71
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Genome-wide analysis of the GRAS gene family in white clover (Trifolium repens L.) provides insight into its critical role in response to cold stress

, , , , & ORCID Icon
Article: 2354713 | Received 27 Nov 2023, Accepted 08 May 2024, Published online: 13 May 2024

References

  • Singh K, Foley RC, Oñate-Sánchez L. Transcription factors in plant defense and stress responses. Curr Opin Plant Biol. 2002;5(5):430–436. doi: 10.1016/s1369-5266(02)00289-3.
  • Chinnusamy V, Schumaker K, Zhu JK. Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot. 2004;55(395):225–236. doi: 10.1093/jxb/erh005.
  • Markham KK, Greenham K. Abiotic stress through time. New Phytol. 2021;231(1):40–46. doi: 10.1111/nph.17367.
  • Zhu J-K. Abiotic stress signaling and responses in plants. Cell. 2016;167(2):313–324. doi: 10.1016/j.cell.2016.08.029.
  • Peng J, Carol P, Richards DE, et al. The arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes Dev. 1997;11(23):3194–3205.  doi: 10.1101/gad.11.23.3194.
  • Silverstone AL, Ciampaglio CN, Sun T-P The arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. Plant Cell. 1998;10(2):155–169. doi: 10.1105/tpc.10.2.155.
  • Di Laurenzio L, Wysocka-Diller J, Malamy JE, et al. The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the arabidopsis root. Cell. 1996;86(3):423–433. doi: 10.1016/S0092-8674(00)80115-4.
  • Jaiswal V, Kakkar M, Kumari P, et al. Multifaceted roles of GRAS transcription factors in growth and stress responses in plants. iScience. 2022;25(9):105026. doi: 10.1016/j.isci.2022.105026.
  • Tian C, Wan P, Sun S, et al. Genome-wide analysis of the GRAS gene family in rice and arabidopsis. Plant Mol Biol. 2004;54(4):519–532. doi: 10.1023/B:.PLAN.0000038256.89809.57.
  • Grimplet J, Agudelo-Romero P, Teixeira RT, et al. Structural and functional analysis of the GRAS gene family in grapevine indicates a role of GRAS proteins in the control of development and stress responses. Front Plant Sci. 2016;7:353. doi: 10.3389/fpls.2016.00353.
  • Wang L, Ding X, Gao Y, et al. Genome-wide identification and characterization of GRAS genes in soybean (Glycine max). BMC Plant Biol. 2020;20(1):415. doi: 10.1186/s12870-020-02636-5.
  • Huang W, Xian Z, Kang X, et al. Genome-wide identification, phylogeny and expression analysis of GRAS gene family in tomato. BMC Plant Biol. 2015;15(1):209. doi: 10.1186/s12870-015-0590-6.
  • Yang T, Li C, Zhang H, et al. Genome-wide identification and expression analysis of the GRAS transcription in eggplant (solanum melongena L.). Front Genet. 2022;13:932731. doi: 10.3389/fgene.2022.932731.
  • Revalska M, Radkova M, Iantcheva A. Functional characterization of Medicago truncatula GRAS7, a member of the GRAS family transcription factors, in response to abiotic stress. Biotechnology & Biotechnological Equipment. 2022;36(1):317–326. doi: 10.1080/13102818.2022.2074893.
  • Achard P, Gong F, Cheminant S, et al. The cold-inducible CBF1 factor – dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell. 2008;20(8):2117–2129. doi: 10.1105/tpc.108.058941.
  • Liu Y, Shi Y, Zhu N, et al. SlGRAS4 mediates a novel regulatory pathway promoting chilling tolerance in tomato. Plant Biotechnol J. 2020;18(7):1620–1633. doi: 10.1111/pbi.13328.
  • Yuan Y, Fang L, Karungo SK, et al. Overexpression of VaPAT1, a GRAS transcription factor from vitis amurensis, confers abiotic stress tolerance in arabidopsis. Plant Cell Rep. 2016;35(3):655–666. doi: 10.1007/s00299-015-1910-x.
  • Wang Z, Wong DCJ, Wang Y, et al. GRAS-domain transcription factor PAT1 regulates jasmonic acid biosynthesis in grape cold stress response. Plant Physiol. 2021;186(3):1660–1678. doi: 10.1093/plphys/kiab142.
  • Xing Z, Huang T, Zhao K, et al. Silencing of sly-miR171d increased the expression of GRAS24 and enhanced postharvest chilling tolerance of tomato fruit. Front Plant Sci. 2022;13:1006940. doi: 10.3389/fpls.2022.1006940.
  • Li C, Wang K, Chen S, et al. Genome-wide identification of RsGRAS gene family reveals positive role of RsSHRc gene in chilling stress response in radish (Raphanus sativus L.). Plant Physiol Biochem. 2022;192:285–297. doi: 10.1016/j.plaphy.2022.10.017.
