157
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of the viability of the Bulgarian BCG vaccine by the adenosine triphosphate assay

, &
Article: 2333905 | Received 21 Dec 2023, Accepted 19 Mar 2024, Published online: 25 Mar 2024

References

  • Comas I, Coscolla M, Luo T, et al. Out-of-Africa migration and neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat Genet. 2013;45(10):1–8. doi: 10.1038/ng.2744.
  • Paulson T. Epidemiology: a mortal foe. Nature. 2013;502(7470):S2–S3. doi: 10.1038/502S2a.
  • World Health Organization. WHO report, 2022, global tuberculosis control. 2022.
  • Stefanova T. Quality control and safety assessment of BCG vaccines in the post-genomic era. Biotechnol Biotechnol Equip. 2014;28(3):387–391. doi: 10.1080/13102818.2014.927200.
  • WHO Expert Committee on Biological Standardization. Recommendations to assure the quality, safety and efficacy of BCG vaccines. In: World Health Organisation technical report series 2011, No. 979, Annex 3; 2011. p. 137–185.
  • Crispen RG. Rapid testing of freeze-dried BCG vaccine for stability and viability. Symp Ser Immunobiol Stand. 1971;17:205–210.
  • Ho MM, Markey K, Rigsby P, et al. Report of an international collaborative study to establish the suitability of using modified ATP assay for viable count of BCG vaccine. Vaccine. 2008;26(36):4754–4757. doi: 10.1016/j.vaccine.2008.06.026.
  • Jensen SE, Hubrechts P, Klein B, et al. Development and validation of an ATP method for rapid estimation of viable units in lyophilized BCG danish 1331 vaccine. Biologicals. 2008;36(5):308–314. doi: 10.1016/j.biologicals.2008.05.001.
  • Allen RC. In: DeLuca M, McElroy WD, editors. Bioluminescence and chemiluminescence. Chapter 4: "Bioluminescence Assays: Fundamentals and Applications". New York (NY): Academic Press; 1981. p. 63–73.
  • Savov VM, Ismailov AD. [Biokhemiyluminestsentsiya]. Prikladniye vozmozhnosti v nauke i tekhnologii. Moskva: MGU; 1987.
  • Askgaard DS, Gottschau A, Knudsen K, et al. Firefly luciferase assay of adenosine triphosphate as a tool of quantitation of viability of BCG vaccines. Biologicals. 1995;23(1):55–60. doi: 10.1016/1045-1056(95)90012-8.
  • De Luca M, Mc Elroy WD. In: Colowick SP, Kaplan NO, editors. Chapter 18: "Bioluminescence and Chemiluminescence", Methods in enzymology. Vol. LVII, 3. New York (NY): Acаdemic Press; 1978.
  • Gheoghiu M, Lagranderie M. Measure rapid de la viabilite’ du BCG par dosage de l’ATP. Ann Microbiol. 1979;130(2):11–19.
  • Hoffner S, Jimenez-Misas C, Lundin A. Improved extraction and assay of mycobacterial ATP for rapid drug susceptibility testing. Luminescence. 1999;14(5):255–261. doi: 10.1002/(SICI)1522-7243(199909/10)14:5<255::AID-BIO543>3.0.CO;2-W.
  • Janaszek W, Aleksandrowicz J, Sitkiewicz D. The use of the firefly bioluminescent reaction for rapid detection and counting of mycobacterium BCG. J Biol Stand. 1987;15(1):11–16. doi: 10.1016/0092-1157(87)90012-6.
  • Kuzikov AN, Bondarenko VM, Latkin AT. Use of the bioluminescent method for the determination of bacterial adenosinetriphosphate (ATP-metry) in microbiology. Zh Microbiol Epidemiol Immunobiol. 2003;1:80–89.
  • Maeda M. Determination of biological substances using bioluminescent reaction based on luciferin-luciferase. Rinsho Byori. 2004;52(7):595–603.
  • WHO/TB/Technical Guide/77/9. In vitro assay of BCG products; 1977.
  • Gu Q-S, Li T, Liu T, et al. Recent advances in design strategies and imaging applications of fluorescent probes for ATP. Chemosensors. 2023;11(7):417. doi: 10.3390/chemosensors11070417.
