145
Views
0
CrossRef citations to date
0
Altmetric
Review

Recent developments of HSP90 inhibitors: an updated patent review (2020-present)

, , , ORCID Icon & ORCID Icon
Pages 1-15 | Received 10 Nov 2023, Accepted 01 Mar 2024, Published online: 08 Mar 2024

References

  • Kim Y, Hipp M, Bracher A, et al. Molecular Chaperone Functions in Protein Folding and Proteostasis. Annual review of biochemistry. 2013;82(1):323–355.
  • Shu H, You Q, Wang L. Design of small molecules targeting molecular chaperone system: review and perspective. Yao Xue Xue Bao. 2023;58(8): 2035–2046.
  • Saibil H. Chaperone machines for protein folding, unfolding and disaggregation. Nat Rev Mol Cell Biol. 2013 Oct;14(10):630–642. doi: 10.1038/nrm3658
  • Hartl F, Bracher A, Hayer-Hartl M. Molecular chaperones in protein folding and proteostasis [review]. Nature. 2011 Jul 21;475(7356):324–332.
  • Taipale M, Jarosz D, Lindquist S. HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol. 2010 Jul;11(7):515–528. doi: 10.1038/nrm2918
  • Hoter A, Rizk S, Naim H. The multiple roles and therapeutic potential of molecular chaperones in prostate cancer. Cancers (Basel). 2019 Aug;11(8):1194. doi: 10.3390/cancers11081194
  • Ali M, Roe S, Vaughan C, et al. Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex. Nature. 2006 Apr;440(7087):1013–1017.
  • Prodromou C, Roe S, Obrien R, et al. Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell. 1997 Jul;90(1):65–75.
  • Harris S, Shiau A, Agard D. The crystal structure of the carboxy-terminal dimerization domain of htpG, the Escherichia coli Hsp90, reveals a potential substrate binding site. Structure. 2004 Jun;12(6):1087–1097. doi: 10.1016/j.str.2004.03.020
  • Li J, Buchner J. Structure, function and regulation of the hsp90 machinery. Biomed J. 2013;36(3):106–117. doi: 10.4103/2319-4170.113230
  • Shiau A, Harris S, Southworth D, et al. Structural analysis of E-coli hsp90 reveals dramatic nucleotide-dependent conformational rearrangements. Cell. 2006 Oct;127(2):329–340.
  • Li L, Wang L, You Q, et al. Heat Shock Protein 90 Inhibitors: An Update on Achievements, Challenges, and Future Directions. J Med Chem. 2020 Mar;63(5):1798–1822. doi: 10.1021/acs.jmedchem.9b00940
  • Wang L, Zhang Q, You Q. Targeting the HSP90-CDC37-kinase chaperone cycle: a promising therapeutic strategy for cancer [review]. Med Res Rev. 2022 Jan;42(1):156–182. doi: 10.1002/med.21807
  • HSP90 facts and literature [cited 2023 Dec 25]. Available from: https://www.picard.ch/downloads/Hsp90facts.pdf
  • Banerjee M, Hatial I, Keegan B, et al. Assay design and development strategies for finding Hsp90 inhibitors and their role in human diseases. Pharmacol Ther. 2021 May;221:107747. doi: 10.1016/j.pharmthera.2020.107747
  • The top conditions that use HSP90 inhibitors [cited 2023 Dec 26]. Available from: https://www.cortellis.com/drugdiscovery/result/d8d89fa0-7c86-28bb-3e04-eddc5b7ef53a/drugs/overview
  • Li L, Chen N, You Q, et al. An updated patent review of anticancer Hsp90 inhibitors (2013-present) [review]. Expert Opin Ther Patents. 2021 Jan 2;31(1):67–80. doi: 10.1080/13543776.2021.1829595
  • Xia Y, Rocchi P, Iovanna J, et al. Targeting heat shock response pathways to treat pancreatic cancer. Drug Discovery Today. 2012 Jan;17(1–2):35–43.
  • Lang B, Guerrero-Giménez M, Prince T, et al. Heat shock proteins are essential components in transformation and tumor progression: cancer cell intrinsic pathways and beyond. Int J Mol Sci. 2019 Sep;20(18):4507.
