229
Views
0
CrossRef citations to date
0
Altmetric
Review

Targeting the EGFR/RAS/RAF signaling pathway in anticancer research: a recent update on inhibitor design and clinical trials (2020–2023)

, , &
Pages 51-69 | Received 01 Nov 2023, Accepted 25 Jan 2024, Published online: 12 Mar 2024

References

  • Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2001;2(2):127–137. doi: 10.1038/35052073
  • Gschwind A, Fischer OM, Ullrich A. The discovery of receptor tyrosine kinases: targets for cancer therapy. Nat Rev Cancer. 2004;4(5):361–370. doi: 10.1038/nrc1360
  • Burgess AW. EGFR family: structure physiology signalling and therapeutic targets †. Growth Factors. 2008;26(5):263–274. doi: 10.1080/08977190802312844
  • Schlessinger J, Lemmon MA. Nuclear signaling by receptor tyrosine kinases: the first robin of spring. Cell. 2006;127(1):45–48. doi: 10.1016/j.cell.2006.09.013
  • Scaltriti M, Baselga J. The epidermal growth factor receptor pathway: a model for targeted therapy. Clin Cancer Res. 2006;12(18):5268–5272. doi: 10.1158/1078-0432.CCR-05-1554
  • Mendelsohn J, Baselga J. Epidermal growth factor receptor targeting in cancer. Semin Oncol. 2006;33(4):369–385. doi: 10.1053/j.seminoncol.2006.04.003
  • Hynes NE, MacDonald G. ErbB receptors and signaling pathways in cancer. Curr Opin Cell Biol. 2009;21(2):177–184. doi: 10.1016/j.ceb.2008.12.010
  • Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer. 2005;5(5):341–354. doi: 10.1038/nrc1609
  • Klapper LN, Kirschbaum MH, Seta M, et al. Biochemical and clinical implications of the ErbB/HER signaling network of growth factor receptors. Adv Cancer Res. 1999;77:25–79. Elsevier.
  • Heldin C-H. Dimerization of cell surface receptors in signal transduction. Cell. 1995;80(2):213–223. doi: 10.1016/0092-8674(95)90404-2
  • Yarden Y, Schlessinger J. Epidermal growth factor induces rapid, reversible aggregation of the purified epidermal growth factor receptor. Biochemistry. 1987;26(5):1443–1451. doi: 10.1021/bi00379a035
  • Press MF, Lenz H-J. Egfr, her2 and vegf pathways. Drugs. 2007;67(14):2045–2075. doi: 10.2165/00003495-200767140-00006
  • Kovacs E, Zorn JA, Huang Y, et al. A structural perspective on the regulation of the epidermal growth factor receptor. Annu Revi Biochem. 2015;84(1):739–764. doi: 10.1146/annurev-biochem-060614-034402
  • Salomon DS, Brandt R, Ciardiello F, et al. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol. 1995;19(3):183–232. doi: 10.1016/1040-8428(94)00144-I
  • Sharma SV, Bell DW, Settleman J, et al. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer. 2007;7(3):169–181. doi: 10.1038/nrc2088
  • Yatabe Y, Mitsudomi T. Epidermal growth factor receptor mutations in lung cancers. Pathol Int. 2007;57(5):233–244. doi: 10.1111/j.1440-1827.2007.02098.x
  • Herbst RS, Langer CJ. Epidermal growth factor receptors as a target for cancer treatment: the emerging role of IMC-C225 in the treatment of lung and head and neck cancers. Semin Oncol. 2002;29(1):27–36. doi: 10.1053/sonc.2002.31525
  • Normanno N, Bianco C, De Luca A, et al. The role of EGF-related peptides in tumor growth. Front Biosci. 2001;6(1):685–707. doi: 10.2741/Normano
  • Gazdar A. Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene. 2009;28(S1):S24. doi: 10.1038/onc.2009.198
  • Hsu PC, Jablons DM, Yang CT, et al. Epidermal growth factor receptor (EGFR) pathway, yes-associated protein (YAP) and the regulation of programmed death-ligand 1 (PD-L1) in non-small cell lung cancer (NSCLC). Int J Mol Sci. 2019 Aug 5;20(15):3821. doi: 10.3390/ijms20153821
  • Batra SK, Castelino-Prabhu S, Wikstrand CJ, et al. Epidermal growth factor ligand-independent, unregulated, cell-transforming potential of a naturally occurring human mutant EGFRvIII gene. Cell Growth Differ: Mol Biol J Am Ass Cancer Res. 1995 Oct;6(10):1251–1259.
