126
Views
0
CrossRef citations to date
0
Altmetric
Review

Therapeutic cysteine protease inhibitors: a patent review (2018–present)

, &
Pages 17-49 | Received 09 Oct 2023, Accepted 04 Mar 2024, Published online: 14 Mar 2024

References

  • Verma S, Dixit R, Pandey KC. Cysteine proteases: modes of activation and future prospects as pharmacological targets. Front Pharmacol. 2016;7:107. doi: 10.3389/fphar.2016.00107
  • Gupta SP, Gupta SD. Cancer-leading proteases: an introduction. In: Gupta SP, editor. Cancer-leading proteases - structures, functions, and inhibition. London: Elsevier; 2020. p. 1–11. and reference there in cited.
  • Solberg R, Lunde NN, Forbord KM, et al. The mammalian cysteine protease legumain in health and disease. Int J Mol Sci. 2022 Dec 15;23(24):15983. doi: 10.3390/ijms232415983
  • Buttle DJ, Mort JS. Cysteine Proteases. In: Lennarz WJ, Lane MD, editors. Encyclopedia of biological chemistry. Amsterdam: Elsevier; 2013. p. 589–592.
  • Wang Y, Zhao J, Gu Y, et al. Cathepsin H: molecular characteristics and clues to function and mechanism. Biochem Pharmacol. 2023;212:115585. doi: 10.1016/j.bcp.2023.115585
  • Poole AR, Tiltman KJ, Recklies AD, et al. Differences in secretion of the proteinase cathepsin B at the edges of human breast carcinomas and fibroadenomas. Nature. 1978;273(5663):545–7. doi: 10.1038/273545a0
  • Hasanbasic S, Jahic A, Karahmet E, et al. The role of cysteine protease in alzheimer disease. Mater Sociomed. 2016;28(3):235–38. doi: 10.5455/msm.2016.28.235-238
  • Shen XB, Chen X, Zhang ZY, et al. Cathepsin C inhibitors as anti-inflammatory drug discovery: challenges and opportunities. Eur J Med Chem. 2021;225:113818. doi: 10.1016/j.ejmech.2021.113818
  • Zhang Z, Hou W, Sun H. Cathepsin C inhibitors. US021/0114983 A1.
  • Hu G, Xiao Y, Cong M, et al. Methods for treating metastasis with cathepsin c inhibitors. WO2022/053019A1.
  • Wei S, Liu W, Xu M, et al. Cathepsin F and fibulin-1 as novel diagnostic biomarkers for brain metastasis of non-small cell lung cancer. Br J Cancer. 2022;126(12):1795–805. doi: 10.1038/s41416-022-01744-3
  • Takaya K, Asou T, Kishi K. Cathepsin F is a potential marker for senescent human skin fibroblasts and keratinocytes associated with skin aging. Geroscience. 2023;45(1):427–37. doi: 10.1007/s11357-022-00648-7
  • Drake MT, Clarke BL, Oursler MJ, et al. Cathepsin K inhibitors for osteoporosis: biology, potential clinical utility, and lessons learned. Endocr Rev. 2017;38(4):325–50. doi: 10.1210/er.2015-1114. and references therein.
