437
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Microbiology in the era of artificial intelligence: transforming medical and pharmaceutical microbiology

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2349587 | Received 16 Jan 2024, Accepted 25 Apr 2024, Published online: 12 May 2024

References

  • Karalis VD. The integration of artificial intelligence into clinical practice. Appl Biosci. 2024;3(1):14–44. doi: 10.3390/applbiosci3010002.
  • Shelke YP, Badge AK, Bankar NJ, et al. Applications of artificial intelligence in microbial diagnosis. Cureus. 2023;15(11):e49366. doi: 10.7759/cureus.49366.
  • Juhas M. Artificial intelligence in microbiology. In Brief lessons in microbiology. Cham: Springer; 2023. doi: 10.1007/978-3-031-29544-7_8.
  • Mishra A, Khan S, Das A, et al. Evolution of diagnostic and forensic microbiology in the era of artificial intelligence. Cureus. 2023;15(9):e45738. doi: 10.7759/cureus.45738.
  • Wilson S, Steele S, Adeli K. Innovative technological advancements in laboratory medicine: predicting the lab of the future. Biotechnol Biotechnol Equip. 2022;36(sup1):S9–S21. doi: 10.1080/13102818.2021.2011413.
  • Signoroni A, Ferrari A, Lombardi S, et al. Hierarchical AI enables global interpretation of culture plates in the era of digital microbiology. Nat Commun. 2023;14(1):6874. doi: 10.1038/s41467-023-42563-1.
  • Sarrafzadeh M-H, Mansouri SS, Zahiri J, et al. Artificial intelligence in environmental microbiology. Front Microbiol. 2022;13:944242. doi: 10.3389/fmicb.2022.944242.
  • Jiang Y, Luo J, Huang D, et al. Machine learning advances in microbiology: a review of methods and applications. Front Microbiol. 2022;13:925454. doi: 10.3389/fmicb.2022.925454.
  • Saheb T, Saheb T, Carpenter DO. Mapping research strands of ethics of artificial intelligence in healthcare: a bibliometric and content analysis. Comput Biol Med. 2021;135:104660. doi: 10.1016/j.compbiomed.2021.104660.
  • Kavvas ES, Catoiu E, Mih N, et al. Machine learning and structural analysis of Mycobacterium tuberculosis pan-genome identifies genetic signatures of antibiotic resistance. Nat Commun. 2018;9(1):4306. doi: 10.1038/s41467-018-06634-y.
  • Davis J, Boisvert S, Brettin T, et al. Antimicrobial resistance prediction in PATRIC and RAST. Sci Rep. 2016;6(1):27930. doi: 10.1038/srep27930.
  • Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci. 1997;55(1):119–139. doi: 10.1006/jcss.1997.1504.
  • Aniro G, et al. Variability of strain engraftment and predictability of microbiome composition after fecal microbiota transplantation across different diseases. Nat Med. 2022;28:1913–1923.
  • Smillie CS, Sauk J, Gevers D, et al. Strain tracking reveals the determinants of bacterial engraftment in the human gut following fecal microbiota transplantation. Cell Host Microbe. 2018;23(2):229–240.e5. doi: 10.1016/j.chom.2018.01.003.
  • Schmidt TSB, Li SS, Maistrenko OM, et al. Drivers and determinants of strain dynamics following fecal microbiota transplantation. Nat Med. 2022;28(9):1902–1912. doi: 10.1038/s41591-022-01913-0.
  • Steinegger M, Söding J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat Biotechnol. 2017;35(11):1026–1028. doi: 10.1038/nbt.3988.
  • Vanni C, Schechter MS, Acinas SG, et al. Unifying the known and unknown microbial coding sequence space. Elife. 2022;11:e67667. doi: 10.7554/eLife.67667.
  • Arango-Argoty G, Garner E, Pruden A, et al. DeepARG: a deep learning approach for predicting antibiotic resistance genes from metagenomic data. Microbiome. 2018;6(1):23. doi: 10.1186/s40168-018-0401-z.