  • Dymock B, Drysdale M, McDonald E, et al. Inhibitors of HSP90 and other chaperones for the treatment of cancer. Expert Opin Ther Patents. 2004 Jun;14(6):837–847.
  • Jhaveri K, Taldone T, Modi S, et al. Advances in the clinical development of heat shock protein 90 (Hsp90) inhibitors in cancers. Biochim Biophys Acta - Mol Cell Res. 2012 Mar;1823(3):742–755.
  • Ardestani M, Khorsandi Z, Keshavarzipour F, et al. Heterocyclic compounds as Hsp90 inhibitors: a perspective on anticancer applications. Pharmaceutics. 2022 Oct;14(10):2220.
  • Biamonte M, Van de Water R, Arndt J, et al. Heat shock protein 90: inhibitors in clinical trials. J Med Chem. 2010 Jan;53(1):3–17.
  • Yuno A, Lee M, Lee S, et al. Clinical evaluation and biomarker profiling of Hsp90 inhibitors. In: Calderwood S, Prince T, editors. Chaperones: methods and protocols. New York, NY: Springer New York. 2018. p. 423–441.
  • Amatya E, Blagg B. Recent advances toward the development of Hsp90 C-terminal inhibitors [article]. Bioorganic Med Chem Lett. 2023 Jan 15;80: 129111. doi: 10.1016/j.bmcl.2022.129111
  • Dernovsek J, Tomasic T. Following the design path of isoform-selective Hsp90 inhibitors: small differences, great opportunities [review]. Pharmacol Ther. 2023 May;245:108396. doi: 10.1016/j.pharmthera.2023.108396
  • Xie S, Wang X, Gan S, et al. The mitochondrial chaperone TRAP1 as a candidate target of oncotherapy. Front Oncol. 2021 Jan;10. doi: 10.3389/fonc.2020.585047
  • Kim J, Cho Y, Lee S. Cell surface GRP94 as a novel emerging therapeutic target for monoclonal antibody cancer therapy. Cells. 2021 Mar;10(3):670. doi: 10.3390/cells10030670
  • Uno T, Kawai Y, Yamashita S, et al. Discovery of 3-Ethyl-4-(3-isopropyl-4-(4-(1-methyl-1 H -pyrazol-4-yl)-1 H -imidazol-1-yl)-1 H -pyrazolo[3,4- b]pyridin-1-yl)benzamide (TAS-116) as a Potent, Selective, and Orally Available HSP90 Inhibitor. J Med Chem. 2019 Jan;62(2):531–551.
  • Whitesell L, Robbins N, Huang D, et al. Structural basis for species-selective targeting of Hsp90 in a pathogenic fungus. Nat Commun. 2019 Jan 10;10(1). doi: 10.1038/s41467-018-08248-w
  • Marcyk P, Brown L, Huang D, et al., Inventors; trustees of Boston University. The governing council of the university of Toronto, assignee. Preparation of resorcylate aminopyrazole compounds as Hsp90 inhibitors and uses thereof patent. US11312722B2. 2020.
  • Huang D, LeBlanc E, Shekhar-Guturja T, et al. Design and synthesis of fungal-selective resorcylate aminopyrazole Hsp90 inhibitors. J Med Chem. 2020 Mar;63(5):2139–2180.
  • Ryu J, Lee S, Inventors; Ewha University – industry collaboration foundation, assignee. Preparation of 1,2,3-triazole derivatives as heat shock protein 90 (HSP90) inhibitors patent. KR2406248B1. 2021.
  • Liu Y, Chen L, Lin Y, et al., Inventors; Fujian Medical University, assignee. Preparation of 4,5-diaryloxazole compounds as HSP90 inhibitors for prevention/treatment of cancer patent. CN114014849A. 2022.
  • Yin W, Wu T, Liu L, et al. Species-selective targeting of fungal Hsp90: design, synthesis, and evaluation of novel 4,5-diarylisoxazole derivatives for the combination treatment of Azole-Resistant Candidiasis. J Med Chem. 2022 Apr 14;65(7):5539–5564. doi: 10.1021/acs.jmedchem.1c01991
  • Wang Y, Inventor; Qingdao Taiboheng Biomedical Technology Co., Ltd., assignee. Preparation of carboxamide derivatives as HSP90 inhibitors patent CN116253695A. 2023.