  • Verbovšek U, Van Noorden CJ, Lah TT. Complexity of cancer protease biology: cathepsin K expression and function in cancer progression. Semin Cancer Biol. 2015;35:71–84. doi: 10.1016/j.semcancer.2015.08.010
  • Lu J, Wang M, Wang Z, et al. Advances in the discovery of cathepsin K inhibitors on bone resorption. J Enzyme Inhib Med Chem. 2018;33(1):890–904. doi: 10.1080/14756366.2018.1465417
  • Mijanović O, Jakovleva A, Branković A, et al. Cathepsin K in pathological conditions and new therapeutic and diagnostic perspectives. Int J Mol Sci. 2022;23(22):13762. doi: 10.3390/ijms232213762
  • Duong LT, Wesolowski GA, Leung P, et al. Efficacy of a cathepsin K inhibitor in a preclinical model for prevention and treatment of breast cancer bone metastasis. Mol Cancer Ther. 2014;13(12):2898–909. doi: 10.1158/1535-7163.MCT-14-0253
  • Sudhan DR, Siemann DW. Cathepsin L targeting in cancer treatment. Pharmacol Ther. 2015;155:105–16. doi: 10.1016/j.pharmthera.2015.08.007
  • Liu T, Luo S, Libby P, et al. Cathepsin L-selective inhibitors: a potentially promising treatment for COVID-19 patients. Pharmacol Ther. 2020;213:107587. doi: 10.1016/j.pharmthera.2020.107587
  • Velasco G, Ferrando AA, Puente XS, et al. Human cathepsin O. Molecular cloning from a breast carcinoma, production of the active enzyme in Escherichia coli, and expression analysis in human tissues. J Biol Chem. 1994;269(43):27136–42. doi: 10.1016/S0021-9258(18)47135-9
  • McDowell SH, Gallaher SA, Burden RE, et al. Leading the invasion: the role of Cathepsin S in the tumour microenvironment. Biochim Biophys Acta Mol Cell Res. 2020;1867(10):118781. doi: 10.1016/j.bbamcr.2020.118781
  • Bararia D, Hildebrand JA, Stolz S, et al. Cathepsin S alterations induce a tumor-promoting immune microenvironment in follicular lymphoma. Cell Rep. 2020;31(5):107522. doi: 10.1016/j.celrep.2020.107522
  • Fuchs N, Meta M, Schuppan D, et al. Novel opportunities for cathepsin S inhibitors in cancer immunotherapy by nanocarrier-mediated delivery. Cells. 2020;9(9):2021. doi: 10.3390/cells9092021
  • Lecaille F, Chazeirat T, Saidi A, et al. Cathepsin V: molecular characteristics and significance in health and disease. Mol Aspects Med. 2022;88:101086. doi: 10.1016/j.mam.2022.101086
  • Li J, Chen Z, Kim G, et al. Cathepsin W restrains peripheral regulatory T cells for mucosal immune quiescence. Sci Adv. 2023;9(28):eadf3924. doi: 10.1126/sciadv.adf3924
  • Günther SC, Martínez-Romero C, Sempere Borau M, et al. Proteomic identification of potential target proteins of cathepsin W for its development as a drug target for influenza. Microbiol Spectr. 2022;10(4):e0092122. doi: 10.1128/spectrum.00921-22
  • Khojasteh-Leylakoohi F, Mohit R, Khalili-Tanha N, et al. Down regulation of Cathepsin W is associated with poor prognosis in pancreatic cancer. Sci Rep. 2023;13(1):16678. doi: 10.1038/s41598-023-42928-y
  • Dolenc I, Štefe I, Turk D, et al. Human cathepsin X/Z is a biologically active homodimer. Biochim Biophys Acta Proteins Proteom. 2021;1869(2):140567. doi: 10.1016/j.bbapap.2020.140567
  • Nandi D, Tahiliani P, Kumar A, et al. The ubiquitin-proteasome system. J Biosci. 2006;31(1):137–55. doi: 10.1007/BF02705243
  • Gao G, Luo H. The ubiquitin-proteasome pathway in viral infections. Can J Physiol Pharmacol. 2006;84(1):5–14. doi: 10.1139/y05-144
  • Rubinsztein DC. The roles of intracellular protein-degradation pathways in neurodegeneration. Nature. 2006;443(7113):780–6. doi: 10.1038/nature05291
  • Corn JE, Vucic D. Ubiquitin in inflammation: the right linkage makes all the difference. Nat Struct Mol Biol. 2014;21(4):297–300. doi: 10.1038/nsmb.2808
  • Nicholson B, Suresh Kumar KG. The multifaceted roles of USP7: new therapeutic opportunities. Cell Biochem Biophys. 2011;60(1–2):61–8. doi: 10.1007/s12013-011-9185-5
  • Hoeller D, Hecker CM, Dikic I. Ubiquitin and ubiquitin-like proteins in cancer pathogenesis. Nat Rev Cancer. 2006;6(10):776–88. doi: 10.1038/nrc1994
  • Reyes-Turcu FE, Ventii KH, Wilkinson KD. Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem. 2009;78:363–397.