  • Wu F, Ma S, Zhou J, et al. Genetic diversity and population structure analysis in a large collection of white clover (Trifolium repens L.) germplasm worldwide. PeerJ. 2021;9:e11325. doi: 10.7717/peerj.11325.
  • Inostroza L, Bhakta M, Acuña H, et al. Understanding the complexity of cold tolerance in white clover using temperature gradient locations and a GWAS approach. Plant Genome. 2018;11(3):170096. doi: 10.3835/plantgenome2017.11.0096.
  • Griffiths AG, Moraga R, Tausen M, et al. Breaking free: the genomics of allopolyploidy-facilitated niche expansion in white clover. Plant Cell. 2019;31(7):1466–1487. doi: 10.1105/tpc.18.00606.
  • Li M, Zhang X, Zhang T, et al. Genome-wide analysis of the WRKY genes and their important roles during cold stress in white clover. PeerJ. 2023;11:e15610. doi: 10.7717/peerj.15610.
  • Ma J, Nie G, Yang Z, et al. Genome-wide identification, characterization, and expression profiling analysis of SPL gene family during the inflorescence development in Trifolium repens. Genes. 2022;13(5):900. doi: 10.3390/genes13050900.
  • Zhang X, Yang H, Li M, et al. Time-course RNA-seq analysis provides an improved understanding of genetic regulation in response to cold stress from white clover (Trifolium repens L. Biotechnology Biotechnological Equipment. 2022;36(1):745–752.) doi: 10.1080/13102818.2022.2108339.
  • Swarbreck D, Wilks C, Lamesch P, et al. The arabidopsis information resource (TAIR): gene structure and function annotation. Nucleic Acids Res. 2008;36(Database issue):D1009–D1014. doi: 10.1093/nar/gkm965.
  • Altschul SF, Madden TL, Schäffer AA, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–3402. doi: 10.1093/nar/25.17.3389.
  • Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 2011;39(Web Server issue):W29–W37. doi: 10.1093/nar/gkr367.
  • Punta M, Coggill PC, Eberhardt RY, et al. The pfam protein families database. Nucleic Acids Res. 2011;40(Database issue):D290–D301. doi: 10.1093/nar/gkr1065.
  • Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–1797. doi: 10.1093/nar/gkh340.
  • Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021;38(7):3022–3027. doi: 10.1093/molbev/msab120.
  • Bailey TL, Boden M, Buske FA, et al. MEME suite: tools for motif discovery and searching. Nucleic Acids Res. 2009;37(Web Server issue):W202–W208. doi: 10.1093/nar/gkp335.
  • Chen C, Chen H, Zhang Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant. 2020;13(8):1194–1202. doi: 10.1016/j.molp.2020.06.009.
  • Wang Y, Tang H, DeBarry JD, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012;40(7):e49-e49–e49. doi: 10.1093/nar/gkr1293.
  • Krzywinski M, Schein J, Birol İ, et al. Circos: an information aesthetic for comparative genomics. Genome Res. 2009;19(9):1639–1645. doi: 10.1101/gr.092759.109.
  • Lee T, Yang S, Kim E, et al. AraNet v2: an improved database of co-functional gene networks for the study of Arabidopsis thaliana and 27 other nonmodel plant species. Nucleic Acids Res. 2014;43(Database issue):D996–1002. doi: 10.1093/nar/gku1053.
  • Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–2504. doi: 10.1101/gr.1239303.
  • Alexa A, Rahnenfuhrer J. topGO: enrichment analysis for gene ontology. R package 2019;version 2.38.31.
  • Patro R, Duggal G, Love MI, et al. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017;14(4):417–419. doi: 10.1038/nmeth.4197.
  • Untergasser A, Cutcutache I, Koressaar T, et al. Primer3 – new capabilities and interfaces. Nucleic Acids Res. 2012;40(15):e115-e115–e115. doi: 10.1093/nar/gks596.
  • Ahmad S, Zeb A. Phytochemical profile and pharmacological properties of Trifolium repens. J Basic Clin Physiol Pharmacol. 2021;32(1):20200015. doi: 10.1515/jbcpp-2020-0015.
  • Liu Y, Wang W. Characterization of the GRAS gene family reveals their contribution to the high adaptability of wheat. PeerJ. 2021;9:e10811. doi: 10.7717/peerj.10811.
  • Lu X, Liu W, Xiang C, et al. Genome-wide characterization of GRAS family and their potential roles in cold tolerance of cucumber (cucumis sativus L.). Int J Mol Sci. 2020;21(11):3857. doi: 10.3390/ijms21113857.
  • Gong X, Flores-Vergara MA, Hong JH, et al. SEUSS integrates gibberellin signaling with transcriptional inputs from the SHR-SCR-SCL3 module to regulate Middle cortex formation in the arabidopsis root. Plant Physiol. 2016;170(3):1675–1683. doi: 10.1104/pp.15.01501.