  • Xu M, Zhao C, Zhu B, et al. Discovering high potent Hsp90 inhibitors as Antinasopharyngeal Carcinoma Agents through fragment assembling approach. J Med Chem. 2021 Feb;64(4):2010–2023.
  • Zhao C, Xu J, Gu Q, Inventors; Sun Yat-Sen University, assignee. Preparation of triazole derivative as Hsp90 inhibitors and anti-cancer metastasis drugs patent. CN113121517A. 2021.
  • Liu Y, Liu X, Li L, et al. Identification and Structure-Activity Studies of 1,3-Dibenzyl-2-aryl imidazolidines as Novel Hsp90 Inhibitors. Molecules. 2019 Jun;24(11):2105.
  • Yang M, Li C, Li Y, et al. Design, synthesis, biological evaluation and molecular docking study of 2,4-diarylimidazoles and 2,4-bis(benzyloxy)-5-arylpyrimidines as novel HSP90 N-terminal inhibitors. J Enzyme Inhib Med Chem. 2022 Dec;37(1):2551–2565.
  • Liu Y, Yang M, Inventors; Dalian University of Technology, assignee. Preparation of 1-benzyl-2,4-diarylimidazole and application thereof patent. CN114315729A. 2022.
  • Leach M, Klipp E, Cowen L, et al. Fungal Hsp90: a biological transistor that tunes cellular outputs to thermal inputs. Nature Rev Microbiol. 2012 Oct;10(10):693–704.
  • Jaikaran D, Slassi A, Shelley M, et al., Inventors; Bright Angel Therapeutics Inc., assignee. Preparation of thienopyrazines as heat shock protein 90 (HSP90) inhibitors for treating fungal infections and methods of use thereof patent. WO2023077216A1. 2023.
  • Shao L, Su J, Ye B, et al. Design, synthesis, and biological activities of vibsanin B derivatives: a new class of HSP90 C-Terminal inhibitors. J Med Chem. 2017 Nov;60(21):9053–9066.
  • Li M, She X, Ou Y, et al. Design, synthesis and biological evaluation of a new class of Hsp90 inhibitors vibsanin C derivatives. Eur J Med Chem. 2022 Dec;244:114844. doi: 10.1016/j.ejmech.2022.114844
  • Zhao Q, Yuan Z, Liu J, et al., Inventors; Kunming Institute of Botany, Chinese Academy of Sciences, assignee. Cycloheptene azooxyditerpene derivative and pharmaceutical composition, and its application in pharmacy and in preparation of antitumor drug patent. CN115073355B. 2022.
  • Nguyen C, La M, Ann J, et al. Discovery of a simplified deguelin analog as an HSP90 C-terminal inhibitor for HER2-positive breast cancer. Bioorganic Med Chem Lett. 2021 Aug 45;45:128134.
  • Seo J, Kim J, Kim Y, et al., Inventors; Korea University Research and Business Foundation. Seoul National University R&Db Foundation, assignee. Preparation of quinoline derivatives for prevention or treatment of cancer as Hsp90 inhibitors patent. KR2293709B1. 2020.
  • Nguyen C, Ann J, Sahu R, et al. Discovery of novel anti-breast cancer agents derived from deguelin as inhibitors of heat shock protein 90 (HSP90). Bioorganic Med Chem Lett. 2020 Sep;30(17):127374.
  • Seo J, Kim J, Kim Y, et al., Inventors; Korea University Research and Business Foundation. Seoul National University R&Db Foundation, assignee. Preparation of benzopyran derivative as Hsp90 inhibitor patent. KR2304532B1. 2020.
  • Li Y, Karagöz G, Seo Y, et al. Sulforaphane inhibits pancreatic cancer through disrupting Hsp90-p50Cdc37 complex and direct interactions with amino acids residues of Hsp90. J Nutr Biochem. 2012 Dec;23(12):1617–1626.
  • You Q, Xu X, Li L, et al., Inventors; China Pharmaceutical University, assignee. (E)-1-phenyl-4-alkenyl-1H-pyrazole compound, and application thereof in preparation of drug for treating or preventing Hsp90-mediated disease patent. CN112679470B. 2021.
