269
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Bacterial diversity and functional characteristics of natural rainwater lakes in Saihanba artificial forest farm as revealed by 16S rRNA sequencing

, , , , &
Article: 2326293 | Received 06 Jun 2023, Accepted 28 Feb 2024, Published online: 11 Mar 2024

References

  • Bunn SE. Grand challenge for the future of freshwater ecosystems. Front Environ Sci. 2016;4:1. doi:10.3389/fenvs.2016.00021.
  • Qi L, Li RW, Wu YD, et al. Spatial distribution and assembly processes of bacterial communities in Northern Florida freshwater springs. Environ Res. 2023;235:116584. doi:10.1016/j.envres.2023.116584.
  • Tang VT, Rene ER, Li QH. Application and performance of eco-bag revetment for water purification in lake environments: a case study from rural China. J Water Supply Res Technol-Aqua. 2019;68(2):149–13. doi:10.2166/aqua.2019.110.
  • Woszczyk M, Bechtel A, Cieśliński R. Interactions between microbial degradation of sedimentary organic matter and lake hydrodynamics in shallow water bodies: insights from lake sarbsko (Northern Poland). J Limnol. 2011;70(2):293–304. doi:10.4081/jlimnol.2011.293.
  • Zhu WT, Liu J, Li QH, et al. Effects of nutrient levels on microbial diversity in sediments of a eutrophic shallow lake. Front Ecol Evol. 2022;10:909983. doi:10.3389/fevo.2022.909983.
  • Hahn MW. The microbial diversity of inland waters. Curr Opin Biotechnol. 2006;17(3):256–261. doi:10.1016/j.copbio.2006.05.006.
  • Feng WY, Gao JY, Wei YM, et al. Pattern changes of microbial communities in urban river affected by anthropogenic activities and their environmental driving mechanisms. Environ Sci Eur. 2022;34(1):93. doi:10.1186/s12302-022-00669-1.
  • Yannarell AC, Kent AD, Lauster GH, et al. Temporal patterns in bacterial communities in three temperate Lakes of different trophic status. Microb Ecol. 2003;46(4):391–405. doi:10.1007/s00248-003-1008-9.
  • Zhu CM, Zhang JY, Nawaz MZ, et al. Seasonal succession and spatial distribution of bacterial community structure in a eutrophic freshwater lake, lake Taihu. Sci Total Environ. 2019;669:29–40. doi:10.1016/j.scitotenv.2019.03.087.
  • Zheng YH, Su ZG, Dai TJ, et al. Identifying human-induced influence on microbial community: a comparative study in the effluent-receiving areas in Hangzhou Bay. Front Environ Sci Eng. 2019;13(6):90. doi:10.1007/s11783-019-1174-8.
  • Navarro MB. Large differences in bacterial community composition of nearby shallow Lakes surrounded by Nothofagus pumilio forest in Patagonia(Argentina). J Plankton Res. 2022;44:350–364. doi:10.1093/plankt/fbac018.
  • Pascault N, Roux S, Artigas J, et al. A high-throughput sequencing ecotoxicology study of freshwater bacterial communities and their responses to tebuconazole. FEMS Microbiol Ecol. 2014;90(3):563–574. doi:10.1111/1574-6941.12416.
  • Sonthiphand P, Ruangroengkulrith S, Mhuantong W, et al. Metagenomic insights into microbial diversity in a groundwater basin impacted by a variety of anthropogenic activities. Environ Sci Pollut Res Int. 2019;26(26):26765–26781. doi:10.1007/s11356-019-05905-5.
  • Nishiguchi MK, Doukakis P, Egan M, et al. DNA isolation procedures. In DeSalle R, Giribet G, Wheeler WC, editors. Techniques in molecular systematics and evolution. Basel: Birkhäuser Verlag. 2002. p. 249–287. doi:10.1007/978-3-0348-8125-8_12.
  • Qian Y, Okano K, Kodato M, et al. Dynamics of the prokaryotic and eukaryotic microbial community during a cyanobacterial bloom. Biosci Biotechnol Biochem. 2022;86(1):78–91. doi:10.1093/bbb/zbab179.
  • Caporaso JG, Kuczynski J, Stombaugh J, et al. Qiime allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335–336. doi:10.1038/nmeth.f.303.
  • Callahan BJ, McMurdie PJ, Rosen MJ, et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581–583. doi:10.1038/NMETH.3869.
  • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550–550. doi:10.1186/s13059-014-0550-8.