  • Baldi P. Deep learning in biomedical data science. Annu Rev Biomed Data Sci. 2018;1(1):181–205. doi: 10.1146/annurev-biodatasci-080917-013343.
  • Rajaraman S, Antani SK, Poostchi M, et al. Pre-trained convolutional neural networks as feature extractors toward improved malaria parasite detection in thin blood smear images. PeerJ. 2018;6:e4568. doi: 10.7717/peerj.4568.
  • Ross NE, Pritchard CJ, Rubin DM, et al. Automated image processing method for the diagnosis and classification of malaria on thin blood smears. Med Biol Eng Comput. 2006;44(5):427–436. doi: 10.1007/s11517-006-0044-2.
  • Poostchi M, Silamut K, Maude RJ, et al. Image analysis and machine learning for detecting malaria. Transl Res. 2018;194:36–55. doi: 10.1016/j.trsl.2017.12.004.
  • Mathison BA, Kohan JL, Walker JF, et al. Detection of intestinal protozoa in Trichrome-Stained stool specimens by use of a deep convolutional neural network. J Clin Microbiol. 2020;58(6). doi: 10.1128/JCM.02053-19.
  • Forero MG, Cristóbal G, Desco M. Automatic identification of Mycobacterium tuberculosis by Gaussian mixture models. J Microsc. 2006;223(Pt 2):120–132. doi: 10.1111/j.1365-2818.2006.01610.x.
  • De Bruyne K, Slabbinck B, Waegeman W, et al. Bacterial species identification from MALDI-TOF mass spectra through data analysis and machine learning. Syst Appl Microbiol. 2011;34(1):20–29. doi: 10.1016/j.syapm.2010.11.003.
  • Ahmed WM, Bayraktar B, Bhunia AK, et al. Classification of bacterial contamination using image processing and distributed computing. IEEE J Biomed Health Inform. 2013;17(1):232–239. doi: 10.1109/TITB.2012.2222654.
  • Ates H, Gerek ON, Ieee A. Image-processing based automated bacteria colony counter. 2009.
  • Zieliński B, Plichta A, Misztal K, et al. Deep learning approach to bacterial colony classification. PLoS One. 2017;12(9):e0184554. doi: 10.1371/journal.pone.0184554.
  • Colubri A, Silver T, Fradet T, et al. Transforming clinical data into actionable prognosis models: machine learning frame-work and field-deployable app to predict outcome of Ebola patients. PLoS Negl Trop Dis. 2016;10(3):e0004549. doi: 10.1371/journal.pntd.0004549.
  • Wang HY, Hung CC, Chen CH, et al. Increase Trichomonas vaginalis detection based on urine routine analysis through a machine learning approach. Sci Rep. 2019;9(1):11074. doi: 10.1038/s41598-019-47361-8.
  • Pirnstill CW, Coté GL. Malaria diagnosis using a mobile phone polarized microscope. Sci Rep. 2015;5(1):13368. doi: 10.1038/srep13368.
  • Diederich B, Wartmann R, Schadwinkel H, et al. Using machine-learning to optimize phase contrast in a low-cost cellphone microscope. PLoS One. 2018;13(3):e0192937. doi: 10.1371/journal.pone.0192937.
  • Ong DSY, Poljak M. Smartphones as mobile microbiological laboratories. Clin Microbiol Infect. 2020;26(4):421–424. doi: 10.1016/j.cmi.2019.09.026.
  • Zorn KM, Lane TR, Russo DP, et al. Multiple machine learning comparisons of HIV cell-based and reverse transcriptase data sets. Mol Pharm. 2019;16(4):1620–1632. doi: 10.1021/acs.molpharmaceut.8b01297.
  • Svarovskaia ES, Cheslock SR, Zhang WH, et al. Retroviral mutation rates and reverse transcriptase fidelity. Front Bioscience-Landmark. 2003;8:d117–d134.