  • Moscatello DK, Holgado-Madruga M, Emlet DR, et al. Constitutive activation of phosphatidylinositol 3-kinase by a naturally occurring mutant epidermal growth factor receptor. J Biol Chem. 1998 Jan 2;273(1):200–206. doi: 10.1074/jbc.273.1.200
  • Huang PH, Mukasa A, Bonavia R, et al. Quantitative analysis of EGFRvIII cellular signaling networks reveals a combinatorial therapeutic strategy for glioblastoma. Proc Natl Acad Sci USA. 2007 Jul 31;104(31):12867–12872. doi: 10.1073/pnas.0705158104
  • Zhang YL, Yuan JQ, Wang KF, et al. The prevalence of EGFR mutation in patients with non-small cell lung cancer: a systematic review and meta-analysis. Oncotarget. 2016 Nov 29;7(48):78985–78993. doi: 10.18632/oncotarget.12587
  • Harrison PT, Vyse S, Huang PH. Rare epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer. Semin Cancer Biol. 2020 Apr;61:167–179. doi: 10.1016/j.semcancer.2019.09.015
  • Martinelli E, Ciardiello D, Martini G, et al. Implementing anti-epidermal growth factor receptor (EGFR) therapy in metastatic colorectal cancer: challenges and future perspectives. Ann Oncol. 2020 Jan;31(1):30–40. doi: 10.1016/j.annonc.2019.10.007
  • Gelatti ACZ, Drilon A, Santini FC. Optimizing the sequencing of tyrosine kinase inhibitors (TKIs) in epidermal growth factor receptor (EGFR) mutation-positive non-small cell lung cancer (NSCLC). Lung Cancer. 2019 Nov;137:113–122. doi: 10.1016/j.lungcan.2019.09.017
  • Uribe ML, Marrocco I, Yarden Y. EGFR in cancer: signaling mechanisms, drugs, and acquired resistance. Cancers (Basel). 2021 Jun 1;13(11):2748. doi: 10.3390/cancers13112748
  • Yasuda H, Park E, Yun CH, et al. Structural, biochemical, and clinical characterization of epidermal growth factor receptor (EGFR) exon 20 insertion mutations in lung cancer. Sci, Trans Med. 2013 Dec 18;5(216):216ra177. doi: 10.1126/scitranslmed.3007205
  • Shaul YD, Seger R. The MEK/ERK cascade: from signaling specificity to diverse functions. Biochim Biophys Acta, Mol Cell Res. 2007 Aug;1773(8):1213–1226. doi: 10.1016/j.bbamcr.2006.10.005
  • Katz M, Amit I, Yarden Y. Regulation of MAPKs by growth factors and receptor tyrosine kinases. Biochim Biophys Acta, Mol Cell Res. 2007 Aug;1773(8):1161–1176. doi: 10.1016/j.bbamcr.2007.01.002
  • Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev. 2004 Aug 15;18(16):1926–1945. doi: 10.1101/gad.1212704
  • Simanshu DK, Nissley DV, McCormick F. RAS proteins and their regulators in human disease. Cell. 2017 Jun 29;170(1):17–33. doi: 10.1016/j.cell.2017.06.009.
