570
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Bacillus velezensis R22 inhibits the growth of multiple fungal phytopathogens by producing surfactin and four fengycin homologues

, ORCID Icon, , , , , & ORCID Icon show all
Article: 2313072 | Received 17 Dec 2023, Accepted 26 Jan 2024, Published online: 10 Feb 2024

References

  • Fisher MC, Henk DA, Briggs CJ, et al. Emerging fungal threats to animal, plant and ecosystem health. Nature. 2012;484(7393):1–15. doi: 10.1038/nature10947.
  • Fungicides market size, share & trends analysis report by product (inorganic, biofungicides), by application (cereals & grains, fruits & vegetables), by region, and segment forecasts, 2020–2027. Available from: https://www.grandviewresearch.com/industry-analysis/fungicides-market.
  • Vocciante M, Grifoni M, Fusini D, et al. The role of plant growth-promoting rhizobacteria (PGPR) in mitigating plant’s environmental stresses. Appl Sci. 2022;12(3):1231. doi: 10.3390/app12031231.
  • Perpetuini G, Nzobouh Fossi PA, Kwak S, et al. Pesticides in foods: towards bioremediation biocatalysts? Catalysts. 2023;13(7):1055. doi: 10.3390/catal13071055.
  • Armenova N, Tsigoriyna L, Arsov A, et al. Microbial detoxification of residual pesticides in fermented foods: current status and prospects. Foods. 2023;12(6):1163. doi: 10.3390/foods12061163.
  • Wang S, Herrera-Balandrano DD, Wang Y, et al. Biocontrol ability of the Bacillus amyloliquefaciens group, B. amyloliquefaciens, B. velezensis, B. nakamurai, and B. siamensis, for the management of fungal ­postharvest diseases: a review. J Agric Food Chem. 2022;70(22):6591–6616. doi: 10.1021/acs.jafc.2c01745.
  • Yeak KYC, Perko M, Staring G, et al. Lichenysin production by Bacillus licheniformis food isolates and toxicity to human cells. Front Microbiol. 2022;13:831033. doi: 10.3389/fmicb.2022.831033.
  • Hu J, Wang Z, Xu W. Genome sequence of Bacillus velezensis LZN01 inhibiting Fusarium oxysporum f. sp. niveum and producing myriocin. Biotechnol Biotechnol Equip. 2023;37(1):1. doi: 10.1080/13102818.2023.2227731.
  • Kostov K, Andonova-Lilova B, Smagghe G. Inhibitory activity of carbon quantum dots against Phytophthora infestans and fungal plant pathogens and their effect on dsRNA-induced gene silencing. Biotechnol Biotechnol Equip. 2022;36(1):949–959. doi: 10.1080/13102818.2022.2146533.
  • Petrasch S, Knapp SJ, Van Kan JA, et al. Grey mould of strawberry, a devastating disease caused by the ubiquitous necrotrophic fungal pathogen Botrytis cinerea. Mol Plant Pathol. 2019;20(6):877–892. doi: 10.1111/mpp.12794.
  • Kokaeva LY, Yarmeeva MM, Kokaeva ZG, et al. Phylogenetic study of alternaria potato and tomato pathogens in russia. Diversity. 2022;14(8):685. doi: 10.3390/d14080685.
  • Paudel S, Dobhal S, Alvarez AM, et al. Taxonomy and phylogenetic research on Ralstonia solanacearum species complex: a complex pathogen with extraordinary economic consequences. Pathogens. 2020;9(11):886. doi: 10.3390/pathogens9110886.
  • Arsov A, Gerginova M, Paunova-Krasteva T, et al. Multiple cry genes in Bacillus thuringiensis strain BTG suggest a broad-spectrum insecticidal activity. Int J Mol Sci. 2023;24(13):11137. doi: 10.3390/ijms241311137.