  • Kitamura H. Ubiquitin-specific proteases (USPs) and metabolic disorders. Int J Mol Sci. 2023;24(4):3219.
  • Cruz L, Soares P, Correia M. Ubiquitin-specific proteases: players in cancer cellular processes. Pharmaceuticals (Basel). 2021;14(9):848. doi: 10.3390/ph14090848
  • Chauhan D, Tian Z, Nicholson B, et al. A small molecule inhibitor of ubiquitin-specific protease-7 induces apoptosis in multiple myeloma cells and overcomes bortezomib resistance. Cancer Cell. 2012;22(3):345–58. doi: 10.1016/j.ccr.2012.08.007
  • Cummins JM, Rago C, Kohli M, et al. Tumour suppression: disruption of HAUSP gene stabilizes p53. Nature. 2004;428(6982):1–486.
  • Reverdy C, Conrath S, Lopez R, et al. Discovery of specific inhibitors of human USP7/HAUSP deubiquitinating enzyme. Chem Biol. 2012;19(4):467–77. doi: 10.1016/j.chembiol.2012.02.007
  • Pal A, Donato NJ. Ubiquitin-specific proteases as therapeutic targets for the treatment of breast cancer. Breast Cancer Res. 2014;16(5):461. doi: 10.1186/s13058-014-0461-3
  • Liu X, Balaraman K, Lynch CC, et al. Novel ubiquitin specific protease-13 inhibitors alleviate neurodegenerative pathology. Metabolites. 2021;11(9):622. doi: 10.3390/metabo11090622
  • Li YC, Cai SW, Shu YB, et al. USP15 in cancer and other diseases: from diverse functionsto therapeutic targets. Biomedicines. 2022;10(2):474. doi: 10.3390/biomedicines10020474
  • Lee JG, Takahama S, Zhang G, et al. Unconventional secretion of misfolded proteins promotes adaptation to proteasome dysfunction in mammalian cells. Nat Cell Biol. 2016;18(7):765–76. doi: 10.1038/ncb3372
  • Bédard N, Jammoul S, Moore T, et al. Inactivation of the ubiquitin-specific protease 19 deubiquitinating enzyme protects against muscle wasting. FASEB J. 2015;29(9):3889–98. doi: 10.1096/fj.15-270579
  • Jeusset LM, Guppy BJ, Lichtensztejn Z, et al. Reduced USP22 expression impairs mitotic removal of H2B monoubiquitination, alters chromatin compaction and induces chromosome instability that may promote oncogenesis. Cancers (Basel). 2021;13(5):1043. doi: 10.3390/cancers13051043
  • Ren X, Jiang M, Ding P, et al. Ubiquitin-specific protease 28: the decipherment of its dual roles in cancer development. Exp Hematol Oncol. 2023;12(1):27. doi: 10.1186/s40164-023-00389-z
  • Jin Z, Du X, Xu Y, et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature. 2020;582(7811):289–93. doi: 10.1038/s41586-020-2223-y
  • Capasso C, Nocentini A, Supuran CT. Protease inhibitors targeting the main protease and papain-like protease of coronaviruses. Expert Opin Ther Pat. 2021;31(4):309–324. doi: 10.1080/13543776.2021.1857726
  • Brian Chia CS, Pheng Lim S. A patent review on SARS Coronavirus Papain-Like protease (PLpro) inhibitors. ChemMedchem. 2023;e202300216(16). doi: 10.1002/cmdc.202300216
  • Li G, Hilgenfeld R, Whitley R, et al. Therapeutic strategies for COVID-19: progress and lessons learned. Nat Rev Drug Discov. 2023;22(6):449–475. doi: 10.1038/s41573-023-00672-y
  • Yang J, Lin X, Xing N, et al. Structure-based discovery of novel nonpeptide inhibitors targeting SARS-CoV-2 Mpro. J Chem Inf Model. 2021;61(8):3917–3926. doi: 10.1021/acs.jcim.1c00355
