D. Bacteriocins active against plant pathogenic bacteria. Biochem Soc Trans. 2012;40(6):1498–1502. doi: 10.1042/BST20120206.
  • Abriouel H, Franz CM, Omar NB, et al. Diversity and applications of Bacillus bacteriocins. FEMS Microbiol Rev. 2011;35(1):201–232. doi: 10.1111/j.1574-6976.2010.00244.x.
  • Scholz R, Molohon KJ, Nachtigall J, et al. Plantazolicin, a novel microcin B17/streptolysin S-like natural product from Bacillus amyloliquefaciens FZB42. J Bacteriol. 2011;193(1):215–224. doi: 10.1128/JB.00784-10.
  • Scholz R, Vater J, Budiharjo A, et al. Amylocyclicin, a novel circular bacteriocin produced by Bacillus amyloliquefaciens FZB42. J Bacteriol. 2014;196(10):1842–1852. doi: 10.1128/JB.01474-14.
  • Gebhardt K, Schimana J, Müller J, et al. Screening for biologically active metabolites with endosymbiotic Bacilli isolated from arthropods. FEMS Microbiol Lett. 2002;217(2):199–205. doi: 10.1111/j.1574-6968.2002.tb11475.x.
  • Dehghanifar S, Keyhanfar M, Emtiazi G. Production and partial purification of thermostable bacteriocins from Bacillus pumilus ZED17 and DFAR8 strains with antifungal activity. Mol Biol Res Commun. 2019;8:41.
  • Gray E, Lee K, Souleimanov A, et al. A novel bacteriocin, thuricin 17, produced by plant growth promoting rhizobacteria strain Bacillus thuringiensis NEB17: isolation and classification. J Appl Microbiol. 2006;100(3):545–554. doi: 10.1111/j.1365-2672.2006.02822.x.
  • Hammami I, Rhouma A, Jaouadi B, et al. Optimization and biochemical characterization of a bacteriocin from a newly isolated Bacillus subtilis strain 14B for biocontrol of Agrobacterium spp. strains. Lett Appl Microbiol. 2009;48(2):253–260. doi: 10.1111/j.1472-765X.2008.02524.x.
  • Arguelles Arias A, Ongena M, Devreese B, et al. Characterization of amylolysin, a novel lantibiotic from Bacillus amyloliquefaciens GA1. PLoS One. 2013;8(12):e83037. doi: 10.1371/journal.pone.0083037.
  • Nazari M, Smith DL. A PGPR-produced bacteriocin for sustainable agriculture: a review of thuricin 17 characteristics and applications. Front Plant Sci. 2020;11:916. doi: 10.3389/fpls.2020.00916.
  • Tareq FS, Kim JH, Lee MA, et al. Antimicrobial gageomacrolactins characterized from the fermentation of the marine-derived bacterium Bacillus subtilis under optimum growth conditions. J Agric Food Chem. 2013;61(14):3428–3434. doi: 10.1021/jf4009229.
  • Rath CM, Scaglione JB, Kittendorf JD, et al. NRPS/PKS hybrid enzymes and their natural products. Vol. 1. Mander H-WBLL, editor. Amsterdam (Netherlands): Elsevier; 2010. p. 453–492.
  • Chen K, Tian Z, Luo Y, et al. Antagonistic activity and the mechanism of Bacillus amyloliquefaciens DH-4 against citrus green mold. Phytopathology. 2018;108(11):1253–1262. doi: 10.1094/PHYTO-01-17-0032-R.
  • Tian Z, Chen C, Chen K, et al. Biocontrol and the mechanisms of Bacillus sp. w176 against postharvest green mold in citrus. Postharvest Biol Technol. 2020;159:111022. doi: 10.1016/j.postharvbio.2019.111022.
  • Kim J-A, Song J-S, Kim PI, et al. Bacillus velezensis TSA32-1 as a promising agent for biocontrol of plant pathogenic fungi. JoF. 2022;8(10):1053. doi: 10.3390/jof8101053.
  • Um S, Fraimout A, Sapountzis P, et al. The fungus-growing termite Macrotermes natalensis harbors bacillaene-producing Bacillus sp. that inhibit potentially antagonistic fungi. Sci Rep. 2013;3(1):3250. doi: 10.1038/srep03250.