  • Goodswen SJ, Kennedy PJ, Ellis JT. A novel strategy for classifying the output from an insilico vaccine discovery pipeline for eukaryotic pathogens using machine learning algorithms. BMC Bioinformatics. 2013;14(1):315. doi: 10.1186/1471-2105-14-315.
  • Verma R, Tiwari A, Kaur S, et al. Identification of proteins secreted by malaria parasite into erythrocyte using SVM and PSSM profiles. BMC Bioinformatics. 2008;9(1):201. doi: 10.1186/1471-2105-9-201.
  • Rahman MS, Rahman MK, Saha S, et al. Antigenic: an improved prediction model of protective antigens. Artif Intell Med. 2019;94:28–41. doi: 10.1016/j.artmed.2018.12.010.
  • Zhang HT, Li DF, Zhao LL, et al. Genome sequencing of 161 Mycobacterium tuberculosis isolates from China identifies genes and intergenic regions associated with drug resistance. Nat Genet. 2013;45(10):1255–1260. doi: 10.1038/ng.2735.
  • Walker TM, Kohl TA, Omar SV. Whole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance: a retrospective cohort study. Lancet Infect Dis. 2018;18:21–21.
  • Yang Y, Niehaus KE, Walker TM, et al. Machine learning for classifying tuberculosis drug-resistance from DNA sequencing data. Bioinformatics. 2018;34(10):1666–1671. doi: 10.1093/bioinformatics/btx801.
  • Kouchaki S, Yang Y, Walker TM, et al. Application of machine learning techniques to tuberculosis drug resistance analysis. Bioinformatics. 2019;35(13):2276–2282. doi: 10.1093/bioinformatics/bty949.
  • Farhat MR, Sultana R, Iartchouk O, et al. Genetic determinants of drug resistance in Mycobacterium tuberculosis and their diagnostic value. Am J Respir Crit Care Med. 2016;194:621–630. doi: 10.1164/rccm.201510-2091OC.
  • Iyidogan P, Anderson KS. Current perspectives on HIV-1 antiretroviral drug resistance. Viruses–Basel. 2014;6(10):4095–4139. doi: 10.3390/v6104095.
  • Ramon E, Belanche-Muñoz L, Pérez-Enciso M. HIV drug resistance prediction with weighted categorical kernel functions. BMC Bioinformatics. 2019;20(1):410. doi: 10.1186/s12859-019-2991-2.
  • Peng Y, Li C, Rong Y, et al. Retrospective analysis of the accuracy of predicting the alert level of COVID-19 in 202 countries using google trends and machine learning. J Glob Health. 2020;10(2):020511. doi: 10.7189/jogh.10.020511.
  • Ginsberg J, Mohebbi MH, Patel RS, et al. Detecting influenza epidemics using search engine query data. Nature. 2009;457(7232):1012–1014. doi: 10.1038/nature07634.
  • Shin S-Y, Seo D-W, An J, et al. High correlation of Middle East respiratory syndrome spread with google search and twitter trends in Korea. Sci Rep. 2016;6(1):32920. doi: 10.1038/srep32920.
  • Marques-Toledo C, Degener CM, Vinhal L, et al. Dengue prediction by the web: tweets are a useful tool for estimating and forecasting dengue at country and city level. PLoS Negl Trop Dis. 2017;11.
  • DiMucci D, Kon M, Segrè D. Machine learning reveals missing edges and putative interaction mechanisms in microbial ecosystem networks. Msystems. 2018;3(5):10-1128. doi: 10.1128/mSystems.00181-18.
  • Zhang Y, Pechal JL, Schmidt CJ, et al. Machine learning performance in a microbial molecular autopsy context: a cross-sectional postmortem human population study. PLoS One. 2019;14(4):e0213829. doi: 10.1371/journal.pone.0213829.
  • Hawinkel S, Kerckhof F-M, Bijnens L, et al. A unified framework for unconstrained and constrained ordination of microbiome read count data. PLoS One. 2019;14(2):e0205474. doi: 10.1371/journal.pone.0205474.