  • Petrova P, Petrov K. Antimicrobial activity of starch-degrading Lactobacillus strains isolated from boza. Biotechnol Biotechnol Equip. 2011;25(Suppl 1):114–116. doi: 10.5504/BBEQ.2011.0124.
  • Brescia F, Vlassi A, Bejarano A, et al. Characterisation of the antibiotic profile of lysobacter capsica AZ78, an effective biological control agent of plant pathogenic microorganisms. Microorganisms. 2021;9(6):1320. doi: 10.3390/microorganisms9061320.
  • Rached S, Imtara H, Habsaoui A, et al. Characterization, chemical compounds and biological activities of Marrubium vulgare L. essential oil. Processes. 2022;10(10):2110. doi: 10.3390/pr10102110.
  • Petrova P, Gerginova M, Arsov A, et al. Whole genome sequence of Bacillus velezensis strain R22 isolated from Oryza sativa rhizosphere in Bulgaria. Microbiol Resour Announc. 2023;12(12):00693. doi: 10.1128/MRA.00693-23.
  • Blin K, Shaw S, Augustijn HE, et al. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures, and visualization. Nucleic Acids Res. 2023;51(W1):W46–W50. doi: 10.1093/nar/gkad344.
  • Pathak KV, Keharia H, Gupta K, et al. Lipopeptides from the banyan endophyte, Bacillus subtilis K1: mass spectrometric characterization of a library of fengycins. J Am Soc Mass Spectrom. 2012;23(10):1716–1728. doi: 10.1007/s13361-012-0437-4.
  • Petrova P, Velikova P, Petrov K. Genome sequence of Bacillus velezensis 5RB, an overproducer of 2,3-butanediol. Microbiol Resour Announc. 2019;8(1):e01475-18. doi: 10.1128/MRA.01475-18.
  • Yang H, Li X, Li X, et al. Identification of lipopeptide isoforms by MALDI-TOF-MS/MS based on the simultaneous purification of iturin, fengycin, and surfactin by RP-HPLC. Anal Bioanal Chem. 2015;407(9):2529–2542. doi: 10.1007/s00216-015-8486-8.
  • Zhang L, Sun C. Fengycins, cyclic lipopeptides from marine Bacillus subtilis strains, kill the plant-Pathogenic fungus Magnaporthe grisea by inducing reactive oxygen species production and chromatin condensation. Appl Environ Microbiol. 2018;84(18):e00445–18. doi: 10.1128/AEM.00445-18.
  • Mengstie GY, Awlachew ZT, Degefa AM. Selected rhizobacteria strains as potential growth promoters and biocontrol agents against chocolate spot disease in faba bean grown in pots. Biotechnol Biotechnol Equip. 2023;37(1):2297885 doi: 10.1080/13102818.2023.2297885.
  • Shafi J, Tian H, Ji M. Bacillus species as versatile weapons for plant pathogens: a review. Biotechnol Biotechnol Equip. 2017;31(3):446–459. doi: 10.1080/13102818.2017.1286950.
  • Jeyanthi V, Kanimozhi S. Plant growth promoting rhizobacteria (PGPR) – prospective and mechanisms: a review. J Pure Appl Microbio. 2018;12(2):733–749. doi: 10.22207/JPAM.12.2.34.
  • Basu A, Prasad P, Das SN, et al. Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: recent developments, constraints, and prospects. Sustainability. 2021;13(3):1140. doi: 10.3390/su13031140.
  • de Andrade LA, Santos CHB, Frezarin ET, et al. Plant growth-Promoting rhizobacteria for sustainable agricultural production. Microorganisms. 2023;11(4):1088. doi: 10.3390/microorganisms11041088.
  • Petrov K, Petrova P. Current advances in microbial production of acetoin and 2,3-butanediol by Bacillus spp. Fermentation. 2021;7(4):307. doi: 10.3390/fermentation7040307.
  • Douillet P. Strains of Bacillus for biological control of pathogenic fungi. Patent US6589524B1; 2002.