  • Xu Z, Zhang R, Wang D, et al. Enhanced control of cucumber wilt disease by Bacillus amyloliquefaciens SQR9 by altering the regulation of its DegU phosphorylation. Appl Environ Microbiol. 2014;80(9):2941–2950. doi: 10.1128/AEM.03943-13.
  • Miras M, Dubnau D. A DegU-P and DegQ-dependent regulatory pathway for the K-state in Bacillus subtilis. Front Microbiol. 2016;7:1868. doi: 10.3389/fmicb.2016.01868.
  • Erega A, Stefanic P, Dogsa I, et al. Bacillaene mediates the inhibitory effect of Bacillus subtilis on Campylobacter jejuni biofilms. Appl Environ Microbiol. 2021;87(12):e02955–e02920. doi: 10.1128/AEM.02955-20.
  • Chen X, Koumoutsi A, Scholz R, et al. Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. J Biotechnol. 2009;140(1-2):27–37. doi: 10.1016/j.jbiotec.2008.10.011.
  • Li W, Tang X-X, Yan X, et al. A new macrolactin antibiotic from deep sea-derived bacteria Bacillus subtilis B5. Nat Prod Res. 2016;30(24):2777–2782. doi: 10.1080/14786419.2016.1155576.
  • Smith AB, Ott GR. Total synthesis of (−)-macrolactin A. J Am Chem Soc. 1996;118(51):13095–13096. doi: 10.1021/ja963543a.
  • Wang D, Li Y, Yuan Y, et al. Identification of non-volatile and volatile organic compounds produced by Bacillus siamensis LZ88 and their antifungal activity against Alternaria alternata. Biol Control. 2022;169:104901. doi: 10.1016/j.biocontrol.2022.104901.
  • Ni J, Yu L, Li F, et al. Macrolactin R from Bacillus siamensis and its antifungal activity against Botrytis cinerea. World J Microbiol Biotechnol. 2023;39(5):117. doi: 10.1007/s11274-023-03563-x.
  • Yuan J, Raza W, Shen Q, et al. Antifungal activity of Bacillus amyloliquefaciens NJN-6 volatile compounds against Fusarium oxysporum f. sp. cubense. Appl Environ Microbiol. 2012;78(16):5942–5944. doi: 10.1128/AEM.01357-12.
  • Yuan J, Zhang F, Wu Y, et al. Recovery of several cell pellet-associated antibiotics produced by Bacillus amyloliquefaciens NJN-6. Lett Appl Microbiol. 2014;59(2):169–176. doi: 10.1111/lam.12260.
  • Tojo S, Kim J-Y, Tanaka Y, et al. The mthA mutation conferring low-level resistance to streptomycin enhances antibiotic production in Bacillus subtilis by increasing the S-adenosylmethionine Pool size. J Bacteriol. 2014;196(8):1514–1524. doi: 10.1128/JB.01441-13.
  • Fazle Rabbee M, Baek K-H. Antimicrobial activities of lipopeptides and polyketides of Bacillus velezensis for agricultural applications. Molecules. 2020;25(21):4973. doi: 10.3390/molecules25214973.
  • Parker JB, Walsh CT. Action and timing of BacC and BacD in the late stages of biosynthesis of the dipeptide antibiotic bacilysin. Biochemistry. 2013;52(5):889–901. doi: 10.1021/bi3016229.
  • Rajavel M, Mitra A, Gopal B. Role of Bacillus subtilis BacB in the synthesis of bacilysin. J Biol Chem. 2009;284(46):31882–31892. doi: 10.1074/jbc.M109.014522.
  • Wu L, Li X, Wu H, et al. Research advances on Bacilysin from Bacillus. J Nanjing Agric Univ. 2018;41:778–783.
  • Han X, Shen D, Xiong Q, et al. The plant-beneficial rhizobacterium Bacillus velezensis FZB42 controls the soybean pathogen Phytophthora sojae due to bacilysin production. Appl Environ Microbiol. 2021;87(23):e01601–e01621. doi: 10.1128/AEM.01601-21.