  • Sohn MB, Li H. A GLM-based latent variable ordination method for microbiome samples. Biometrics. 2018;74(2):448–457. doi: 10.1111/biom.12775.
  • Garcia E, Kundu I, Ali A, et al. The American society for clinical pathology’s 2016-2017 vacancy survey of medical laboratories in the United States. Am J Clin Pathol. 2018;149(5):387–400. doi: 10.1093/ajcp/aqy005.
  • Smith KP, Kang AD, Kirby JE. Automated interpretation of blood culture gram stains by use of a deep convolutional neural network. J Clin Microbiol. 2018;56(3):e01521-17. doi: 10.1128/JCM.01521-17.
  • Glasson J, Hill R, Summerford M, et al. Multicenter evaluation of an image analysis device (APAS): comparison between digital image and traditional plate reading using urine cultures. Ann Lab Med. 2017;37(6):499–504. doi: 10.3343/alm.2017.37.6.499.
  • Faron ML, Buchan BW, Samra H, et al. Evaluation of the WASPLab software to automatically read CHROMID CPS elite agar for reporting of urine cultures. J Clin Microbiol. 2019;58(1). doi: 10.1128/JCM.00540-19.
  • Van TT, Mata K, Dien Bard J. Automated detection of Streptococcus pyogenes pharyngitis by use of colorex strep a CHROMagar and WASPLab artificial intelligence chromogenic detection module software. J Clin Microbiol. 2019;57(11). doi: 10.1128/JCM.00811-19.
  • Florio W, Tavanti A, Barnini S, et al. Recent advances and ongoing challenges in the diagnosis of microbial infections by MALDI-TOF mass spectrometry. Front Microbiol. 2018;9:1097. doi: 10.3389/fmicb.2018.01097.
  • Datta S. Mass spectrometry data analysis in proteomics. 2nd ed. Berlin: Springer; 2013. Chapter.10: feature selection and machine learning with mass spectrometry data.
  • Wang H-Y, Chen C-H, Lee T-Y, et al. Rapid detection of heterogeneous vancomycin-intermediate Staphylococcus aureus based on matrix-assisted laser desorption ionization time-of-flight: using a machine learning approach and unbiased validation. Front Microbiol. 2018;9:2393. doi: 10.3389/fmicb.2018.02393.
  • Mather CA, Werth BJ, Sivagnanam S, et al. Rapid detection of vancomycin-intermediate Staphylococcus aureus by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2016;54(4):883–890. doi: 10.1128/JCM.02428-15.
  • Lau AF, Walchak RC, Miller HB, et al. Multicenter study demonstrates standardization requirements for mold identification by MALDI-TOF MS. Front Microbiol. 2019;10:2098. doi: 10.3389/fmicb.2019.02098.
  • Long SW, Olsen RJ, Eagar TN, et al. Population genomic analysis of 1,777 extended-spectrum beta-lactamase-producing Klebsiella pneumoniae isolates, Houston, Texas: unexpected abundance of clonal group 2017;307. MBio. 2017;8(3). doi: 10.1128/mBio.00489-17.
  • Nguyen M, Long SW, McDermott PF, et al. Using machine learning to predict antimicrobial MICs and associated genomic features for nontyphoidal Salmonella. J Clin Microbiol. 2019;57(2):e01260-18. doi: 10.1128/JCM.01260-18.
  • Zhang W, He S, Hong W, et al. A review of Raman-based technologies for bacterial identification and antimicrobial susceptibility testing. Photonics. 2022;9(3):133. doi: 10.3390/photonics9030133.
  • Undru TR, Uday U, Lakshmi JT, et al. Integrating artificial intelligence for clinical and laboratory diagnosis - a review. Maedica (Bucur). 2022;17(2):420–426.