  • Kolibab K, Derrick SC, Jacobs WR, et al. Characterization of an intracellular ATP assay for evaluating the viability of live attenuated mycobacterial vaccine preparations. J Microbiol Methods. 2012;90(3):245–249. doi: 10.1016/j.mimet.2012.05.015.
  • Ugarova NN, Lomakina GY, Perevyshina TA, et al. Controlling BCG vaccine’s cell viability in the process of its production by an bioluminescent ATP assay. Moscow Univ Chem Bull. 2019;74(4):191–197. doi: 10.3103/S0027131419040084.
  • Ugarova NN, Ugarova NN, Lomakina GY. Bioluminescence methods for the rapid assay of the specific activity of lyophilized BCG vaccine. Adv Tech Biol Med. 2017;5(4):243. doi: 10.4172/2379-1764.1000243.
  • Jin TH, Qu T, Raina A, et al. Improvements of ATP assay as a substitute for the CFU method in estimating viable cell count for BCG/rBCG vaccine preparations. J Vaccines Vaccin. 2016;7(1):309. doi: 10.4172/2157-7560.1000309.
  • Gweon E, Choi C, Kim J, et al. Development of a new approach to determine the potency of bacille Calmette-Guérin vaccines using flow cytometry. Osong Public Health Res Perspect. 2017;8(6):389–396. doi: 10.24171/j.phrp.2017.8.6.06.
  • Moghawry HM, Rashed ME, Gomaa K, et al. Development of a fast and precise potency test for BCG vaccine viability using flow cytometry compared to MTT and colony-forming unit assays. Sci Rep. 2023;13(1):11606. doi: 10.1038/s41598-023-38657-x.
  • Nafchi MZ, Hassanzadeh SM, Kaghazian H, et al. A modified ATP assay for test the potency of BCG vaccine. Pharma Pract. 2019;10(2):20–23.
  • Ugarova NN, Lomakina GY, Modestova Y, et al. A simplified ATP method for the rapid control of cell viability in a freeze-dried BCG vaccine. J Microbiol Methods. 2016;130:48–53. doi: 10.1016/j.mimet.2016.08.027.
  • Supaporn P, Sompong S, Sukanlayanee C. Suitability of alternative adenosine triphosphate potency assay for lot release of Tokyo bacilli Calmette-Guerin – 172-1 vaccines in Thailand. TJPS. 2018;42(4):203–207.
  • Popescu C, Balazs D, Tasca G, et al. The preservation of viability of BCG vaccine freeze-dried in a new extracellular protector, evaluated by ATP-dependent bioluminescence assay. Cryo-letters. 1999;2:71–76.
  • Savov VM. In: Willson B, Tuchin V, editors. Chapter 19: "Bioluminescence and Chemiluminescence in Early Warning Systems". Bioluminescence and chemiluminescence: mechanisms, fundamental principles and applications, advances in biophotonics, NATO science series; series I. Life and behavioral sciences. Vol. 369. Amsterdam; Berlin; Tokyo; Washington, DC: IOS Press; 2005. p. 228–241.
  • Shi MF, Klegerman ME, Groves MJ. Viability of freeze-dried tice-substrain BCG by bioluminescent measurement of adenosine triphosphate. Microbios. 1989;59(240–241):145–155.
  • Simpson WJ, Hammond JR. The effect of detergents on firefly luciferase reactions. J Biolumin Chemilumin. 1991;6(2):97–106. doi: 10.1002/bio.1170060207.
  • Thore A, Anséhn S, Lundin A, et al. Detection of bacteriuria by luciferase assay of ATP. J Clin Microbiol. 1975;1(1):1–8. doi: 10.1128/jcm.1.1.1-8.1975.
  • Wulff K. In: Bergmeyer HU, editor. Mehods of enzymatic analysis. 3rd ed. Vol. 1. Weinheim: Verlag Chemie; 1983. p. 340–368.
  • WHO. Requirements for dried BCG vaccine. In: WHO Expert Committee on Biological Standardization, Annex 2. WHO technical report series 1987, No. 745; 1987. p. 60–92.
  • Markey K, Ho MM, Rigsby P, et al. International collaborative study to evaluate and establish WHO reference reagents for BCG vaccine of three different substrains. Expert Committee on Biological Standardization; 2009 October 19–23; Geneva; WHO/BS/09.2114. Available from: https://iris.who.int/bitstream/handle/10665/70155/WHO_BS_09.2114_eng.pdf;jsessionid=D539401D08C3A41EEA8277AB3A1EDBA0?sequence=1