612
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Salicornia europaea L. and Suaeda maritima (L.) Dumort: bioactive compounds and future perspectives

, , , , , & show all
Article: 2326291 | Received 09 Nov 2023, Accepted 29 Feb 2024, Published online: 11 Mar 2024

References

  • Giordano R, Saii Z, Fredsgaard M, et al. Pharmacological insights into halophyte bioactive extract action on anti-inflammatory, pain relief and antibiotics-type mechanisms. Molecules. 2021;26(11):1. doi: 10.3390/molecules26113140.
  • Flowers TJ, Colmer TD. Plant salt tolerance: adaptations in halophytes. Ann Bot. 2015;115(3):327–13. doi: 10.1093/aob/mcu267.
  • Custódio L, Charles G, Magné C, et al. Application of in vitro plant tissue culture techniques to halophyte species: a review. Plants. 2022;12(1):126. doi: 10.3390/plants12010126.
  • Rabhi M, Castagna A, Remorini D, et al. Photosynthetic responses to salinity in two obligate halophytes: sesuvium portulacastrum and tecticornia indica. South Afr J Bot. 2012;79:39–47. doi: 10.1016/j.sajb.2011.11.007.
  • Hulkko LSS, Turcios AE, Kohnen S, et al. Cultivation and characterisation of salicornia europaea, tripolium pannonicum and crithmum maritimum biomass for green biorefinery applications. Sci Rep. 2022;12(1):20507. doi: 10.1038/s41598-022-24865-4.
  • Ben Hsouna A, Michalak M, Kukula-Koch W, et al. Evaluation of halophyte biopotential as an unused natural resource: the case of lobularia maritima. Biomolecules. 2022;12(11):1583. doi: 10.3390/biom12111583.
  • Benjamin JJ, Lucini L, Jothiramshekar S, et al. Metabolomic insights into the mechanisms underlying tolerance to salinity in different halophytes. Plant Physiol Biochem. 2019;135:528–545. doi: 10.1016/j.plaphy.2018.11.006.
  • Patel MK, Pandey S, Tanna B, et al. Comparative metabolomics unveils the role of metabolites and metabolic pathways in the adaptive mechanisms of shrubby halophytes. Environ Exp Bot. 2022;202:105030. doi: 10.1016/j.envexpbot.2022.105030.
  • Martins-Noguerol R, Matías L, Pérez-Ramos IM, et al. Soil physicochemical properties associated with the yield and phytochemical composition of the edible halophyte crithmum maritimum. Sci Total Environ. 2023;869:161806. doi: 10.1016/j.scitotenv.2023.161806.
  • Petropoulos SA, Karkanis A, Martins N, et al. Edible halophytes of the mediterranean basin: potential candidates for novel food products. Trends Food Sci Technol. 2018;74:69–84. doi: 10.1016/j.tifs.2018.02.006.
  • Castañeda-Loaiza V, Oliveira M, Santos T, et al. Wild vs cultivated halophytes: nutritional and functional differences. Food Chem. 2020;333:127536. doi: 10.1016/j.foodchem.2020.127536.
  • Custodio L, Garcia-Caparros P, Pereira CG, et al. Halophyte plants as potential sources of anticancer agents: a comprehensive review. Pharmaceutics. 2022;14(11):2406. doi: 10.3390/pharmaceutics14112406.
  • Staynova R, Vasileva E, Yanachkova V. Gestational diabetes mellitus: a growing economic concern. Folia Med (Plovdiv). 2022;64(5):725–732. doi: 10.3897/folmed.64.e65693.
  • Staynova R, Vasileva E, Stankova T, et al. The impact of a printed educational booklet on disease awareness in women with gestational diabetes. Eur J Public Health. 2021;31(Supplement_3):ckab165.564. doi: 10.1093/eurpub/ckab165.564.
  • Custódio M, Lillebø AI, Calado R, et al. Halophytes as novel marine products – a consumers’ perspective in Portugal and policy implications. Marine Policy. 2021;133:104731. doi: 10.1016/j.marpol.2021.104731.
  • Panth N, Park S-H, Kim H, et al. Protective effect of salicornia europaea extracts on high salt Intake-Induced vascular dysfunction and hypertension. IJMS. 2016;17(7):1176. doi: 10.3390/ijms17071176.