  • Palazzini JM, Dunlap CA, Bowman MJ, et al. Bacillus velezensis RC 218 as a biocontrol agent to reduce Fusarium head blight and deoxynivalenol accumulation: genome sequencing and secondary metabolite cluster profiles. Microbiol Res. 2016;192:30–36. doi: 10.1016/j.micres.2016.06.002.
  • Afsharmanesh H, Perez-Garcia A, Zeriouh H, et al. Aflatoxin degradation by Bacillus subtilis UTB1 is based on production of an oxidoreductase involved in bacilysin biosynthesis. Food Control. 2018;94:48–55. doi: 10.1016/j.foodcont.2018.03.002.
  • Wu L, Wu H, Chen L, et al. Difficidin and bacilysin from Bacillus amyloliquefaciens FZB42 have antibacterial activity against Xanthomonas oryzae rice pathogens. Sci Rep. 2015;5:12975. doi: 10.1038/srep12975.
  • Wu L, Wu H, Chen L, et al. Bacilysin overproduction in Bacillus amyloliquefaciens FZB42 markerless derivative strains FZBREP and FZBSPA enhances antibacterial ­activity. Appl Microbiol Biotechnol. 2015;99(10):4255–4263. doi: 10.1007/s00253-014-6251-0.
  • Im SM, Yu NH, Joen HW, et al. Biological control of ­tomato bacterial wilt by oxydifficidin and difficidin-producing Bacillus methylotrophicus DR-08. Pestic Biochem Physiol. 2020;163:130–137. doi: 10.1016/j.pestbp.2019.11.007.
  • Mondol MAM, Shin HJ, Islam MT. Diversity of secondary metabolites from marine bacillus species: chemistry and biological activity. Mar Drugs. 2013;11(8):2846–2872. doi: 10.3390/md11082846.
  • Olishevska S, Nickzad A, Restieri C, et al. Bacillus velezensis and Paenibacillus peoriae strains effective as biocontrol agents against Xanthomonas bacterial spot. Appl Microbiol. 2023;3(3):1101–1119. doi: 10.3390/applmicrobiol3030076.
  • Zweerink MM, Edison A. Difficidin and oxydifficidin: novel broad spectrum antibacterial antibiotics produced by Bacillus subtilis III. Mode of action of difficidin. J Antibiot. 1987;40(12):1692–1697. doi: 10.7164/antibiotics.40.1692.
  • Rani A, Rana A, Dhaka RK, et al. Bacterial volatile organic compounds as biopesticides, growth promoters and plant-defense elicitors: current understanding and future scope. Biotechnol Adv. 2023;63:108078. doi: 10.1016/j.biotechadv.2022.108078.
  • Almeida OAC, de Araujo NO, Mulato ATN, et al. Bacterial volatile organic compounds (VOCs) promote growth and induce metabolic changes in rice. Front Plant Sci. 2022;13:1056082. doi: 10.3389/fpls.2022.1056082.
  • Heenan-Daly D, Coughlan S, Dillane E, et al. Volatile compounds from Bacillus, Serratia, and Pseudomonas promote growth and alter the transcriptional landscape of Solanum tuberosum in a passively ventilated growth system. Front Microbiol. 2021;12:628437. doi: 10.3389/fmicb.2021.628437.
  • Calvo H, Mendiara I, Arias E, et al. Antifungal activity of the volatile organic compounds produced by Bacillus velezensis strains against postharvest fungal pathogens. Postharvest Biol Technol. 2020;166:111208. doi: 10.1016/j.postharvbio.2020.111208.
  • Gao Z, Zhang B, Liu H, et al. Identification of endophytic Bacillus velezensis ZSY-1 strain and antifungal activity of its volatile compounds against Alternaria solani and Botrytis cinerea. Biol Control. 2017;105:27–39. doi: 10.1016/j.biocontrol.2016.11.007.
  • Chen H, Xiao X, Wang J, et al. Antagonistic effects of volatiles generated by Bacillus subtilis on spore germination and hyphal growth of the plant pathogen, Botrytis cinerea. Biotechnol Lett. 2008;30(5):919–923. doi: 10.1007/s10529-007-9626-9.