  • Li L, Chen N, Xia D, et al. Discovery of a covalent inhibitor of heat shock protein 90 with antitumor activity that blocks the co-chaperone binding via C-terminal modification. Cell Chem Biol. 2021 Oct;28(10):1446±.
  • Kang B, Yoon N, Yang S, et al., Inventors; Ewha University, Industry Collaboration Foundation. UNIST (Ulsan National Institute of Science and Technology), assignee. Preparation of purine derivative as a TRAP1 selective inhibitor for preventing or treating cancer patent. KR2516260B1. 2022.
  • Kang B, Kang S, Park M, et al., Inventors; UNIST (Ulsan National Institute of Science and Technology). Ewha University, Industry Collaboration Foundation, assignee. Preparation of purine derivative as selective inhibitors of TRAP1 with increased mitochondrial internal accumulation and uses thereof patent. KR2579424B1. 2022.
  • Bloss J, Perino S, Quinn J, et al., Inventors; Tarveda Therapeutics, Inc., assignee. Heat-shock protein HSP90 binding drug conjugates and combination therapies for treating cancer patent. MX2021015423A1. 2020.
  • White B, Bilodeau M, Saha A, Inventors; Tarveda Therapeutics, Inc., assignee. Preparation of Hsp90-binding conjugates and formulations thereof for treating cancers patent. IL284867A. 2020.
  • White B, Moreau B, Cipriani T, et al., Inventors; Tarveda Therapeutics, Inc., assignee. Hsp90-targeting conjugates and formulations thereof for treating cancer patent. HK40057691A0. 2020.
  • Bilodeau M, Kadiyala S, Inventors; Tarveda Therapeutics, Inc., assignee. Hsp90-binding conjugates and formulations thereof patent. WO2021202830A3. 2021.
  • Bilodeau M, Saha A, Inventors; Tarveda Therapeutics, Inc., assignee. Hsp90-binding conjugates and formulations thereof patent. TW202222311A. 2022.
  • Lv W, Zhu S, Wang L, Inventors; East China Normal University, assignee. Preparation of nicotinamide derivatives as NAMPT/HSP90 inhibitors and their antitumor activity patent. CN113896721A. 2022.
  • Gan X, Yu C, Wang F, Inventors; Chongqing Medical University, assignee. Celastrol-based compound for targeted degradation of HSP90 protein, and preparation method and application thereof in treating cancer patent. CN115417910A. 2022.
  • Sheng C, Liu N, Han G, et al., Inventors; Naval Medical University, assignee. Triazolone compound with antifungal and antitumor dual effects and application thereof in preparation of anti-fungi agent and/or antitumor agent patent. CN113121505B. 2021.
  • Li C, Tu J, Han G, et al. Heat shock protein 90 (Hsp90)/Histone deacetylase (HDAC) dual inhibitors for the treatment of azoles-resistant Candida albicans. Eur J Med Chem. 2022 Jan;227:113961. doi: 10.1016/j.ejmech.2021.113961
  • Yen Y, Chuang K, Liou J, Inventors; Taipei Medical University, assignee. Benzamide derivatives as dual inhibitor of histone deacetylase 6 and heat shock protein 90 and their preparation patent. TW202313559A. 2023.
  • Chae H, Park S, Jha S, et al. Design, synthesis, and biological evaluation of bifunctional inhibitors against Hsp90-HDAC6 interplay. Eur J Med Chem. 2022 Oct;240:114582. doi: 10.1016/j.ejmech.2022.114582
  • Liu Q, Tu G, Hu Y, et al. Discovery of BP3 as an efficacious proteolysis targeting chimera (PROTAC) degrader of HSP90 for treating breast cancer. Eur J Med Chem. 2022 Jan;228:114013. doi: 10.1016/j.ejmech.2021.114013
  • Wu L, Liu Q, Tu G, et al., Inventors; Fujian Medical University, assignee. Compound for targeted degradation of hsp 90 protein, preparation method and application as antitumor agents patent. CN112979657A. 2021.
  • Lv W, Zhu S, Inventors; East China Normal University, assignee. Preparation of Hsp90 inhibitor and camptothecin conjugates patent. CN112279863A. 2021.