  • Ghaffar Nia N, Kaplanoglu E, Nasab A. Evaluation of artificial intelligence techniques in disease diagnosis and prediction. Discover Artif Intell. 2023;10(5). doi: 10.1007/s44163-023-00049-5.
  • Rahmani AM, Azhir E, Ali S, et al. Artificial intelligence approaches and mechanisms for big data analytics: a systematic study. PeerJ Comput Sci. 2021;7:e488. doi: 10.7717/peerj-cs.488.
  • Rhoads DD. Computer vision and artificial intelligence are emerging diagnostic tools for the clinical microbiologist. J Clin Microbiol. 2020;58(6). doi: 10.1128/JCM.00511-20.
  • DeYoung B, Morales M, Giglio S. Microbiology 2.0-a “behind the scenes” consideration for artificial intelligence applications for interpretive culture plate reading in routine diagnostic laboratories. Front Microbiol. 2022;13:976068. doi: 10.3389/fmicb.2022.976068.
  • Alouani DJ, Ransom EM, Jani M, et al. Deep convolutional neural networks implementation for the analysis of urine culture. Clin Chem. 2022;68(4):574–583. doi: 10.1093/clinchem/hvab270.
  • Peiffer-Smadja N, Dellière S, Rodriguez C, et al. Machine learning in the clinical microbiology laboratory: has the time come for routine practice? Clin Microbiol Infect. 2020;26(10):1300–1309. doi: 10.1016/j.cmi.2020.02.006.
  • Croxatto A, Prod’hom G, Faverjon F, et al. Laboratory automation in clinical bacteriology: what system to choose? Clin Microbiol Infect. 2016;22(3):217–235. doi: 10.1016/j.cmi.2015.09.030.
  • Islam MM, Nasrin T, Walther BA, et al. Prediction of sepsis patients using machine learning approach: a meta-analysis. Comput Methods Programs Biomed. 2019;170:1–9. doi: 10.1016/j.cmpb.2018.12.027.
  • Wang D, Li J, Sun Y, et al. A machine learning model for accurate prediction of sepsis in ICU patients. Front Public Health. 2021;9. doi: 10.3389/fpubh.2021;754348.
  • Fleuren LM, Klausch TLT, Zwager CL, et al. Machine learning for the prediction of sepsis: a systematic review and meta-analysis of diagnostic test accuracy. Intensive Care Med. 2020;46(3):383–400. doi: 10.1007/s00134-019-05872-y.
  • Lauritsen SM, Kalør ME, Kongsgaard EL, et al. Early detection of sepsis utilizing deep learning on electronic health record event sequences. Artif Intell Med. 2020;104:101820. doi: 10.1016/j.artmed.2020.101820.
  • Shashikumar SP, Wardi G, Malhotra A, et al. Artificial intelligence sepsis prediction algorithm learns to say “I don’t know. NPJ Digit Med. 2021;4(1):134. doi: 10.1038/s41746-021-00504-6.
  • Delahanty RJ, Alvarez J, Flynn LM, et al. Development and evaluation of a machine learning model for the early identification of patients at risk for sepsis. Ann Emerg Med. 2019;73(4):334–344. doi: 10.1016/j.annemergmed.2018.11.036.
  • Goh KH, Wang L, Yeow AYK, et al. Artificial intelligence in sepsis early prediction and diagnosis using unstructured data in healthcare. Nat Commun. 2021;12(1):711. doi: 10.1038/s41467-021-20910-4.
  • Adams R, Henry KE, Sridharan A, et al. Prospective, multi-site study of patient outcomes after implementation of the TREWS machine learning-based early warning system for sepsis. Nat Med. 2022;28(7):1455–1460. doi: 10.1038/s41591-022-01894-0.
  • Seymour CW, Kennedy JN, Wang S, et al. Derivation, validation, and potential treatment implications of novel clinical phenotypes for sepsis. JAMA. 2019;321(20):2003–2017. doi: 10.1001/jama.2019.5791.