  • Karthivashan G, Kweon M-H, Park S-Y, et al. Cognitive-enhancing and ameliorative effects of acanthoside B in a scopolamine-induced amnesic mouse model through regulation of oxidative/inflammatory/cholinergic systems and activation of the TrkB/CREB/BDNF pathway. Food Chem Toxicol. 2019;129:444–457. doi: 10.1016/j.fct.2019.04.062.
  • Sharma R, Wungrampha S, Singh V, et al. Halophytes as bioenergy crops. Front Plant Sci. 2016;7:1372. [cited 2023 Jun 1]. doi: 10.3389/fpls.2016.01372/abstract.
  • Ventura Y, Eshel A, Pasternak D, et al. The development of halophyte-based agriculture: past and present. Ann Bot. 2015;115(3):529–540. doi: 10.1093/aob/mcu173.
  • Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Int J Surg. 2021;88:105906. doi: 10.1016/j.ijsu.2021.105906.
  • Imai H, Kinoshita M, Ohnishi M. Chemical characterization of glycerolipids and cerebrosides in a halophytic plant, salicornia europaea L. J. Oleo Sci. 2004;53(7):337–341. doi: 10.5650/jos.53.337.
  • Cárdenas-Pérez S, Piernik A, Chanona-Pérez JJ, et al. An overview of the emerging trends of the salicornia L. genus as a sustainable crop. Environ Exp Bot. 2021;191:104606. doi: 10.1016/j.envexpbot.2021.104606.
  • Castagna A, Mariottini G, Gabriele M, et al. Nutritional composition and bioactivity of salicornia europaea L. Plants grown in monoculture or intercropped with tomato plants in salt-Affected soils. Horticulturae. 2022;8(9):828. doi: 10.3390/horticulturae8090828.
  • Araus JL, Rezzouk FZ, Thushar S, et al. Effect of irrigation salinity and ecotype on the growth, physiological indicators and seed yield and quality of salicornia europaea. Plant Sci. 2021;304:110819. doi: 10.1016/j.plantsci.2021.110819.
  • Jordanov D., Kuzmanov B., editors. Flora of the republic of Bulgaria. Sofia: Bulgarian Academy of Sciences; 1966.
  • Zengin G, Aumeeruddy-Elalfi Z, Mollica A, et al. In vitro and in silico perspectives on biological and phytochemical profile of three halophyte species—a source of innovative phytopharmaceuticals from nature. Phytomedicine. 2018;38:35–44. doi: 10.1016/j.phymed.2017.10.017.
  • Isca V, Seca AM, Pinto DC, et al. An overview of salicornia genus: the phytochemical and pharmacological profile. Nat Prod: Res Rev. 2014;2:145–176.
  • Kim S, Lee E-Y, Hillman PF, et al. Chemical structure and biological activities of secondary metabolites from salicornia europaea L. Molecules. 2021;26(8):2252. doi: 10.3390/molecules26082252.
  • Rahmani R, Arbi KE, Aydi SS, et al. Correction: biochemical composition and biological activities of salicornia europaea L. from Southern Tunisia. Food Meas. 2022;16(6):5077–5077. doi: 10.1007/s11694-022-01622-9.
  • Evlash V, Murlykina N, Aksonova O, et al. Technology of a dietary supplement “SoleVit Mg” based on salicornia europaea L. for use in food technologies. In: Prisnyi A, Lebedeva O, editors. BIO web of conferences. Vol. 40; 2021. p. 02006. doi: 10.1051/bioconf/20214002006.
  • Lefèvre G, Rivière C. Amaranthaceae halophytes from the French Flanders coast of the North Sea: a review of their phytochemistry and biological activities. Phytochem Rev. 2020;19(5):1263–1302. doi: 10.1007/s11101-019-09636-w.
  • Lyu H, Ma X, Guan F, et al. 30-Noroleanane triterpenoid saponins from Salicornia europaea linn. and their chemotaxonomic significance. Biochem Syst Ecol. 2018;78:106–109. doi: 10.1016/j.bse.2018.04.007.
  • Lee JM, Yim M-J, Choi G, et al. Antioxidant and anti-inflammatory activity of six halophytes in korea. Nat Prod Sci. 2018;24(1):40. doi: 10.20307/nps.2018.24.1.40.
