262
Views
0
CrossRef citations to date
0
Altmetric
RESEARCH ARTICLE

Taxonomic and molecular characterization of 15 wild-growing tulip species of Greece using the internal transcribed spacer (ITS) nuclear marker in combination with the psbA-trnH and trnL/trnF plastid markers

, , , , , & show all
Article: 2337694 | Received 10 Jan 2024, Accepted 28 Mar 2024, Published online: 08 Apr 2024

References

  • Christenhusz MJM, Govaerts R, David JC, et al. Tiptoe through the tulips – cultural history, molecular phylogenetics and classification of Tulipa (Liliaceae). Bot J Linn Soc. 2013;172(3):280–328. doi: 10.1111/boj.12061.
  • Krigas N, Lykas C, Ipsilantis I, et al. Greek tulips: worldwide electronic trade over the internet, global ex situ conservation and current sustainable exploitation challenges. Plants (Basel). 2021;10(3):580. doi: 10.3390/plants10030580.
  • Hernández Bermejo JE, García Sánchez E. Tulips: an ornamental crop in the Andalusian Middle ages. Econ Bot. 2009;63(1):60–66. doi: 10.1007/s12231-008-9070-3.
  • Zonneveld BJM. The systematic value of nuclear genome size for “all” species of Tulipa L. (Liliaceae). Plant Syst Evol. 2009;281(1–4):217–245. doi: 10.1007/s00606-009-0203-7.
  • POWO. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew; 2023. Available from: http://www.plantsoftheworldonline.org/.
  • WFO. Tulipa L. Published on the Internet; 2023. Availbale from: http://www.worldfloraonline.org/taxon/wfo-4000039559.
  • DeSalle R, Goldstein P. Review and interpretation of trends in DNA barcoding. Front Ecol Evol. 2019;7:302. doi: 10.3389/fevo.2019.00302.
  • Hollingsworth P, Graham S, Little D. Choosing and using a plant DNA barcode. PLoS One. 2011;6(5):e19254. doi: 10.1371/journal.pone.0019254.
  • Hollingsworth P, Rest L, Spouge J, et al. A DNA barcode for land plants. Proc Natl Acad Sci USA. 2009;106(31):12794–12797. doi: 10.1073/pnas.0905845106.
  • Fazekas AJ, Burgess KS, Kesanakurti PR, et al. Multiple multilocus DNA barcodes from the plastid genome discriminate plant species equally well. PLoS One. 2008;3(7):e2802. doi: 10.1371/journal.pone.0002802.
  • Pang X, Liu C, Shi L, et al. Utility of the trnH-psbA intergenic spacer region and its combinations as plant DNA barcodes: a meta-analysis. PLoS One. 2012;7(11):e48833. doi: 10.1371/journal.pone.0048833.
  • NCBI. National Center for Biotechnology Information (NCBI) [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 1988. Available from: https://www.ncbi.nlm.nih.gov/.
  • Do HDK, Kim C, Chase M, et al. Implications of plastome evolution in the true lilies (monocot order liliales). Mol Phylogenet Evol. 2020;148:106818. doi: 10.1016/j.ympev.2020.106818.
  • Li J, Price M, Su DM, et al. Phylogeny and comparative analysis for the plastid genomes of five Tulipa (Liliaceae). Biomed Res Int. 2021;2021:6648429. doi: 10.1155/2021/6648429.
  • Yuan L, Yan X, Chen X, et al. The complete chloroplast genome of Tulipa gesneriana (Liliaceae) and its phylogenetic analysis. Mitochondrial DNA B Resour. 2022;7(7):1255–1256. doi: 10.1080/23802359.2022.2093676.
  • Hajdari A, Pulaj B, Schmiderer C, et al. A phylogenetic analysis of the wild Tulipa species (Liliaceae) of Kosovo based on plastid and nuclear DNA sequence. Adv. Genet. 2021;2(4):1–13. doi: 10.1002/ggn2.202100016.
  • Peruzzi L, Peterson A, Tison J-M, et al. Phylogenetic relationships of Gagea Salisb. (Liliaceae) in Italy, inferred from molecular and morphological data matrices. Plant Syst Evol. 2008;276(3-4):219–234. doi: 10.1007/s00606-008-0081-4.
  • Peterson A, Levichev IG, Peterson J. Systematics of Gagea and Lloydia (Liliaceae) and infrageneric classification of Gagea based on molecular and morphological data. Mol Phylogenet Evol. 2008;46(2):446–465. doi: 10.1016/j.ympev.2007.11.016.
  • Turktas M, Metin ÖK, Baştuğ B, et al. Molecular phylogenetic analysis of Tulipa (Liliaceae) based on noncoding plastid and nuclear DNA sequences with an emphasis on Turkey. Bot J Linn Soc. 2013;172(3):270–279. doi: 10.1111/boj.12040.
  • Zarrei M, Wilkin P, Fay M, et al. Molecular systematics of Gagea and Lloydia (Liliaceae; Liliales): implications of analyses of nuclear ribosomal and plastid DNA sequences for infrageneric classification. Ann Bot. 2009;104(1):125–142. doi: 10.1093/aob/mcp103.
  • Euro + Med. Euro + Med PlantBase – the information resource for Euro-Mediterranean plant diversity; 2006. Available from: https://ww2.bgbm.org/EuroPlusMed/.
  • IUCN. The IUCN Red List of threatened species; 2023. Available from: https://www.iucnredlist.org.
  • Kougioumoutzis K, Kokkoris IP, Panitsa M, et al. Extinction risk assessment of the Greek endemic flora. Biology (Basel). 2021;10(3):195. doi: 10.3390/biology10030195.