  • Mandal S, Van Treuren W, White RA, et al. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb Ecol Health Dis. 2015;26(0):27663. doi:10.3402/mehd.v26.27663.
  • Segata N, Izard J, Waldron L, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12(6):R60. doi:10.1186/gb-2011-12-6-r60.
  • Vázquez-Baeza Y, Pirrung M, Gonzalez A, et al. Emperor a tool for visualizing high-throughput microbial community data. Gigascience. 2013;2(1):16. doi:10.1186/2047-217X-2-16.
  • Douglas GM, Maffei VJ, Zaneveld JR, et al. PICRUSt2 for prediction of metagenome functions. Nat Biotechnol. 2020;38(6):685–688. doi:10.1038/s41587-020-0548-6.
  • Fang JH, Yang RR, Cao QQ, et al. Differences of the microbial community structures and predicted metabolic potentials in the lake, river, and wetland sediments in Dongping lake basin. Environ Sci Pollut Res Int. 2020;27(16):19661–19677. doi:10.1007/s11356-020-08446-4.
  • Paul D, Kumbhare SV, Mhatre SS, et al. Exploration of microbial diversity and community structure of Lonar lake: the only hypersaline meteorite crater lake within basalt rock. Front Microbiol. 2015;6:1553. doi:10.3389/fmicb.2015.01553.
  • Hu AY, Ju F, Hou LY, et al. Strong impact of anthropogenic contamination on the co-occurrence patterns of a riverine microbial community. Environ Microbiol. 2017;19(12):4993–5009. doi:10.1111/1462-2920.13942.
  • Luo JW, Zeng H, Zhou QX, et al. Anthropogenic impacts on the biodiversity and anti-interference ability of microbial communities in Lakes. Sci Total Environ. 2022;820:153264. doi:10.1016/j.scitotenv.2022.153264.
  • Camacho A, Peinado R, Santamans AC, et al. Functional ecological patterns and the effect of anthropogenic disturbances on a recently restored Mediterranean coastal lagoon. Needs for a sustainable restoration. Estuar Coast Shelf Sci. 2012;114:105–117. doi:10.1016/j.ecss.2012.04.034.
  • Ma TL, Jiang YM, Elbehery AHA, et al. Resilience of planktonic bacterial community structure in response to short-term weather deterioration during the growing season in an alpine lake. Hydrobiologia. 2020;847(2):535–548. doi:10.1007/s10750-019-04118-8.
  • Wang HJ, Liu XC, Wang YL, et al. Spatial and temporal dynamics of microbial community composition and factors influencing the surface water and sediments of Urban Rivers. J Environ Sci. 2023;124:187–197. doi:10.1016/j.jes.2021.10.016.
  • Zhang JX, Yang YY, Zhao L, et al. Distribution of sediment bacterial and archaeal communities in Plateau freshwater Lakes. Appl Microbiol Biotechnol. 2015;99(7):3291–3302. doi:10.1007/s00253-014-6262-x.
  • Bucheli TD, Fent K. Induction of cytochrome-P450 as a biomarker for environmental contamination in aquatic ecosystems. Crit Rev Environ Sci Technol. 1995;25(3):201–268. doi:10.1080/10643389509388479.
  • Vera A, Wilson FP, Cupples AM. Predicted functional genes for the biodegradation of xenobiotics in groundwater and sediment at two contaminated naval sites. Appl Microbiol Biotechnol. 2022;106(2):835–853. doi:10.1007/s00253-021-11756-3.
  • Higgins CF. Abc transporters – from microorganisms to man. Annu Rev Cell Biol. 1992;8(1):67–113. doi:10.1146/annurev.cellbio.8.1.67.
  • ter Beek J, Guskov A, Slotboom DJ. Structural diversity of ABC transporters. J Gen Physiol. 2014;143(4):419–435. doi:10.1085/jgp.201411164.
  • Huang H, Chen Y, Yang S, et al. CuO and ZnO nanoparticles drive the propagation of antibiotic resistance genes during sludge anaerobic digestion: possible role of stimulated signal transduction. Environ Sci. 2019;6(2):528–539. doi:10.1016/j.biortech.2022.128253.
  • Gold Z, Shelton AO, Casendino HR, et al. Signal and noise in metabarcoding data. PLOS One. 2023;18(5):e0285674. doi:10.1371/journal.pone.0285674.
  • Lamb PD, Hunter E, Pinnegar JK, et al. How quantitative is metabarcoding: a meta-analytical approach. Mol Ecol. 2019;28(2):420–430. doi:10.1111/mec.14920.
  • Shelton AO, Gold ZJ, Jensen AJ, et al. Toward quantitative metabarcoding. Ecology. 2023;104(2):e3906. doi:10.1002/ecy.3906.