  • Ho C-S, Jean N, Hogan CA, et al. Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning. Nat Commun. 2019;10(1):4927. doi: 10.1038/s41467-019-12898-9.
  • Lin P-C, Huang H-C, Komorowski M, et al. A machine learning approach for predicting urine output after fluid administration. Comput Methods Programs Biomed. 2019;177:155–159. doi: 10.1016/j.cmpb.2019.05.009.
  • Bataille B, Selle J, Moussot P-E, et al. Machine learning methods to improve bedside fluid responsiveness prediction in severe sepsis or septic shock: an observational study. Br J Anaesth. 2021;126(4):826–834. doi: 10.1016/j.bja.2020.11.039.
  • Liu R, Hunold KM, Caterino JM, et al. Estimating treatment effects for time-to-treatment antibiotic stewardship in sepsis. Nat Mach Intell. 2023;5(4):421–431. doi: 10.1038/s42256-023-00638-0.
  • Shimabukuro DW, Barton CW, Feldman MD, et al. Effect of a machine learning-based severe sepsis prediction algorithm on patient survival and hospital length of stay: a randomised clinical trial. BMJ Open Respir Res. 2017;4(1):e000234. doi: 10.1136/bmjresp-2017-000234.
  • Hou N, Li M, He L, et al. Predicting 30-days mortality for MIMIC-III patients with sepsis-3: a machine learning approach using XGboost. J Transl Med. 2020;18(1):462. doi: 10.1186/s12967-020-02620-5.
  • Yin J, Ngiam KY, Teo HH. Role of artificial intelligence applications in real-life clinical practice: systematic review. J Med Internet Res. 2021;23(4):e25759. doi: 10.2196/25759.
  • Cusumano-Towner M, Li DY, Tuo S, et al. A social network of hospital acquired infection built from electronic medical record data. J Am Med Inform Assoc. 2013;20(3):427–434. doi: 10.1136/amiajnl-2012-001401.
  • Lakhani P, Sundaram B. Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology. 2017;284(2):574–582. doi: 10.1148/radiol.2017162326.
  • Méric G, Mageiros L, Pensar J, et al. Disease-associated genotypes of the commensal skin bacterium Staphylococcus epidermidis. Nat Commun. 2018;9(1):5034. doi: 10.1038/s41467-018-07368-7.
  • Drew RJ, Murphy T, Broderick D, et al. An interpretation algorithm for molecular diagnosis of bacterial vaginosis in a maternity hospital using machine learning: proof-of-concept study. Diagn Microbiol Infect Dis. 2020;96(2):114950. doi: 10.1016/j.diagmicrobio.2019.114950.
  • Shillan D, Sterne JAC, Champneys A, et al. Use of machine learning to analyse routinely collected intensive care unit data: a systematic review. Crit Care. 2019;23(1):284. doi: 10.1186/s13054-019-2564-9.
  • Lee AS, de Lencastre H, Garau J, et al. Methicillin-resistant Staphylococcus aureus. Nat Rev Dis Primers. 20018;4(1):18033. doi: 10.1038/nrdp.2018.33.
  • Gilmer J, et al. Neural message passing for quantum chemistry. In Proceedings of the 34th International Conference on Machine Learning 2017.
  • Yang K, Swanson K, Jin W, et al. Analyzing learned molecular representations for property prediction. J Chem Inf Model. 2019;59(8):3370–3388. doi: 10.1021/acs.jcim.9b00237.
  • Toxicology in the 21st century. [cited 2022 Oct 20]. Available from: https://tripod.nih.gov/tox/.
  • The Human Metabolome Database. [cited 2022 Oct 20]. Available from: https://hmdb.ca/metabolites.
  • Silver D, Schrittwieser J, Simonyan K, et al. Mastering the game of go without human knowledge. Nature. 2017;550(7676):354–359. doi: 10.1038/nature24270.
  • Cao Y, Jiang T, Girke T. A maximum common substructure-based algorithm for searching and predicting drug-like compounds. Bioinformatics. 2018;24(13):i366–i374. doi: 10.1093/bioinformatics/btn186.