  • Kim J, Karthivashan G, Kweon M-H, et al. The ameliorative effects of the ethyl acetate extract of salicornia europaea L. and its bioactive candidate, irilin B, on LPS-Induced microglial inflammation and MPTP-Intoxicated PD-like mouse model. Oxid Med Cell Longevity. 2019;2019:1–16. doi: 10.1155/2019/6764756.
  • Won KJ, Lee KP, Baek S, et al. Desalted salicornia europaea extract attenuated vascular neointima formation by inhibiting the MAPK pathway-mediated migration and proliferation in vascular smooth muscle cells. Biomed Pharmacother. 2017;94:430–438. doi: 10.1016/j.biopha.2017.07.108.
  • Tikhomirova NA, Ushakova SA, Tikhomirov AA, et al. Possibility of salicornia europaea use for the human liquid wastes inclusion into BLSS intrasystem mass exchange. Acta Astronaut (UK). 2008;63(7–10):1106–1110. doi: 10.1016/j.actaastro.2008.01.003.
  • Ameixa OMCC, Rebelo J, Silva H, et al. Gall midge baldratia salicorniae kieffer (diptera: cecidomyiidae) infestation on salicornia europaea L. induces the production of specialized metabolites with biotechnological potential. Phytochemistry. 2022;200:113207. doi: 10.1016/j.phytochem.2022.113207.
  • Wang X, Zhang M, Zhao Y, et al. Pentadecyl ferulate, a ­potent antioxidant and antiproliferative agent from the halophyte salicornia herbacea. Food Chem. 2013;141(3):2066–2074. doi: 10.1016/j.foodchem.2013.05.043.
  • Lee W-J, Shin Y-W, Kim D-E, et al. Effect of desalted salicornia europaea L. ethanol extract (PM-EE) on the subjects complaining memory dysfunction without dementia: a 12 week, randomized, double-blind, placebo-controlled ­clinical trial. Sci Rep. 2020;10(1):19914. doi: 10.1038/s41598-020-76938-x.
  • Karthivashan G, Park S-Y, Kweon M-H, et al. Ameliorative potential of desalted salicornia europaea L. extract in multifaceted alzheimer’s-like scopolamine-induced amnesic mice model. Sci Rep. 2018;8(1):7174. doi: 10.1038/s41598-018-25381-0.
  • Sun D, Wang R, Xu H, et al. A network pharmacology-based study on antidepressant effect of salicornia europaea L. extract with experimental support in chronic unpredictable mild stress model mice. Chin J Integr Med. 2022;28(4):339–348. doi: 10.1007/s11655-022-2879-2.
  • Rahman M, Kim M-J, Kim J-H, et al. Desalted salicornia europaea powder and its active constituent, trans -ferulic acid, exert anti-obesity effects by suppressing adipogenic-related factors. Pharm Biol. 2018;56(1):183–191. doi: 10.1080/13880209.2018.1436073.
  • Karan S, Turan C, Sangun MK, et al. Bioactive compounds and antimicrobial activity of glasswort Salicornia europaea. IJPS. 2021; 83(2):238-246.doi: 10.36468/pharmaceutical-sciences.769.
  • Doi N, Togari H, Minagi K, et al. Protective effects of salicornia europaea on UVB-Induced misoriented cell divisions in skin epithelium. Cosmetics. 2020;7(2):44. doi: 10.3390/cosmetics7020044.
  • Monteiro AR, Barbosa DJ, Remião F, et al. Alzheimer’s disease: insights and new prospects in disease pathophysiology, biomarkers and disease-modifying drugs. Biochem Pharmacol. 2023;211:115522. doi: 10.1016/j.bcp.2023.115522.
  • Cristina C, Lucia P, Sara S, et al. Study of the efficacy of two extraction techniques from crithmum maritimum and salicornia europaea. J Food Nutr Res. 2018;6(7):456–463. doi: 10.12691/jfnr-6-7-6.
  • Lee SJ, Jeong E-M, Ki AY, et al. Oxidative defense metabolites induced by salinity stress in roots of salicornia herbacea. J Plant Physiol. 2016;206:133–142. doi: 10.1016/j.jplph.2016.08.015.