  • Zheng ZY, Chang EC. A bimolecular fluorescent complementation screen reveals complex roles of endosomes in Ras-mediated signaling. Methods Enzymol. 2014;535:25–38. doi: 10.1016/B978-0-12-397925-4.00002-X
  • Gimple RC, Wang XR. RAS: striking at the core of the oncogenic circuitry. Front Oncol. 2019;9:965. doi: 10.3389/fonc.2019.00965
  • Moore AR, Rosenberg SC, McCormick F, et al. RAS-targeted therapies: is the undruggable drugged? Nat Rev Drug Discov. 2020 Aug;19(8):533–552. doi: 10.1038/s41573-020-0068-6
  • Healy FM, Prior IA, MacEwan DJ. The importance of Ras in drug resistance in cancer. Br J Pharmacol. 2022 Jun;179(12):2844–2867. doi: 10.1111/bph.15420
  • Wellbrock C, Karasarides M, Marais R. The RAF proteins take centre stage. Nat Rev Mol Cell Biol. 2004 Nov;5(11):875–885. doi: 10.1038/nrm1498
  • Cox AD, Der CJ. The dark side of Ras: regulation of apoptosis. Oncogene. 2003 Dec 8;22(56):8999–9006. doi: 10.1038/sj.onc.1207111
  • Brunet A, Bonni A, Zigmond MJ, et al. Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor. Cell. 1999 Mar 19;96(6):857–868. doi: 10.1016/S0092-8674(00)80595-4
  • Malumbres M, Barbacid M. RAS oncogenes: the first 30 years. Nat Rev Cancer. 2003 Jun 1;3(6):459–465.
  • Prior IA, Hood FE, Hartley JL. The frequency of ras mutations in cancer. Cancer Res. 2020 Jul 15;80(14):2969–2974. doi: 10.1158/0008-5472.CAN-19-3682
  • Tate JG, Bamford S, Jubb HC, et al. COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res. 2019 Jan 8;47(D1):D941–d7. doi: 10.1093/nar/gky1015
  • Forbes SA, Bindal N, Bamford S, et al. COSMIC: mining complete cancer genomes in the catalogue of somatic mutations in cancer. Nucleic Acids Res. 2011 Jan;39(Database issue):D945–50. doi: 10.1093/nar/gkq929
  • Leicht DT, Balan V, Kaplun A, et al. Raf kinases: function, regulation and role in human cancer. Biochim Biophys Acta, Mol Cell Res. 2007 Aug;1773(8):1196–212. doi: 10.1016/j.bbamcr.2007.05.001
  • Rushworth LK, Hindley AD, O’Neill E, et al. Regulation and role of raf-1/B-Raf heterodimerization. Mol Cell Biol. 2006 Mar;26(6):2262–2272. doi: 10.1128/MCB.26.6.2262-2272.2006
  • Moroni M, Veronese S, Benvenuti S, et al. Gene copy number for epidermal growth factor receptor (EGFR) and clinical response to antiEGFR treatment in colorectal cancer: a cohort study. Lancet Oncol. 2005 May;6(5):279–286. doi: 10.1016/S1470-2045(05)70102-9
  • Pai R, Soreghan B, Szabo IL, et al. Prostaglandin E2 transactivates EGF receptor: a novel mechanism for promoting colon cancer growth and gastrointestinal hypertrophy. Nat Med. 2002 Mar;8(3):289–293. doi: 10.1038/nm0302-289
  • Darmoul D, Gratio V, Devaud H, et al. Activation of proteinase-activated receptor 1 promotes human colon cancer cell proliferation through epidermal growth factor receptor transactivation. Mol Cancer Res. 2004 Sep;2(9):514–522.
  • Yarom N, Jonker DJ. The role of the epidermal growth factor receptor in the mechanism and treatment of colorectal cancer. Discov Med. 2011 Feb;11(57):95–105.