  • Stokes JM, Yang K, Swanson K, et al. A deep learning approach to antibiotic discovery. Cell. 2020;180(4):688–702.e13. doi: 10.1016/j.cell.2020.01.021.
  • Wong F, Stokes JM, Bening SC, et al. Reactive metabolic byproducts contribute to antibiotic lethality under anaerobic conditions. Mol Cell. 2020;82(18):3499–3512.e10. doi: 10.1016/j.molcel.2022.07.009.
  • Wong F, Stokes JM, Cervantes B, et al. Cytoplasmic condensation induced by membrane damage is associated with antibiotic lethality. Nat Commun. 2021;12(1):2321. doi: 10.1038/s41467-021-22485-6.
  • Wong F, Wilson S, Helbig R, et al. Understanding beta-lactam-induced lysis at the single-cell level. Front Microbiol. 2021;12:712007. doi: 10.3389/fmicb.2021.712007.
  • Wong F, Amir A. Mechanics and dynamics of bacterial cell lysis. Biophys J. 2019;116(12):2378–2389. doi: 10.1016/j.bpj.2019.04.040.
  • Wu Y, Gadsden SA. Machine learning algorithms in microbial classification: a comparative analysis. Front Artif Intell. 2023;6:1200994. doi: 10.3389/frai.2023.1200994.
  • Farha MA, Verschoor CP, Bowdish D, et al. Collapsing the proton motive force to identify synergistic combinations against Staphylococcus aureus. Chem Biol. 2013;20(9):1168–1178. doi: 10.1016/j.chembiol.2013.07.006.
  • Scott IA, Cook D, Coiera EW, et al. Machine learning in clinical practice: prospects and pitfalls. Med J Aust. 2019;211(5):203–205.e1. doi: 10.5694/mja2.50294.
  • Rajkomar A, Dean J, Kohane I. Machine learning in medicine. N Engl J Med. 2019;380(14):1347–1358. doi: 10.1056/NEJMra1814259.
  • Panch T, Mattie H, Celi LA. The “inconvenient truth” about AI in healthcare. NPJ Digit Med. 2019;2(1):77. doi: 10.1038/s41746-019-0155-4.
  • Finlayson SG, Subbaswamy A, Singh K, et al. The clinician and dataset shift in artificial intelligence. N Engl J Med. 2021;385(3):283–286. doi: 10.1056/NEJMc2104626.
  • Wong A, Otles E, Donnelly JP, et al. External validation of a widely implemented proprietary sepsis prediction model in hospitalized patients. JAMA Intern Med. 2021;181(8):1065–1070. doi: 10.1001/jamainternmed.2021.2626.
  • Wong A, Cao J, Lyons PG, et al. Quantification of sepsis model alerts in 24 US hospitals before and during the COVID-19 pandemic. JAMA Netw Open. 2021;4(11):e2135286. doi: 10.1001/jamanetworkopen.2021.35286.
  • Kheterpal S, Singh K, Topol EJ. Digitising the prediction and management of sepsis. Lancet. 2022;399(10334):1459. doi: 10.1016/S0140-6736(22)00658-4.
  • Ginestra JC, Giannini HM, Schweickert WD, et al. Clinician perception of a machine learning–based early warning system designed to predict severe sepsis and septic shock. Crit Care Med. 2019;47(11):1477–1484. doi: 10.1097/CCM.0000000000003803.
  • Henry KE, Adams R, Parent C, et al. Factors driving provider adoption of the TREWS machine learning-based early warning system and its effects on sepsis treatment timing. Nat Med. 2022;28(7):1447–1454. doi: 10.1038/s41591-022-01895-z.
  • Henry KE, Kornfield R, Sridharan A, et al. Human-machine teaming is key to AI adoption: clinicians’ experiences with a deployed machine learning system. NPJ Digit Med. 2022;5(1):97. doi: 10.1038/s41746-022-00597-7.