  • Amin SA, Banerjee S, Ghosh K, et al. Protease targeted COVID-19 drug discovery and its challenges: insight into viral main protease (mpro) and papain-like protease (PLpro) inhibitors. Bioorg Med Chem. 2021;29:115860. doi: 10.1016/j.bmc.2020.115860
  • Tumskiy RS, Tumskaia AV, Klochkova IN, et al. SARS-CoV-2 proteases Mpro and PLpro: design of inhibitors with predicted high potency and low mammalian toxicity using artificial neural networks, ligand-protein docking, molecular dynamics simulations, and ADMET calculations. Comput Biol Med. 2023;153:106449. doi: 10.1016/j.compbiomed.2022.106449
  • Rawat A, Roy M, Jyoti A, et al. Cysteine proteases: Battling pathogenic parasitic protozoans with omnipresent enzymes. Microbiol Res. 2021;249:126784. doi: 10.1016/j.micres.2021.126784
  • Cianni L, Feldmann CW, Gilberg E, et al. Can cysteine protease cross-class inhibitors achieve selectivity? J Med Chem. 2019;62(23):10497–525. doi: 10.1021/acs.jmedchem.9b00683
  • Wang X, Luo H, Zhang R, et al. Application of pirfenidone or pharmaceutically acceptable salt thereof in preparation of medicine for preventing and/or treating novel coronavirus inflammation. CN2020/111481547.
  • Schurdak ME, Vogt A, Stern A, et al. Compounds for the treatment of a disease or disorder, methods for identifying said compounds. WO2022/159787.
  • Huang H, Zhang G, Tang J, et al. Use of a PLpro protein inhibitor in a medicament for the treatment or prevention of a novel coronavirus infection. CN2020/112022855.
  • Fu Z, Huang B, Tang J, et al. The complex structure of GRL0617 and SARS-CoV-2 PLpro reveals a hot spot for antiviral drug discovery. Nat Commun. 2021;12(1):488. doi: 10.1038/s41467-020-20718-8
  • Ma C, Wang J. Validation and Invalidation of SARS-CoV-2 Papain-like Protease Inhibitors. ACS Pharmacol Transl Sci. 2022;5(2):102–9. doi: 10.1021/acsptsci.1c00240
  • Han K, Jia Y Application of succimer in preparation of anti-coronavirus infection medicine and medicine. CN2022/114246854.
  • Han K, Jia Y, Wang Y Application of PX-12 in preparation of coronavirus papaya-like protease PLPro inhibitor drug. CN2022/114617877.
  • Huber K, Patel P, Zhang L, et al. 2-[(1-methylpropyl)dithio]-1H-imidazole inhibits tubulin polymerization through cysteine oxidation. Mol Cancer Ther. 2008;7(1):143–51. doi: 10.1158/1535-7163.MCT-07-0486
  • Ma C, Hu Y, Townsend JA, et al. Ebselen, disulfiram, Carmofur, PX-12, Tideglusib, and shikonin are nonspecific promiscuous SARS-CoV-2 main protease inhibitors. ACS Pharmacol Transl Sci. 2020;3(6):1265–77. doi: 10.1021/acsptsci.0c00130
  • Han K, Jia Y, Wang Y Application of tideglusib in preparation of coronavirus papaya-like protease PLpro inhibitor drug. CN2022/114432306.
  • Tan H, Ma C, Wang J. Invalidation of dieckol and 1,2,3,4,6-pentagalloylglucose (PGG) as SARS-CoV-2 main protease inhibitors and the discovery of PGG as a papain-like protease inhibitor. Med Chem Res. 2022;31(7):1147–1153. doi: 10.1007/s00044-022-02903-0
  • Han H, Wang Y, Jia Y, et al. Application of thiamine in preparation of coronavirus papain inhibitor and coronavirus infection resistant medicine. CN2022/114469954.