  • Pellegata NS, Sessa F, Renault B, et al. K-ras and p53 gene mutations in pancreatic cancer: ductal and nonductal tumors progress through different genetic lesions. Cancer Res. 1994 Mar 15;54(6):1556–1560.
  • Deramaudt T, Rustgi AK. Mutant KRAS in the initiation of pancreatic cancer. Biochim Biophys Acta - Rev Cancer. 2005 Nov 25;1756(2):97–101. doi: 10.1016/j.bbcan.2005.08.003
  • ClarivateTM| MetacoreTM – integrated pathway analysis for multi-OMICs data [Internet]. [cited 2023 Sep 1-9]. Available from: https://clarivate.com/cortellis/webinars/metacore-integrated-pathway-analysis-for-multi-omics-data/
  • KEGG. Kyoto encyclopedia of genes and genomes [Internet]. [cited 2023 Jul 21]. Available from: https://www.genome.jp/kegg/
  • STRING. Protein-Protein Interaction Networks| Functional Enrichment Analysis [Internet]. [cited 2023 Jul 21]. Available from: https://string-db.org/
  • Turanli B, Karagoz K, Gulfidan G, et al. A network-based cancer drug discovery: from integrated multi-omics approaches to precision medicine. Curr Pharm Des. 2018;24(32):3778–3790. doi: 10.2174/1381612824666181106095959
  • ClarivateTM| Introducing Cortellis Drug Discovery Intelligence [Internet]. Clarivate. [cited 2023 Sep 1-9]. Available from: https://clarivate.com/cortellis/campaigns/introducing-cortellis-drug-discovery-intelligence/#
  • Blair HA. Pyrotinib: first global approval. Drugs. 2018 Nov;78(16):1751–1755. doi: 10.1007/s40265-018-0997-0
  • Guan X, Ma F, Li Q, et al. Survival benefit and biomarker analysis of pyrotinib or pyrotinib plus capecitabine for patients with HER2-positive metastatic breast cancer: a pooled analysis of two phase I studies. Biomark Res. 2023 Feb 20;11(1):21. doi: 10.1186/s40364-023-00453-0
  • ClinicalTrials.gov. Identifier: NCT01937689. Study of Pyrotinib in patients with human epidermalgrowth factor receptor 2 (HER2) positive advanced breast cancer [Internet]. [cited 2023 Jun 16]. Available from: https://clinicaltrials.gov/ct2/show/NCT01937689
  • Zhang X, Li Z, Han L, et al. Efficacy and safety of pyrotinib in human epidermal growth factor receptor 2-positive advanced breast cancer: a multicenter, retrospective, real-world study. Onco Targets Ther. 2022;15:1067–1078. doi: 10.2147/OTT.S379591
  • Zhang Q, He P, Tian T, et al. Real-world efficacy and safety of pyrotinib in patients with HER2-positive metastatic breast cancer: a prospective real-world study. Front Pharmacol. 2023;14:1100556. doi: 10.3389/fphar.2023.1100556
  • Bao Y, Zhang Z, He X, et al. Cost-effectiveness of pyrotinib plus capecitabine versus lapatinib plus capecitabine for the treatment of HER2-positive metastatic breast cancer in China: a scenario analysis of health insurance coverage. Curr Oncol. 2022 Aug 23;29(9):6053–6067. doi: 10.3390/curroncol29090476
  • ClinicalTrials.gov. [Internet] Available from: https://classic.clinicaltrials.gov/ct2/home
  • Xu B, Yan M, Ma F et al. Pyrotinib plus capecitabine versus lapatinib plus capecitabine for the treatment of HER2-positive metastatic breast cancer (PHOEBE): a multicentre, open-label, randomised, controlled, phase 3 trial. Lancet Oncol. 2021 Mar;22(3):351–360. doi: 10.1016/S1470-2045(20)30702-6