  • Bilodeau M, Saha A, Inventors; TVA (ABC), LLC, assignee. Hsp90-binding conjugates and formulations thereof patent. WO2022235889A1. 2022.
  • Jaikaran D, Slassi A, Shelley M, et al., Inventors; Bright Angel Therapeutics Inc., assignee. Preparation of conjugates comprising antifungals and heat shock protein 90 (HSP90) inhibitors and methods of use thereof patent. WO2023065014A1. 2023.
  • Yoshimura C, Nagatoishi S, Kuroda D, et al. Thermodynamic dissection of potency and selectivity of cytosolic Hsp90 inhibitors. J Med Chem. 2021 Mar;64(5):2669–2677.
  • Kurokawa Y, Honma Y, Sawaki A, et al. Pimitespib in patients with advanced gastrointestinal stromal tumor (CHAPTER-GIST-301): a randomized, double-blind, placebo-controlled phase III trial. Ann Oncol. 2022 Sep;33(9):959–967.
  • Sawaki A, Kurokawa Y, Honma Y, et al. PS4-3 a phase III trial of pimitespib (TAS-116) in patients with advanced gastrointestinal stromal tumor: CHAPTER-GIST-301. Ann Oncol. 2022 Jul;33:S467. doi: 10.1016/j.annonc.2022.05.071
  • Hoy S. Pimitespib: First Approval. Drugs. 2022 Sep;82(13):1413–1418. doi: 10.1007/s40265-022-01764-6
  • Teranishi R, Takahashi T, Obata Y, et al. Combination of pimitespib (TAS-116) with sunitinib is an effective therapy for imatinib-resistant gastrointestinal stromal tumors. Int J Cancer. 2023 Jun;152(12):2580–2593.
  • El-Deiry W, Graff S, Azzoli C, et al. BrUOG 387: phase ib investigator-initiated trial of a heat shock protein 90 inhibitor (HSP90i) combined with a CDK4/6i in advanced breast cancer progressing on CDK4/6i and in solid tumors with retinoblastoma (rb)-deficiency (IND163592). J Clin Oncol. 2023 Jun;41(16):TPS3167–TPS3167.
  • Silverman M, Duggan S, Bardelli G, et al. Safety, tolerability and pharmacokinetics of Icapamespib, a selective epichaperome inhibitor, in healthy adults. J Prev Alzheimers Dis. 2022 Oct;9(4):635–645.
  • Pemmaraju N, Gundabolu K, Snyder J, et al. A phase 1 dose-escalation study of the oral epichaperome inhibitor, Zelavespib (ZEL) in combination with ruxolitinib (RUX), in patients with relapsed myelofibrosis: results of the dose escalation stage. Blood. 2022 Nov;140(Supplement 1):6821–6822.
  • Bregnhoj A, Thuesen K, Emmanuel T, et al. HSP90 inhibitor RGRN-305 for oral treatment of plaque-type psoriasis: efficacy, safety and biomarker results in an open-label proof-of-concept study. Br J Dermatol. 2022 May;186(5):861–874.
  • Bendell J, Falchook G, Sen S, et al. First in human phase I/IIa study of PEN-866, a heat shock protein 90 (HSP90) ligand-SN38 conjugate for patients with advanced solid tumours: phase I results. Ann Oncol. 2019 Oct;30:172±. doi: 10.1093/annonc/mdz244.023
  • Falchook G, Bendell J, Ulahannan S, et al. Pen-866, a miniature drug conjugate of a heat shock protein 90 (HSP90) ligand linked to SN38 for patients with advanced solid malignancies: phase I and expansion cohort results. J Clin Oncol. 2020 May;38(15):3515–3515.
  • Akce M, Alese O, Shaib W, et al. Phase ib trial of pembrolizumab and XL888 in patients with advanced gastrointestinal malignancies: results of the dose-escalation phase. J Clin Oncol. 2020 Feb;38(4):830–830.
  • Whitesell L, Lindquist S. HSP90 and the chaperoning of cancer. Nat Rev Cancer. 2005 Oct;5(10):761–772. doi: 10.1038/nrc1716
  • Samarasinghe B, Wales C, Taylor F, et al. Heat shock factor 1 confers resistance to Hsp90 inhibitors through p62/SQSTM1 expression and promotion of autophagic flux. Biochem Pharmacol. 2014 Feb;87(3):445–455.