  • Han K, Wang Y, Jia Y, et al. Application of pantoprazole in preparation of products for inhibiting coronavirus and medicines for resisting coronavirus infection. CN2022/114504575.
  • Fallon JN, Heil M, Fallon JJ, et al. Methods of prophylaxis of coronavirus infection and treatment of coronaviruses. WO2022/056103.
  • Setz C, Schubert U Inhibitors of human deubiquitinases for the treatment of coronaviral infections. WO2021/170290.
  • Wilen C Compounds and compositions for treating, ameliorating, and/or preventing sars-cov-2 infection and/or complications thereof. WO2021/247367.
  • Cho CC, Li SG, Lalonde TJ, et al. Drug repurposing for the SARS-CoV-2 papain-like protease [published correction appears in ChemMedChem. 2022 Mar 4;17(5): e202200053]. ChemMedchem. 2022;17(1):e202100455.
  • Xu X, Wan S, Liu W, et al. Isothia (selenium) azolone derivative and application thereof in anti-coronavirus drugs. CN2021/113200978.
  • Tsai C, Hung M, Chen Y, et al. Use of disulfiram for treating infection of SARS-COV-2. US2021/0386695.
  • Bai F, Liu H, Xu Y, et al. Application of heterocyclic compound. CN2022/114014824.
  • Janetka JW, Ledford BE, Mullican MD Pentacyclic compounds useful as inhibitors of hepatitis c virus ns3 helicase. WO2000/024725.
  • Fawzi AB, Macdonald D, Benbow LL, et al. SCH-202676: an allosteric modulator of both agonist and antagonist binding to G protein-coupled receptors. Mol Pharmacol. 2001;59(1):30–37. doi: 10.1124/mol.59.1.30
  • van den Nieuwendijk AM, Pietra D, Heitman L, et al. Synthesis and biological evaluation of 2,3,5-substituted [1,2,4]thiadiazoles as allosteric modulators of adenosine receptors. J Med Chem. 2004;3(3):663–672.
  • Lanzafame A, Christopoulos A. Investigation of the interaction of a putative allosteric modulator, N-(2,3-diphenyl-1,2,4-thiadiazole-5-(2H)-ylidene) methanamine hydrobromide (SCH-202676), with M1 muscarinic acetylcholine receptors. J Pharmacol Exp Ther. 2004;308(3):830–837. doi: 10.1124/jpet.103.060590
  • Ren P, Yu C, Zhang R, et al. Discovery, synthesis and mechanism study of 2,3,5-substituted [1,2,4]-thiadiazoles as covalent inhibitors targeting 3C-Like protease of SARS-CoV-2. Eur J Med Chem. 2023;249:115129. doi: 10.1016/j.ejmech.2023.115129
  • Akaike T, Takagi S, Sugiura H, et al. Medical agent containing active sulfur compounds as main ingredient. WO2021/235494A1.
  • Barchielli G, Capperucci A, Tanini D. The role of selenium in pathologies: an updated review. Antioxidants. 2022;11(2):251. doi: 10.3390/antiox11020251
  • Debnath S, Agarwal A, Kumar NR, et al. Selenium-based drug development for antioxidant and anticancer activity. Future Pharmacology. 2022;2(4):595–607. doi: 10.3390/futurepharmacol2040036
  • Ali W, Benedetti R, Handzlik J, et al. The innovative potential of seleniumcontaining agents for fighting cancer and viral infections. Drug Discov Today. 2021;26(1):256–263. doi: 10.1016/j.drudis.2020.10.014
  • Hou W, Dong H, Zhang X, et al. Selenium as an emerging versatile player in heterocycles and natural products modification. Drug Discov Today. 2022;27(8):2268–2277. doi: 10.1016/j.drudis.2022.03.020
  • Angeli A, Ferraroni M, Capperucci A, et al. Selenocarbamates as a prodrug-based approach to carbonic anhydrase inhibition. ChemMedchem. 2022;17(11):e202200085. doi: 10.1002/cmdc.202200085
  • Tanini D, Carradori S, Capperucci A, et al. Chalcogenides-incorporating carbonic anhydrase inhibitors concomitantly reverted oxaliplatin-induced neuropathy and enhanced antiproliferative action. Eur J Med Chem. 2021;225:113793. doi: 10.1016/j.ejmech.2021.113793
  • Han K, Jia Y Application of mono-selenoether compound in preparation of anti-coronavirus drugs and drugs. CN2022/114246867.