  • Guan X, Ma F, Xu B. Pooled analyses of randomized controlled trials on pyrotinib plus capecitabine and a rethink of the first-line options for HER2-positive relapsed or metastatic breast cancer. Cancer Innovation. 2022;1(2):119–123. doi: 10.1002/cai2.21
  • Yang G, Xu H, Yang Y, et al. Pyrotinib combined with apatinib for targeting metastatic non-small cell lung cancer with HER2 alterations: a prospective, open-label, single-arm phase 2 study (PATHER2). BMC Med. 2022 Aug 29;20(1):277. doi: 10.1186/s12916-022-02470-6
  • Ahn MJ, Kim HR, Yang JCH, et al. Efficacy and safety of brigatinib compared with crizotinib in Asian vs. non-Asian patients with locally advanced or metastatic ALK-Inhibitor-naive ALK+ non-small cell lung cancer: final results from the phase III ALTA-1L study. Clin Lung Cancer. 2022 Dec;23(8):720–730. doi: 10.1016/j.cllc.2022.07.008
  • Park JW, Liu MC, Yee D, et al. Adaptive randomization of neratinib in early breast cancer. N Engl J Med. 2016;375(1):11–22. doi: 10.1056/NEJMoa1513750
  • Martin M, Holmes FA, Ejlertsen B, et al. Neratinib after trastuzumab-based adjuvant therapy in HER2-positive breast cancer (ExteNET): 5-year analysis of a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2017;18(12):1688–1700. doi: 10.1016/S1470-2045(17)30717-9
  • Mukohara T, Hosono A, Mimaki S, et al. Effects of ado-trastuzumab emtansine and fam-trastuzumab deruxtecan on metastatic breast cancer harboring HER2 amplification and the L755S mutation. Oncology. 2021;26(8):635–639. doi: 10.1002/onco.13715
  • Zeng Q, Wang J, Cheng Z, et al. Discovery and evaluation of clinical Candidate AZD3759, a potent, oral active, central nervous system-penetrant, epidermal growth factor receptor tyrosine kinase inhibitor. J Med Chem. 2015 Oct 22;58(20):8200–8215. doi: 10.1021/acs.jmedchem.5b01073
  • Ahn MJ, Kim DW, Cho BC et al. Activity and safety of AZD3759 in EGFR-mutant non-small-cell lung cancer with CNS metastases (BLOOM): a phase 1, open-label, dose-escalation and dose-expansion study. Lancet Respir Med. 2017 Nov;5(11):891–902. doi: 10.1016/S2213-2600(17)30378-8
  • Zhang Z, Guo X, To KKW, et al. Olmutinib (HM61713) reversed multidrug resistance by inhibiting the activity of ATP-binding cassette subfamily G member 2 in vitro and in vivo. Acta Pharm Sin B. 2018 Jul;8(4):563–574. doi: 10.1016/j.apsb.2018.06.002
  • Zhang W, Fan YF, Cai CY, et al. Olmutinib (BI1482694/HM61713), a novel epidermal growth factor receptor tyrosine kinase inhibitor, reverses ABCG2-mediated multidrug resistance in cancer cells. Front Pharmacol. 2018;9:1097. doi: 10.3389/fphar.2018.01097
  • Park K, Jӓnne PA, Kim DW, et al. Olmutinib in T790M-positive non-small cell lung cancer after failure of first-line epidermal growth factor receptor-tyrosine kinase inhibitor therapy: a global, phase 2 study. Cancer. 2021 May 1;127(9):1407–1416. doi: 10.1002/cncr.33385
  • Hirano T, Yasuda H, Hamamoto J, et al. Pharmacological and structural characterizations of Naquotinib, a novel third-generation EGFR Tyrosine Kinase Inhibitor, in EGFR-Mutated non-small cell lung cancer. Mol Cancer Ther. 2018 Apr;17(4):740–750. doi: 10.1158/1535-7163.MCT-17-1033