  • Rhoads DD, Sintchenko V, Rauch CA, et al. Clinical microbiology informatics. Clin Microbiol Rev. 2014;27(4):1025e47–1021047. doi: 10.1128/CMR.00049-14.
  • Sweeney L. Confidentiality, disclosure, and data access: theory and practical applications for statistical agencies. In: Zayatz L, Doyle P, Theeuwes J, Lane J, editors. Washington, DC: Urban Institute; 2001. p. e26.
  • Densen P. Challenges and opportunities facing medical education. Trans Am Clin Climatol Assoc. 2011;122:48e58.
  • Bunsow E, Vecchio MG-D, Sanchez C, et al. Improved sepsis alert with a telephone call from the clinical microbiology laboratory: a clinical trial. Medicine (Baltimore). 2015;94(39):e1454. doi: 10.1097/MD.0000000000001454.
  • Wang X, Williams C, Liu ZH, et al. Big data management challenges in health research-a literature review. Brief Bioinform. 2019;20(1):156e67–156167. doi: 10.1093/bib/bbx086.
  • Turner P, Fox-Lewis A, Shrestha P, et al. Microbiology investigation criteria for reporting objectively (MICRO): a framework for the reporting and interpretation of clinical microbiology data. BMC Med. 2019;17(1):70. doi: 10.1186/s12916-019-1301-1.
  • Chiu CY, Miller SA. Clinical metagenomics. Nat Rev Genet. 2019;20(6):341e55–341355. doi: 10.1038/s41576-019-0113-7.
  • Miller S, Chiu C, Rodino KG, et al. Should we be performing meta-genomic next-generation sequencing for infectious disease diagnosis in the clinical laboratory? J Clin Microbiol. 2019;58(3). doi: 10.1128/JCM.01739-19.
  • Amid C, Pakseresht N, Silvester N, et al. The COMPARE data hubs. Database (Oxford). 2019;2019:baz136. doi: 10.1093/database/baz136.
  • Littler K, Boon W-M, Carson G, et al. Progress in promoting data sharing in public health emergencies. Bull World Health Organ. 2017;95(4):243–243. doi: 10.2471/BLT.17.192096.
  • Kostkova P. Disease surveillance data sharing for public health: the next ethical frontiers. Life Sci Soc Policy. 2018;14(1):16. doi: 10.1186/s40504-018-0078-x.
  • Brall C, Schröder-Bäck P, Maeckelberghe E. Ethical aspects of digital health from a justice point of view. Eur J Public Health. 2019;29(Supplement_3):18e22–18e22. doi: 10.1093/eurpub/ckz167.
  • Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44e56. doi: 10.1038/s41591-018-0300-7.
  • Baştanlar Y, Ozuysal M. Introduction to machine learning. Methods Mol Biol. 2014;1107:105e28–105128. doi: 10.1007/978-1-62703-748-8_7.
  • Luz CF, Vollmer M, Decruyenaere J, et al. Machine learning in infection management using routine electronic health records: tools, techniques, and reporting of future technologies. Clin Microbiol Infect. 2020;26(10):1291e9–121299. doi: 10.1016/j.cmi.2020.02.003.
  • Macesic N, Polubriaginof F, Tatonetti NP. Machine learning: novel bioinformatics approaches for combating antimicrobial resistance. Curr Opin Infect Dis. 2017;30(6):511e7–51517. doi: 10.1097/QCO.0000000000000406.
  • Wiens J, Shenoy ES. Machine learning for healthcare: on the verge of a major shift in healthcare epidemiology. Clin Infect Dis. 2018;66(1):149e53–149153. doi: 10.1093/cid/cix731.
  • Rawson TM, Hernandez B, Moore LSP, et al. Supervised machine learning for the prediction of infection on admission to hospital: a prospective observational cohort study. J Antimicrob Chemother. 2019;74(4):1108e15–1101115. doi: 10.1093/jac/dky514.