  • Raj ND, Singh D. A critical appraisal on ferulic acid: biological profile, biopharmaceutical challenges and nano formulations. Health Sci Rev. 2022;5:100063. doi: 10.1016/j.hsr.2022.100063.
  • Li D, Rui Y, Guo S, et al. Ferulic acid: a review of its pharmacology, pharmacokinetics and derivatives. Life Sci. 2021;284:119921. doi: 10.1016/j.lfs.2021.119921.
  • Fatnani D, Patel M, Parida AK. Regulation of chromium translocation to shoot and physiological, metabolomic, and ionomic adjustments confer chromium stress tolerance in the halophyte suaeda maritima. Environ Pollut. 2023;320:121046. doi: 10.1016/j.envpol.2023.121046.
  • Mohamed NAF, Al-Touby SS, Hossain MA. Evaluation of cytotoxic and antioxidant activities of different polarities extracts of suaeda maritima. Biocatal Agric Biotechnol. 2022;42:102370. doi: 10.1016/j.bcab.2022.102370.
  • Abdul Halim M, Rashid M, Mazid M, et al. Central nervous system depressant, gastrointestinal motility, and brine shrimp lethality bioassay of the methanolic extract of suaeda maritima in mice model. J Res Pharm. 2022;26(6):1868–1876. doi: 10.29228/jrp.276.
  • Polić D, Luković J, Zorić L, et al. Morpho-anatomical differentiation of suaeda maritima (L.) dumort. 1827. (Chenopodiaceae) populations from inland and maritime saline area. Open Life Sci. 2009;4(1):117–129. doi: 10.2478/s11535-008-0060-3.
  • Wetson AM, Cassaniti C, Flowers TJ. Do conditions during dormancy influence germination of suaeda maritima? Ann Bot. 2008;101(9):1319–1327. doi: 10.1093/aob/mcn041.
  • Prinz K, Weising K, Hensen I. Habitat fragmentation and recent bottlenecks influence genetic diversity and differentiation of the Central European halophyte Suaeda maritima (Chenopodiaceae). Am J Bot. 2013;100(11):2210–2218. doi: 10.3732/ajb.1300097.
  • Abd El-Latif RR, Mansour RMA, Sharaf M, et al. Three new flavonol glycosides from suaeda maritima. J Asian Nat Prod Res. 2014;16(5):434–439. doi: 10.1080/10286020.2014.902373.
  • Suresh U, Murugan K, Panneerselvam C, et al. Suaeda maritima -based herbal coils and green nanoparticles as potential biopesticides against the dengue vector Aedes aegypti and the tobacco cutworm Spodoptera litura. Physiol Mol Plant Pathol. 2018;101:225–235. doi: 10.1016/j.pmpp.2017.01.002.
  • Thatoi HN, Patra JK, Das SK. Free radical scavenging and antioxidant potential of mangrove plants: a review. Acta Physiol Plant. 2014;36(3):561–579. doi: 10.1007/s11738-013-1438-z.
  • Banerjee MB, Ravikumar S, Gnanadesigan M, et al. Antiviral, antioxidant and toxicological evaluation of mangrove associate from South East Coast of India. Asian Pac J Trop Biomed. 2012;2(3):S1775–S1779. doi: 10.1016/S2221-1691(12)60493-6.
  • Mostafavi E, Zarepour A, Barabadi H, et al. Antineoplastic activity of biogenic silver and gold nanoparticles to combat leukemia: beginning a new era in cancer theragnostic. Biotechnol Rep (Amst). 2022;34:e00714. doi: 10.1016/j.btre.2022.e00714.
  • Certain C, Della Patrona L, Gunkel-Grillon P, et al. Effect of salinity and nitrogen form in irrigation water on growth, antioxidants and fatty acids profiles in halophytes salsola australis, suaeda maritima, and enchylaena tomentosa for a perspective of biosaline agriculture. Agronomy. 2021;11(3):449. doi: 10.3390/agronomy11030449.
  • Dafallah Bilal MA, Hossain MA. Antibacterial activity of different crude extracts of suaeda maritima used traditionally for the treatment of hepatitis. Biocatal Agric Biotechnol. 2019;22:101383. doi: 10.1016/j.bcab.2019.101383.