  • Murakami H, Nokihara H, Hayashi H, et al. Clinical activity of ASP8273 in Asian patients with non-small-cell lung cancer with EGFR activating and T790M mutations. Cancer Sci. 2018 Sep;109(9):2852–2862. doi: 10.1111/cas.13724
  • Yu HA, Spira A, Horn L, et al. A phase I, dose escalation study of oral ASP8273 in patients with non-small cell lung cancers with epidermal growth factor receptor mutations. Clin Cancer Res. 2017 Dec 15;23(24):7467–7473. doi: 10.1158/1078-0432.CCR-17-1447
  • ClinicalTrials.gov. Identifier: NCT02113813. A dose escalation study of ASP8273 in subjects with non-small-cell lung cancer (NSCLC) who have epidermal growth factor receptor (EGFR) mutations [Internet]. [cited 2023 Jun 14]. Available from: https://clinicaltrials.gov/ct2/show/NCT02113813
  • Azuma K, Nishio M, Hayashi H, et al. ASP8273 tolerability and antitumor activity in tyrosine kinase inhibitor-naïve Japanese patients with EGFR mutation-positive non-small-cell lung cancer. Cancer Sci. 2018 Aug;109(8):2532–2538. doi: 10.1111/cas.13651
  • ClinicalTrials.gov. Identifier: NCT02588261. A study of ASP8273 vs. Erlotinib or gefitinib in first-line treatment of patients with stage IIIB/IV non-small cell lung cancer tumors with EGFR activating mutations (SOLAR) [Internet]. [cited 2023 Jun 14]. Available from: https://clinicaltrials.gov/ct2/show/NCT02588261
  • Kelly RJ, Shepherd FA, Krivoshik A, et al. A phase III, randomized, open-label study of ASP8273 versus erlotinib or gefitinib in patients with advanced stage IIIB/IV non-small-cell lung cancer. Ann Oncol. 2019 Jul 1;30(7):1127–1133. doi: 10.1093/annonc/mdz128
  • Wu Q, Jiang H, Wang S, et al. Effects of avitinib on the pharmacokinetics of osimertinib in vitro and in vivo in rats. Thoracic Cancer. 2020 Oct;11(10):2775–2781. doi: 10.1111/1759-7714.13587
  • Wang H, Pan R, Zhang X, et al. Abivertinib in patients with T790M-positive advanced NSCLC and its subsequent treatment with osimertinib. Thoracic Cancer. 2020 Mar;11(3):594–602. doi: 10.1111/1759-7714.13302
  • Xu X. Parallel phase 1 clinical trials in the US and in China: accelerating the test of avitinib in lung cancer as a novel inhibitor selectively targeting mutated EGFR and overcoming T790M-induced resistance. Chin J Cancer. 2015 Jul 08;34(3):285–287. doi: 10.1186/s40880-015-0029-3
  • Wang H, Zhang L, Zheng X, et al. The ability of avitinib to penetrate the blood brain barrier and its control of intra-/extra- cranial disease in patients of non-small cell lung cancer (NSCLC) harboring EGFR T790M mutation. J Clin Oncol. 2017;35(15_suppl):e20613–e. doi: 10.1200/JCO.2017.35.15_suppl.e20613
  • Huang S, Li C, Zhang X, et al. Abivertinib synergistically strengthens the anti-leukemia activity of venetoclax in acute myeloid leukemia in a BTK-dependent manner. Mol Oncol. 2020 Oct;14(10):2560–2573. doi: 10.1002/1878-0261.12742
