Publication Cover
Amyloid
The Journal of Protein Folding Disorders
Volume 30, 2023 - Issue 4
226
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Role of complementarity-determining regions 1 and 3 in pathologic amyloid formation by human immunoglobulin κ1 light chains

, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 364-378 | Received 08 Feb 2023, Accepted 04 May 2023, Published online: 22 May 2023

References

  • Buxbaum JN, Dispenzieri A, Eisenberg DS, et al. Amyloid nomenclature 2022: update, novel proteins, and recommendations by the International Society of Amyloidosis (ISA) Nomenclature Committee. Amyloid. 2022;29(4):213–219.
  • Merlini G, Dispenzieri A, Sanchorawala V, et al. Systemic immunoglobulin light chain amyloidosis. Nat Rev Dis Primers. 2018;4(1):38.
  • Lavatelli F, Perlman DH, Spencer B, et al. Amyloidogenic and associated proteins in systemic amyloidosis proteome of adipose tissue. Mol Cell Proteomics. 2008;7(8):1570–1583.
  • Enqvist S, Sletten K, Westermark P. Fibril protein fragmentation pattern in systemic AL-amyloidosis. J Pathol. 2009;219(4):473–480.
  • Morgan GJ, Wall JS. The process of amyloid formation due to monoclonal immunoglobulins. Hematol Oncol Clin North Am. 2020;34(6):1041–1054.
  • Palladini G, Merlini G. How I treat AL amyloidosis. Blood. 2022;139(19):2918–2930.
  • Maritan M, Romeo M, Oberti L, et al. Inherent biophysical properties modulate the toxicity of soluble amyloidogenic light chains. J Mol Biol. 2020;432(4):845–860.
  • Kazman P, Absmeier RM, Engelhardt H, et al. Dissection of the amyloid formation pathway in AL amyloidosis. Nat Commun. 2021;12(1):6516.
  • Radamaker L, Karimi-Farsijani S, Andreotti G, et al. Role of mutations and post-translational modifications in systemic AL amyloidosis studied by cryo-EM. Nat Commun. 2021;12(1):6434.
  • Connors L, Jiang Y, Budnik M, et al. Heterogeneity in primary structure, post-translational modifications, and germline gene usage of nine full-length amyloidogenic κ1 immunoglobulin light chains. Biochemistry. 2007;46(49):14259–14271.
  • Kourelis TV, Dasari S, Theis JD, et al. Clarifying immunoglobulin gene usage in systemic and localized immunoglobulin light-chain amyloidosis by mass spectrometry. Blood. 2017;129(3):299–306.
  • Hora M, Sarkar R, Morris V, et al. MAK33 antibody light chain amyloid fibrils are similar to oligomeric precursors. PLOS One. 2017;12(7):e0181799.
  • Swuec P, Lavatelli F, Tasaki M, et al. Cryo-EM structure of cardiac amyloid fibrils from an immunoglobulin light chain AL amyloidosis patient. Nat Commun. 2019;10(1):1269.
  • Radamaker L, Lin YH, Annamalai K, et al. Cryo-EM structure of a light chain derived amyloid fibril from a patient with systemic AL amyloidosis. Nat Commun. 2019;10(1):1103.
  • Radamaker L, Baur J, Huhn S, et al. Cryo-EM reveals structural breaks in a patient derived amyloid fibril from systemic AL amyloidosis. Nat Commun. 2021;12(1):875.
  • Kaplan B, Livneh A, Sela BA. Immunoglobulin free light chain dimers in human diseases. ScientificWorldJournal. 2011;11:726–735.
  • Klimtchuk ES, Gursky O, Patel RS, et al. The critical role of the constant region in thermal stability and aggregation of amyloidogenic immunoglobulin light chain. Biochemistry. 2010;49(45):9848–9857.
  • Mazzini G, Ricagno S, Caminito S, et al. Protease-sensitive regions in amyloid light chains: what a common pattern of fragmentation across organs suggests about aggregation. FEBS J. 2022;289(2):494–506.
  • Marin-Argany M, Güell-Bosch J, Blancas-Mejía LM, et al. Mutations can cause light chains to be too stable or too unstable to form amyloid fibrils. Protein Sci. 2015;24(11):1829–1840.
  • Garay Sánchez SA, Rodríguez Álvarez FJ, Zavala-Padilla G, et al. Stability and aggregation propensity do not fully account for the association of various germline variable domain gene segments with light chain amyloidosis. Biol Chem. 2017;398(4):477–489.