  • Yan H, Qiu Y, Yang S, et al. Antagonistic activity of Bacillus velezensis SDTB038 against phytophthora infestans in potato. Plant Dis. 2021;105(6):1738–1747. doi: 10.1094/PDIS-08-20-1666-RE.
  • Hamaoka K, Aoki Y, Suzuki S. Isolation and characterization of endophyte Bacillus velezensis KOF112 from grapevine shoot xylem as biological control agent for fungal diseases. Plants (Basel). 2021;10(9):1815. doi: 10.3390/plants10091815.
  • Xu Y, Wang L, Liang W-X, et al. Biocontrol potential of endophytic Bacillus velezensis strain QSE-21 against postharvest grey mould of fruit. Biological Control. 2021;161:104711. doi: 10.1016/j.biocontrol.2021.104711.
  • Feng B, Chen D, Jin R, et al. Bioactivities evaluation of an endophytic bacterial strain Bacillus velezensis JRX-YG39 inhabiting wild grape. BMC Microbiol. 2022;22(1):170. doi: 10.1186/s12866-022-02584-0.
  • Cheng F, Li G, Peng Y, et al. Mixed bacterial fermentation can control the growth and development of Verticillium dahliae. Biotechnol Biotechnol Equip. 2020;34(1):58–69. doi: 10.1080/13102818.2020.1713023.
  • Altinok HH, Dikilitas M, Yildiz HN. Potential of Pseudomonas and Bacillus isolates as biocontrol agents against Fusarium wilt of eggplant. Biotechnol Biotechnol Equip. 2014;27(4):3952–3958. doi: 10.5504/BBEQ.2013.0047.
  • Maeusli M, Lee B, Miller S, et al. Horizontal gene transfer of antibiotic resistance from Acinetobacter baylyi to Escherichia coli on lettuce and subsequent antibiotic resistance transmission to the gut microbiome. mSphere. 2020;5(3):e00329-20. doi: 10.1128/mSphere.00329-20.
  • Bisutti IL, Pelz J, Büttner C, et al. Field assessment on the influence of RhizoVital® 42 fl. and Trichostar® on strawberries in the presence of soil-borne diseases. Crop Prot. 2017;96:195–203. doi: 10.1016/j.cropro.2017.02.004.
  • Koumoutsi A, Chen XH, Henne A, et al. Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J Bacteriol. 2004;186(4):1084–1096. doi: 10.1128/JB.186.4.1084-1096.2004.
  • Wang B, Liu C, Yang X, et al. Genomics-guided isolation and identification of active secondary metabolites of Bacillus velezensis BA-26. Biotechnol Biotechnol Equip. 2021;35(1):895–904. doi: 10.1080/13102818.2021.1934540.
  • Sharma M, Gaviyappanavar R, Tarafdar A. Evaluation of fungicides and fungicide application methods to manage phytophthora blight of pigeonpea. Agriculture. 2023;13(3):633. doi: 10.3390/agriculture13030633.
  • Jamdagni P, Rana JS, Khatri P. Comparative study of antifungal effect of green and chemically synthesised silver nanoparticles in combination with carbendazim, mancozeb, and thiram. IET Nanobiotechnol. 2018;12(8):1102–1107. doi: 10.1049/iet-nbt.2018.5087.
  • Hmidet N, Ben Ayed H, Jacques P, et al. Enhancement of surfactin and fengycin production by Bacillus mojavensis A21: application for diesel biodegradation. Biomed Res Int. 2017;2017:5893123–5893128. doi: 10.1155/2017/5893123.
  • Trupo M, Magarelli RA, Martino M, et al. Crude lipopeptides from culture of Bacillus subtilis strain ET-1 against Podosphaera xanthii on Cucumis melo. J Nat Pestic Res. 2023;4:100032. doi: 10.1016/j.napere.2023.100032.