  • Han K, Wang Y, Jia Y, et al. Application of diselenide compound as coronavirus papaya protease inhibitor, inhibitor and medicine. CN2021/112156084.
  • Han K, Wang Y, Jia Y, et al. Application of Ebselen in preparation of coronavirus papain inhibitor and medicine for resisting coronavirus infection. CN2022/114469939.
  • Weglarz-Tomczak E, Tomczak JM, Talma M, et al. Identification of ebselen and its analogues as potent covalent inhibitors of papain-like protease from SARS-CoV-2. Sci Rep. 2021;11(1):3640. doi: 10.1038/s41598-021-83229-6
  • Suzuki N, Ogra Y, Fukumoto Y, et al. Therapeutic or prophylactic agent for COVID-19 which comprises selenoneine. WO2022/177029A1.
  • Han K, Jia Y Application of Eflorhithine in preparation of anti-coronavirus infection medicine and medicine. CN2022/114246855.
  • Han K, Wang Y, Jia Y, et al. Application of Trazodone in preparation of coronavirus papain-like protease PLPro inhibitor drug. CN2020/112043706.
  • Han K, Wang Y, Jia Y, et al. Application of Phenlzine in preparation of coronavirus papain-like protease inhibitor and coronavirus infection resisting medicine. CN2022/114469914.
  • Han K, Jia Y, Wang Y Application of Vilanterol in preparation of anti-coronavirus medicines and medicines. CN2022/114617862.
  • Hanania NA, Feldman G, Zachgo W, et al. The efficacy and safety of the novel long-acting β2 agonist vilanterol in patients with COPD: a randomized placebo-controlled trial. Chest. 2012;142(1):119–127.
  • Han K, Jia Y, Wang Y Coronavirus papaya-like protease PLPro inhibitor Lomustine and application thereof. CN2022/114617864.
  • Morasca L, Balconi G, Erba E, et al. Cytotoxic effect in vitro and tumour volume reduction in vivo induced by chemotherapeutic agents. Eur J Cancer (1965). 1974;10(10):667–671. doi: 10.1016/0014-2964(74)90006-1
  • Montelione GT, Bafna K, Krug RM, et al. Compositions and methods utilizing protein inhibitors for synergistic inhibition and treatment of SARS-CoV-2. WO2022/076386.
  • Bafna K, White K, Harish B, et al. Hepatitis C virus drugs that inhibit SARS-CoV-2 papain-like protease synergize with remdesivir to suppress viral replication in cell culture. Cell Rep. 2021;35(7):109133. doi: 10.1016/j.celrep.2021.109133
  • Gammeltoft KA, Zhou Y, Duarte Hernandez CR, et al. Hepatitis C virus protease inhibitors show differential efficacy and interactions with remdesivir for treatment of SARS-CoV-2 in vitro. Antimicrob Agents Chemother. 2021;65(9):e0268020. doi: 10.1128/AAC.02680-20
  • Muturi E, Hong W, Li J, et al. Effects of simeprevir on the replication of SARS-CoV-2 in vitro and in transgenic hACE2 mice. Int J Antimicrob Agents. 2022;59(1):106499. doi: 10.1016/j.ijantimicag.2021.106499
  • Han K, Wang Y, Jia Y, et al. Application of non-peptide compound in preparation of products for inhibiting coronavirus. CN2022/114557990.
  • Sayuk GS, Tack J. Tegaserod: what’s old is new again. Clin Gastroenterol Hepatol. 2022;20(10):2175–2184.e19. doi: 10.1016/j.cgh.2022.01.024
  • Liu X, Xu X, Yuan W, et al. Use of tegaserod for the preparation of a medicament for the prevention or treatment of coronavirus infection. CN2021/112587522.