  • Kijima T, Prince T, Tigue M. et al. HSP90 inhibitors disrupt a transient HSP90-HSF1 interaction and identify a noncanonical model of HSP90-mediated HSF1 regulation. Sci Rep. 2018 May;8(1). doi: 10.1038/s41598-018-25404-w
  • Hasan A, Snober S, Inventors; UNIV LUCKNOW INTEGRAL (UYLU-Non-standard), assignee. Use of combination therapy of metformin and gedunin for treating non-small cell lung cancer patent. IN202211008569A.
  • Xie W, Tu Z, Ren D, et al., Inventors; Univ Jiangsu (uyjs-C), assignee. Medicine composition useful in preparing medicine for preventing or treating mantle cell lymphoma, comprises Ganetespib as heat shock protein 90 inhibitor, and olaparib as poly(adp-ribose)polymerase inhibitor patent. CN112168825A.
  • Bloss J, Perino S, Quinn J, et al.Inventors; TARVEDA THERAPEUTICS INC (TARV-Non-standard) TARVEDA THERAPEUTICS INC (TARV-Non-standard) TARVEDA THERAPEUTICS INC (TARV-Non-standard) TVA ABC LLC (TVAA-Non-standard) TVA ABC LLC (TVAA-Non-standard), assignee. Treating cancer, comprises administering diethyl-4-hydroxy-dioxo-tetrahydro-1H-pyrano-indolizino-quinolin-9-yl-4-(2-(5-(3-(2,4-dihydroxy-5-isopropylphenyl)-5-hydroxy-4H-1,2,4-triazol-4-yl)-1H-indol-1-yl)ethyl)piperidine-1-carboxylate patent. MX2021015423A1.
  • Kitade M, Ohkubo S, Yoshimura C, et al., Inventors; Taiho Pharmaceutical Co., Ltd., assignee. Preparation of azabicyclo compounds and salts thereof as inhibitors of heat-shock proteins HSP 90 patent. BR201013999B1. 2011.
  • Rego I, Cruz B, Ambrósio A, et al. TRAP1 in Oxidative Stress and Neurodegeneration. Antioxidants. 2021 Nov;10(11):1829.
  • Triveri A, Sanchez-Martin C, Torielli L, et al. Protein allostery and ligand design: computational design meets experiments to discover novel chemical probes. J Mol Biol. 2022 Sep;434(17):167468.
  • Li Z, Luo Y. HSP90 inhibitors and cancer: prospects for use in targeted therapies (review) [review]. Oncol Rep. 2023 Jan;49(1). doi: 10.3892/or.2022.8443
  • Bhatia S, Spanier L, Bickel D, et al. Development of a first-in-class small-molecule inhibitor of the C-Terminal Hsp90 dimerization. ACS Central Sci. 2022 May;8(5):636–655.
  • Peng S, Woodruff J, Pathak P, et al. Crystal structure of the middle and C-terminal domains of Hsp90α labeled with a coumarin derivative reveals a potential allosteric binding site as a drug target. Acta Crystallogr Sect D Struct Biol. 2022 May;78(5):571–585.
  • Mak O, Sharma N, Reynisson J, et al. Discovery of novel Hsp90 C-terminal domain inhibitors that disrupt co-chaperone binding. Bioorganic Med Chem Lett. 2021 Apr 38;38:127857.
  • Xie X, Zhang N, Li X, et al. Small-molecule dual inhibitors targeting heat shock protein 90 for cancer targeted therapy [review]. Bioorg Chem. 2023 Oct;139. doi: 10.1016/j.bioorg.2023.106721
  • Vandenberg C, Ho G, Nesic K, et al. Chaperone-mediated protein degradation (CHAMP): a novel technology for tumor-targeted protein degradation. Cancer Res. 2021 Jul;81(13):971–971.
  • Li Z, Ma S, Zhang L, et al. Targeted protein degradation induced by HEMTACs based on HSP90 [article]. J Med Chem. 2023 Jan 12;66(1):733–751. doi:10.1021/acs.jmedchem.2c01648

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.