  • Beulah G, Divya D, Kumar NSS, et al. Purification and characterization of bioactive compounds extracted from suaeda maritima leaf and its impact on pathogenicity of Pseudomonas aeruginosa in Catla catla fingerlings. AMB Express. 2021;11(1):135. doi: 10.1186/s13568-021-01295-5.
  • Patra J, Dhal N, Thatoi H. In vitro bioactivity and phytochemical screening of suaeda maritima (dumort): a mangrove associate from bhitarkanika, India. Asian Pac J Trop Med. 2011;4(9):727–734. doi: 10.1016/S1995-7645(11)60182-X.
  • Nayak B, Roy S, Roy M, et al. Phytochemical, antioxidant and antimicrobial screening of suaeda maritima L (dumort) against human pathogens and multiple drug resistant bacteria. Indian J Pharm Sci. 2018;80;26–35. [cited 2023 Jun 1]. Available from: http://www.ijpsonline.com/articles/phytochemical-antioxidant-and-antimicrobial-screening-of-isuaeda-maritimai-l-dumort-against-human-pathogens-and-multiple-drug-resi-3424.html. doi: 10.4172/pharmaceutical-sciences.1000327.
  • Wang X, Shao X, Zhang W, et al. Genus suaeda: advances in phytology, chemistry, pharmacology and clinical application (1895 – 2021). Pharmacol Res. 2022;179:106203. doi: 10.1016/j.phrs.2022.106203.
  • Yao Y, Qiu Q, Wu X-W, et al. Lutein supplementation improves visual performance in Chinese drivers: 1-year randomized, double-blind, placebo-controlled study. Nutrition. 2013;29(7–8):958–964. doi: 10.1016/j.nut.2012.10.017.
  • Grune T, Lietz G, Palou A, et al. β-carotene is an important vitamin a source for humans. J Nutr. 2010;140(12):2268S–2285S. doi: 10.3945/jn.109.119024.
  • Granger M, Eck P, Eskin M, editors. Dietary vitamin C in human health. Advances in food and nutrition research [Internet]. Netherlands: Elsevier; 2018; p. 281–310. [cited 2023 May 31]. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1043452617300426.
  • Carr A, Maggini S. Vitamin C and immune function. Nutrients. 2017;9(11):1211. doi: 10.3390/nu9111211.
  • Bedhiafi T, Inchakalody VP, Fernandes Q, et al. The potential role of vitamin C in empowering cancer immunotherapy. Biomed Pharmacother. 2022;146:112553. doi: 10.1016/j.biopha.2021.112553.
  • Dhifi W, Bellili S, Jazi S, et al. Essential oils’ chemical characterization and investigation of some biological activities: a critical review. Medicines. 2016;3(4):25. doi: 10.3390/medicines3040025.
  • Anjaly Shanker M, Khanashyam AC, Thorakkattu P, et al. Biological potential of essential oils in pharmaceutical industries. In: Recent frontiers of phytochemicals. [Internet]. Elsevier; 2023. p. 369–382. [cited 2023 Jun 12]. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780443191435000360.
  • Bakkali F, Averbeck S, Averbeck D, et al. Biological effects of essential oils – a review. Food Chem Toxicol. 2008;46(2):446–475. doi: 10.1016/j.fct.2007.09.106.
  • Alhdad GM, Seal CE, Al-Azzawi MJ, et al. The effect of combined salinity and waterlogging on the halophyte suaeda maritima: the role of antioxidants. Environ Exp Bot. 2013;87:120–125. doi: 10.1016/j.envexpbot.2012.10.010.
  • Jucá MM, Cysne Filho FMS, De Almeida JC, et al. Flavonoids: biological activities and therapeutic potential. Nat Prod Res. 2020;34(5):692–705. doi: 10.1080/14786419.2018.1493588.
  • Cybulska I, Brudecki G, Alassali A, et al. Phytochemical composition of some common coastal halophytes of the United Arab Emirates. Emir. J. Food Agric. 2014;26(12):1046. doi: 10.9755/ejfa.v26i12.19104.
  • Strateva T, Yordanov D. Pseudomonas aeruginosa – a phenomenon of bacterial resistance. J Med Microbiol. 2009;58(Pt 9):1133–1148. doi: 10.1099/jmm.0.009142-0.