  • Oberti L, Rognoni P, Barbiroli A, et al. Concurrent structural and biophysical traits link with immunoglobulin light chains amyloid propensity. Sci Rep. 2017;7(1):16809.
  • Rennella E, Morgan GJ, Kelly JW, et al. Role of domain interactions in the aggregation of full-length immunoglobulin light chains. Proc Natl Acad Sci U S A. 2019;116(3):854–863.
  • Rennella E, Morgan GJ, Yan N, et al. The role of protein thermodynamics and primary structure in fibrillogenesis of variable domains from immunoglobulin light chains. J Am Chem Soc. 2019;141(34):13562–13571.
  • Weber B, Hora M, Kazman P, et al. The antibody light-chain linker regulates domain orientation and amyloidogenicity. J Mol Biol. 2018;430(24):4925–4940.
  • Brumshtein B, Esswein SR, Sawaya MR, et al. Identification of two principal amyloid-driving segments in variable domains of Ig light chains in systemic light-chain amyloidosis. J Biol Chem. 2018;293(51):19659–19671.
  • Peterle D, Klimtchuk ES, Wales TE, et al. A conservative point mutation in a dynamic antigen-binding loop of human immunoglobulin λ6 light chain promotes pathologic amyloid formation. J Mol Biol. 2021;433(24):167310.
  • Gu M, Wilton R, Stevens FJ. Diversity and diversification of light chains in myeloma: the specter of amyloidogenesis by proxy. Contrib Nephrol. 2007;153:156–181.
  • Rottenaicher GJ, Weber B, Rührnößl F, et al. Molecular mechanism of amyloidogenic mutations in hypervariable regions of antibody light chains. J Biol Chem. 2021;296:100334.
  • Tsolis AC, Papandreou NC, Iconomidou VA, et al. A consensus method for the prediction of 'aggregation-prone’ peptides in globular proteins. PLOS One. 2013;8(1):e54175.
  • Lewkowicz E, Jayaraman S, Gursky O. Protein amyloid cofactors: charged side-chain arrays meet their match? Trends Biochem Sci. 2021;46(8):626–629.
  • Masson GR, Burke JE, Ahn NG, et al. Recommendations for performing, interpreting and reporting hydrogen deuterium exchange mass spectrometry (HDX-MS) experiments. Nat Methods. 2019;16(7):595–602.
  • Perez-Riverol Y, Bai J, Bandla C, et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2022;50(D1):D543–D552.
  • Batori V, Koide A, Koide S. Exploring the potential of the monobody scaffold: effects of loop elongation on the stability of a fibronectin type III domain. Protein Eng. 2002;15(12):1015–1020.
  • Burley SK, Petsko GA. Aromatic–aromatic interaction: a mechanism of protein structure stabilization. Science. 1985;229(4708):23–28.
  • Lefranc MP, Lefranc G. Immunoglobulins or antibodies: IMGT® bridging genes, structures and functions. Biomedicines. 2020;8(9):319.
  • Das M, Wilson CJ, Mei X, et al. Structural stability and local dynamics in disease-causing mutants of human apolipoprotein A–I: what makes the protein amyloidogenic? J Mol Biol. 2016;428(2 Pt B):449–462.
  • Nokwe CN, Hora M, Zacharias M, et al. The antibody light-chain linker is important for domain stability and amyloid formation. J Mol Biol. 2015;427(22):3572–3586.
  • Morgan GJ, Usher GA, Kelly JW. Incomplete refolding of antibody light chains to non-native, protease-sensitive conformations leads to aggregation: a mechanism of amyloidogenesis in patients? Biochemistry. 2017;56(50):6597–6614.
  • Faravelli G, Mondani V, Mangione PP, et al. Amyloid formation by globular proteins: the need to narrow the gap between in vitro and in vivo mechanisms. Front Mol Biosci. 2022;9:830006.
  • Ren R, Hong Z, Gong H, et al. Role of glycosaminoglycan sulfation in the formation of immunoglobulin light chain amyloid oligomers and fibrils. J Biol Chem. 2010;285(48):37672–37682.
  • Roussel A, Spinelli S, Déret S, et al. The structure of an entire noncovalent immunoglobulin kappa light-chain dimer (Bence-Jones protein) reveals a weak and unusual constant domains association. Eur J Biochem. 1999;260(1):192–199.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.