  • Arrebola E, Sivakumar D, Korsten L. Effect of volatile compounds produced by Bacillus strains on postharvest decay in citrus. Biol Control. 2010;53(1):122–128. doi: 10.1016/j.biocontrol.2009.11.010.
  • Asari S, Matzén S, Petersen MA, et al. Multiple effects of Bacillus amyloliquefaciens volatile compounds: plant growth promotion and growth inhibition of phytopathogens. FEMS Microbiol Ecol. 2016;92(6):fiw070. doi: 10.1093/femsec/fiw070.
  • Liu W-W, Wei M, Zhu B-Y, et al. Antagonistic activities of volatiles from four strains of Bacillus spp. and Paenibacillus spp. against soil-borne plant pathogens. Agric Sci China. 2008;7(9):1104–1114. doi: 10.1016/S1671-2927(08)60153-4.
  • He C-N, Ye W-Q, Zhu Y-Y, et al. Antifungal activity of volatile organic compounds produced by Bacillus methylotrophicus and Bacillus thuringiensis against five common spoilage fungi on loquats. Molecules. 2020;25(15):3360. doi: 10.3390/molecules25153360.
  • Méndez-Bravo A, Cortazar-Murillo EM, Guevara-Avendaño E, et al. Plant growth-promoting rhizobacteria associated with avocado display antagonistic activity against Phytophthora cinnamomi through volatile emissions. PLoS One. 2018;13(3):e0194665. doi: 10.1371/journal.pone.0194665.
  • Bustamante MI, Elfar K, Eskalen A. Evaluation of the ­antifungal activity of endophytic and rhizospheric ­bacteria against grapevine trunk pathogens. Microorganisms. 2022;10(10):2035. doi: 10.3390/microorganisms10102035.
  • Zhang X, Li B, Wang Y, et al. Lipopeptides, a novel protein, and volatile compounds contribute to the antifungal activity of the biocontrol agent Bacillus atrophaeus CAB-1. Appl Microbiol Biotechnol. 2013;97(21):9525–9534. doi: 10.1007/s00253-013-5198-x.
  • Enebak S, Carey W. Evidence for induced systemic protection to fusiform rust in loblolly pine by plant growth-promoting rhizobacteria. Plant Dis. 2000;84(3):306–308. doi: 10.1094/PDIS.2000.84.3.306.
  • Niu D-D, Liu H-X, Jiang C-H, et al. The plant growth–promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate-and jasmonate/ethylene-dependent signaling pathways. Mol Plant Microbe Interact. 2011;24(5):533–542. doi: 10.1094/MPMI-09-10-0213.
  • Li Y, Gu Y, Li J, et al. Biocontrol agent Bacillus amyloliquefaciens LJ02 induces systemic resistance against cucurbits powdery mildew. Front Microbiol. 2015;6:883. doi: 10.3389/fmicb.2015.00883.
  • Bargabus R, Zidack N, Sherwood J, et al. Screening for the identification of potential biological control agents that induce systemic acquired resistance in sugar beet. Biol Control. 2004;30(2):342–350. doi: 10.1016/j.biocontrol.2003.11.005.
  • Kim J-S, Lee J, Lee C-h, et al. Activation of pathogenesis-related genes by the rhizobacterium, Bacillus sp. JS, which induces systemic resistance in tobacco plants. Plant Pathol J. 2015;31(2):195–201. doi: 10.5423/PPJ.NT.11.2014.0122.
  • Tahir HAS, Gu Q, Wu H, et al. Bacillus volatiles adversely affect the physiology and ultra-structure of Ralstonia solanacearum and induce systemic resistance in tobacco against bacterial wilt. Sci Rep. 2017;7(1):40481. doi: 10.1038/srep40481.
  • Huang CJ, Tsay JF, Chang SY, et al. Dimethyl disulfide is an induced systemic resistance elicitor produced by Bacillus cereus C1L. Pest Manag Sci. 2012;68(9):1306–1310. doi: 10.1002/ps.3301.
  • Ryu C-M, Farag MA, Hu C-H, et al. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 2004;134(3):1017–1026. doi: 10.1104/pp.103.026583.
  • Ryu CM, Hu CH, Reddy M, et al. Different signaling pathways of induced resistance by rhizobacteria in Arabidopsis thaliana against two pathovars of Pseudomonas syringae. New Phytol. 2003;160(2):413–420. doi: 10.1046/j.1469-8137.2003.00883.x.