  • Xu Z, Yao H, Xu Y, et al. Application of nelfinavir in preparation of drug for preventing and treating novel coronavirus pneumonia. WO2021/164689.
  • Tam HH, Kolesky DB, Wong MKC Anti-viral compounds and methods of using same. WO2021/262799.
  • Pegan S, Durie I, Freitas B, et al. Compositions and methods of treatment for sars-cov-2 through papain protease inhibition. WO2022/072975.
  • Báez-Santos YM, Barraza SJ, Wilson MW, et al. X-ray structural and biological evaluation of a series of potent and highly selective inhibitors of human coronavirus papain-like proteases. J Med Chem. 2014;57(6):2393–2412. doi: 10.1021/jm401712t
  • Sharma R, Agarwal S Novel amide derivatives. WO 2022/070048.
  • Wang J, Ma C Small molecule inhibitors of SARS-CoV-2 viral replication and uses thereof. WO2021/207409.
  • Wang J, Kitamura N, Ma C Compositions and methods for inhibiting m pro protease activity and for preventing and treating sars-cov-2 infection. WO 2022/119756A1.
  • Richter W, Abbas M, Weber L, et al. Mpro cysteine protease inhibitors. WO 2022/040186A1.
  • Meek TD, Li L, Tseng CK, et al. Inhibitors of cysteine proteases. WO 2022/187491A1.
  • Jorgensen WL Non-covalent inhibitors of the main protease of SARS-CoV-2 and methods of use. WO2022/150584A1.
  • Buzard DJ, Keung W, Kumar DV, et al. Inhibitors of cysteine proteases and methods of use thereof. WO2023/023631A1.
  • Arnold LD, Kerung W Inhibitors of cysteine proteases and methods of use thereof. WO 2022/221686A1.
  • Wang J Compositions and methods for inhibiting Mpro and PLpro protease activity and for preventing and treating SARS-CoV-2 infection. US 2022/0332683A1.
  • Fu L, Ye F, Feng Y, et al. Both boceprevir and GC376 efficaciously inhibit SARS-CoV-2 by targeting its main protease. Nat Commun. 2020;11(1):4417. doi: 10.1038/s41467-020-18233-x
  • Lo JM, Huang C, Wu YB, et al. Compounds and methods for prevention and treatment of coronavirus infections. US 2021/0338690A1.
  • Wu YB, Lo JM, Huang C, et al. Compounds and methods for prevention and treatment of virus infections. WO 2022/047147A1.
  • Khan MA Spiro-lactam compounds and methods of treating viral infections using the same. US 2023/0210851A1.
  • Meek TD, Tseng C-T, Drelich A, et al. Inhibitors of SARS-CoV-2 infection and uses thereof. WO2022/047054A2.
  • Kos J, Mitrovic A, Sosoc I, et al. 8-hydroxyquinoline cysteine protease inhibitors for use in the prevention and/or treatment of a corona virus disease. WO2022/117724A1
  • Kane CD, Soloveva V, Bavari S, et al. Cathepsin inhibitors for preventing or treating viral infections. WO2021/191875A1.
  • Frueh F, Maneval D, Daley TE Viral entry inhibitors and RNA polymerase inhibitors. WO 2021/203055A1.
  • O’dowd C, Harrison T, Hewitt P, et al. Piperidinderivate als hemmer der ubiquitinspezifischen protease 7. EP4026832A1.
  • Buhrlane S, Liu X Usp7 inhibition. WO2020/086595A1.
  • Wolberger C, Morgan MT, Suga H Cyclic peptide inhibitors of USP22. WO2022/232567A2.
  • Moussa C, Wolf C, Kaluvu B Usp13 inhibitors and methods of use thereof. WO2022/155427A1.
  • Buhrlage S, Varca A, Hu B Fused tricyclic pyrimidine-thieno-pyridine small molecule inhibitors of ubiquitin-specific protease 28. WO2022/035806A1.