  • Phitos D. The Red Data Book of rare and threatened plants of Greece. Athens (Greece): World Wide Fund for Nature; 1995. Available from: https://books.google.gr/books?id=Zn7wAAAAMAAJ.
  • Phitos D, Constantinidis T, Kamari G. The Red Data Book of rare and threatened plants of Greece. Vol. 2. Patras (Greece): Hellenic Botanical Society; 2009.
  • Bilias F, Karagianni A-G, Ipsilantis I, et al. Adaptability of wild-growing tulips of Greece: uncovering relationships between soil properties, rhizosphere fungal morphotypes and nutrient content profiles. Biology (Basel). 2023;12(4):605. doi: 10.3390/biology12040605.
  • Strid A. Atlas of the Aegean flora. Part 1: text & plates. Part 2: maps. Berlin: Botanic Garden and Botanical Museum Berlin, Freie Universität Berlin; 2016. doi: 10.1017/S0960428616000172.
  • Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 1987;19:11–15.
  • Tsoktouridis G, Krigas N, Sarropoulou V, et al. Micropropagation and molecular characterization of Thymus sibthorpii Benth. (Lamiaceae), an aromatic-medicinal thyme with ornamental value and conservation concern. In Vitro Cell Dev Biol Plant. 2019;55(6):647–658. doi: 10.1007/s11627-019-10000-y.
  • Kress WJ, Wurdack KJ, Zimmer EA, et al. Use of DNA barcodes to identify flowering plants. Proc Natl Acad Sci U S A. 2005;102(23):8369–8374. doi: 10.1073/pnas.0503123102.
  • Ledford H. Botanical identities. Nature. 2008;451(7179):616–616. doi: 10.1038/451616b.
  • Taberlet P, Gielly L, Pautou G, et al. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol. 1991;17(5):1105–1109. doi: 10.1007/BF00037152.
  • Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021;38(7):3022–3027. doi: 10.1093/molbev/msab120.
  • Chen F. Plant genomes: toward goals of decoding both complex and complete sequences. Ornam. Plant Res. 2022;2:24. doi: 10.48130/OPR-2022-0024.
  • Ju X, Shi G, Hou Z, et al. Characterization of the complete chloroplast genome of Tulipa iliensis (Liliaceae). Mitochondrial DNA B Resour. 2020;5(3):2362–2363. doi: 10.1080/23802359.2020.1773333.
  • Zhou JT, Yin PP, Chen Y, et al. The complete chloroplast genome of Tulipa altaica (liliaceae), a wild relative of tulip. Mitochondrial DNA B Resour. 2019;4(1):2017–2018. doi: 10.1080/23802359.2019.1618221.
  • Xing G, Zhang H, Zhang Y, et al. The complete chloroplast genome of Tulipa sinkiangensis Z. M. Mao (Liliaceae) with multi-flower. Mitochondrial DNA B Resour. 2023;8(1):45–47. doi: 10.1080/23802359.2022.2160217.
  • Song B, Buckler ES, Stitzer MC. New whole-genome alignment tools are needed for tapping into plant diversity. Trends Plant Sci. 2023;29(3):355–369. doi: 10.1016/j.tplants.2023.08.013.
  • Bennett EP, Petersen BL, Johansen IE, et al. INDEL detection, the “achilles heel” of precise genome editing: a survey of methods for accurate profiling of gene editing induced indels. Nucleic Acids Res. 2020;48(21):11958–11981. doi: 10.1093/nar/gkaa975.
  • Huddleston J, Chaisson MJP, Steinberg KM, et al. Discovery and genotyping of structural variation from long-read haploid genome sequence data. Genome Res. 2017;27(5):677–685. doi: 10.1101/gr.214007.116.
  • Niihama M, Mochizuki M, Kurata N, et al. PCR-based INDEL markers co-dominant between Oryza sativa, japonica cultivars and closely-related wild Oryza species. Breed Sci. 2015;65(4):357–361. doi: 10.1270/jsbbs.65.357.
  • Yonemaru J, Choi SH, Sakai H, et al. Genome-wide indel markers shared by diverse Asian rice cultivars compared to Japanese rice cultivar ‘Koshihikari’. Breed Sci. 2015;65(3):249–256. doi: 10.1270/jsbbs.65.249.
  • Das S, Upadhyaya HD, Srivastava R, et al. Genome-wide insertion–deletion (InDel) marker discovery and genotyping for genomics-assisted breeding applications in chickpea. DNA Res. 2015;22(5):377–386. doi: 10.1093/dnares/dsv020.
  • Raman H, Raman R, Wood R, et al. Repetitive indel markers within the ALMT1 gene conditioning aluminium tolerance in wheat (Triticum aestivum L.). Mol Breed. 2006;18(2):171–183. doi: 10.1007/s11032-006-9025-2.
  • Păcurar DI, Păcurar ML, Street N, et al. A collection of INDEL markers for map-based cloning in seven Arabidopsis accessions. J Exp Bot. 2012;63(7):2491–2501. doi: 10.1093/jxb/err422.
  • Kim K, Lee S-C, Lee J, et al. Comprehensive survey of genetic diversity in chloroplast genomes and 45S nrDNAs within Panax ginseng species. PLoS One. 2015;10(6):e0117159. doi: 10.1371/journal.pone.0117159.
  • Kloukina C, Tomou E-M, Krigas N, et al. Non-polar secondary metabolites and essential oil of ex situ propagated and cultivated Sideritis syriaca L. subsp. syriaca (Lamiaceae) with consolidated identity (DNA barcoding): towards a potential new industrial crop. Ind Crops Prod. 2020;158:112957. doi: 10.1016/j.indcrop.2020.112957.