  • Zhang S, Moyne A-L, Reddy M, et al. The role of salicylic acid in induced systemic resistance elicited by plant growth-promoting rhizobacteria against blue mold of tobacco. Biol Control. 2002;25(3):288–296. doi: 10.1016/S1049-9644(02)00108-1.
  • Beth Mudgett M. New insights to the function of phytopathogenic bacterial type III effectors in plants. Annu Rev Plant Biol. 2005;56(1):509–531. doi: 10.1146/annurev.arplant.56.032604.144218.
  • Han Q, Wu F, Wang X, et al. The bacterial lipopeptide iturins induce Verticillium dahliae cell death by affecting fungal signalling pathways and mediate plant defence responses involved in pathogen-associated molecular pattern-triggered immunity. Environ Microbiol. 2015;17(4):1166–1188. doi: 10.1111/1462-2920.12538.
  • Cakmakci R, Dönmez MF, Erdoğan Ü. The effect of plant growth promoting rhizobacteria on barley seedling growth, nutrient uptake, some soil properties, and bacterial counts. Turk J Agric For. 2007;31:189–199.
  • Bever JD, Platt TG, Morton ER. Microbial population and community dynamics on plant roots and their feedbacks on plant communities. Annu Rev Microbiol. 2012;66(1):265–283. doi: 10.1146/annurev-micro-092611-150107.
  • Szczech M, Shoda M. The effect of mode of application of Bacillus subtilis RB14-C on its efficacy as a biocontrol agent against Rhizoctonia solani. J Phytopathol. 2006;154(6):370–377. doi: 10.1111/j.1439-0434.2006.01107.x.
  • Perea-Molina PA, Pedraza-Herrera LA, Beauregard PB, et al. A biocontrol Bacillus velezensis strain decreases pathogen Burkholderia glumae population and occupies a similar niche in rice plants. Biol Control. 2022;176:105067. doi: 10.1016/j.biocontrol.2022.105067.
  • Rojas-Ruiz NE, Sansinenea-Royano E, Cedillo-Ramirez ML, et al. Analysis of Bacillus thuringiensis population dynamics and its interaction with Pseudomonas fluorescens in soil. Jundishapur J Microbiol. 2015;8(9):e27953. doi: 10.5812/jjm.27953.
  • Veselova S, Burkhanova G, Rumyantsev S, et al. Strains of Bacillus spp. regulate wheat resistance to greenbug  aphid Schizaphis graminum Rond. Appl Biochem Microbiol. 2019;55(1):41–47. doi: 10.1134/S0003683819010186.
  • Rashid MH-O, Khan A, Hossain MT, et al. Induction of systemic resistance against aphids by endophytic Bacillus velezensis YC7010 via expressing PHYTOALEXIN DEFICIENT4 in Arabidopsis. Front Plant Sci. 2017;8:211. doi: 10.3389/fpls.2017.00211.
  • Valenzuela-Soto JH, Estrada-Hernández MG, Ibarra-Laclette E, et al. Inoculation of tomato plants (Solanum lycopersicum) with growth-promoting Bacillus subtilis retards whitefly Bemisia tabaci development. Planta. 2010;231(2):397–410. doi: 10.1007/s00425-009-1061-9.
  • Rajendran L, Ramanathan A, Durairaj C, et al. Endophytic Bacillus subtilis enriched with chitin offer induced systemic resistance in cotton against aphid infestation. Arch Phytopathol Plant Protect. 2011;44(14):1375–1389. doi: 10.1080/03235408.2010.499719.
  • Herman M, Nault B, Smart C. Effects of plant growth-promoting rhizobacteria on bell pepper production and green peach aphid infestations in New York. Crop Protect. 2008;27(6):996–1002. doi: 10.1016/j.cropro.2007.12.004.
  • Zehnder G, Kloepper J, Yao C, et al. Induction of systemic resistance in cucumber against cucumber beetles (Coleoptera: Chrysomelidae) by plant growth-promoting rhizobacteria. J Econ Entomol. 1997;90(2):391–396. doi: 10.1093/jee/90.2.391.