  • Rountree JSS, Whitehead SK, Sheperd SD, et al. Pharmaceuticals compounds as inhibitors of ubiquitin specific protease 19 (usp19). WO2022/200523A1.
  • Lee KH, Kronbichler A, Park DD, et al. Neutrophil extracellular traps (NETs) in autoimmune diseases: A comprehensive review. Autoimmun Rev. 2017;16(11):1160–1173.
  • Beemelmanns C, GUO H, Höfgen S, et al. Barnesin a, derivatives and uses thereof. WO2019/170705A1.
  • Zamyatnin AA, Rudzinska M, Parodi A, et al. Specific peptide inhibitors of cysteine cathepsins. WO2021/251850A1.
  • Beal R, Sand B, Brunner S, et al. Inhibition of spontaneous metastasis via protein inhibitors of cysteine proteases. WO2019/055884A2.
  • Gonzalez DJ, Dulai P, Mills R Therapeutic approach for treating inflammatory bowel disease. US202/2395489A1.
  • Siewinski MZ Inhibitors of cysteine peptidases isolated from natural raw materials and use of the inhibitors in medicine and veterinary medicine. WO2020/167152A1.
  • Hao Z, Gong S, Shen D, et al. Small molecule inhibitor of cathepsin c and medicinal use thereof. WO2022/117059 A1.
  • Anderskewitz R, Binder F, Grauert M, et al. Methods for treating pulmonary emphysema using substituted 2-aza-bicyclo[2.2.1]heptane-3-carboxylic acid (benzyl-cyano-methyl)-amides inhibitors of cathepsin c. US2023/0310373 A1.
  • Walensky LD, Bird GH, Guerra R, et al. Selective targeting of apoptosis proteins by structurally-stabilized and/or cysteine-reactive noxa peptides. WO2019/118719A1.
  • Beroukhim R, Mermel CH, Porter D, et al. The landscape of somatic copy-number alteration across human cancers. Nature. 2010;463(7283):899–905. doi: 10.1038/nature08822
  • Liu X, Chen X, Shi J, et al. Pyrimidine-2,4-diamine compound and prepareation method and application thereof. US2023/0150947 A1.
  • Methods for enhancing cytotoxic cancer therapy through inhibition of ATG4B. US2021069202A1.
  • Xu S, Sun L, Huang B, et al. Medicinal chemistry strategies of targeting HIV-1 capsid protein for antiviral treatment. Future Med Chem. 2020;12(14):1281–4. doi: 10.4155/fmc-2020-0084
  • Ren Y, Ma Y, Cherukupalli S, et al. Discovery and optimization of benzenesulfonamides-based hepatitis B virus capsid modulators via contemporary medicinal chemistry strategies. Eur J Med Chem. 2020;206:112714. doi: 10.1016/j.ejmech.2020.112714
  • Zhang L, Wei F, Zhang J, et al. Current medicinal chemistry strategies in the discovery of novel HIV-1 ribonuclease H inhibitors. Eur J Med Chem. 2022;243:114760. doi: 10.1016/j.ejmech.2022.114760
  • Hou L, Zhang Y, Ju H, et al. Contemporary medicinal chemistry strategies for the discovery and optimization of influenza inhibitors targeting vRNP constituent proteins. Acta Pharm Sin B. 2022;12(4):1805–24. doi: 10.1016/j.apsb.2021.11.018
  • Gao S, Huang T, Song L, et al. Medicinal chemistry strategies towards the development of effective SARS-CoV-2 inhibitors. Acta Pharm Sin B. 2022;12(2):581–99. doi: 10.1016/j.apsb.2021.08.027
  • Ding D, Xu S, da Silva-Júnior EF, et al. Medicinal chemistry insights into antiviral peptidomimetics. Drug Discov Today. 2023;28(3):103468. doi: 10.1016/j.drudis.2022.103468
  • Ma Y, Frutos-Beltrán E, Kang D, et al. Medicinal chemistry strategies for discovering antivirals effective against drug-resistant viruses. Chem Soc Rev. 2021;50(7):4514–40. doi: 10.1039/D0CS01084G

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.