  • Zhou Q, Wu L, Hu P, et al. A novel third-generation EGFR tyrosine kinase inhibitor abivertinib for EGFR T790M-mutant non-small cell lung cancer: a multicenter phase I/II study. Clin Cancer Res. 2022 Mar 15;28(6):1127–1135. doi: 10.1158/1078-0432.CCR-21-2595
  • Jassem J, Dziadziuszko R. Nazartinib in EGFR Thr790Met-mutant non-small-cell lung cancer. Lancet Respir Med. 2020 Jun;8(6):528–529. doi: 10.1016/S2213-2600(19)30361-3
  • ClinicalTrials.gov. Identifier: NCT02108964. A phase I/II, multicenter, open-label study of EGFRmut-TKI EGF816, administered orally in adult patients with EGFRmut solid malignancies [Internet]. [cited 2023 Jun 15]. Available from: https://clinicaltrials.gov/ct2/show/NCT02108964
  • Cheng H, Nair SK, Murray BW, et al. Discovery of 1-{(3R,4R)-3-[({5-chloro-2-[(1-methyl-1H-pyrazol-4-yl)amino]-7H-pyrrolo[2,3-d]pyrimidin-4-yl}oxy)methyl]-4-methoxypyrrolidin-1-yl}prop-2-en-1-one (PF-06459988), a potent, WT sparing, irreversible inhibitor of T790M-Containing EGFR mutants. J Med Chem. 2016 Mar 10;59(5):2005–2024. doi: 10.1021/acs.jmedchem.5b01633
  • Planken S, Behenna DC, Nair SK, et al. Discovery of N-((3R,4R)-4-fluoro-1-(6-((3-methoxy-1-methyl-1H-pyrazol-4-yl)amino)-9-methyl-9H-purin-2-yl)pyrrolidine-3-yl)acrylamide (PF-06747775) through structure-based drug design: a high affinity irreversible inhibitor targeting oncogenic EGFR mutants with selectivity over Wild-Type EGFR. J Med Chem. 2017 Apr 13;60(7):3002–3019. doi: 10.1021/acs.jmedchem.6b01894
  • Yang JC, Camidge DR, Yang CT, et al. Safety, efficacy, and pharmacokinetics of almonertinib (HS-10296) in pretreated patients with EGFR-Mutated advanced NSCLC: a multicenter, open-label, phase 1 trial. J Thorac Oncol. 2020 Dec;15(12):1907–1918. doi: 10.1016/j.jtho.2020.09.001
  • Li Y, Zhou K, Meng Y, et al. Comparison of osimertinib versus Almonertinib in T790M+ EGFR non-small-cell lung cancer patients. J Clin Pharm Ther. 2023 Mar 28;2023:1–5. doi: 10.1155/2023/3028257
  • Lu S, Dong X, Jian H, et al. AENEAS: a randomized phase III trial of aumolertinib versus gefitinib as first-line therapy for locally advanced or MetastaticNon-small-cell lung cancer with EGFR exon 19 deletion or L858R mutations. J Clin Oncol. 2022 Sep 20;40(27):3162–3171. doi: 10.1200/JCO.21.02641
  • Dhillon S. Lazertinib: First Approval. Drugs. 2021 Jun;81(9):1107–1113. doi: 10.1007/s40265-021-01533-x
  • Heppner DE, Wittlinger F, Beyett TS, et al. Structural basis for inhibition of mutant EGFR with lazertinib (YH25448). ACS Med Chem Lett. 2022 Dec 08;13(12):1856–1863. doi: 10.1021/acsmedchemlett.2c00213
  • ClinicalTrials.gov. Identifier: NCT04077463. A study of Lazertinib as monotherapy or in combination with amivantamab in participants with advanced non-small cell lung cancer (chrysalis-2) [Internet]. [cited 2023 Jun 19]. Available from: https://clinicaltrials.gov/ct2/show/NCT04077463
  • Ahn MJ, Han JY, Lee KH, et al. Lazertinib in patients with EGFR mutation-positive advanced non-small-cell lung cancer: results from the dose escalation and dose expansion parts of a first-in-human, open-label, multicentre, phase 1-2 study. Lancet Oncol. 2019 Dec;20(12):1681–1690. doi: 10.1016/S1470-2045(19)30504-2
  • Lamb YN. Osimertinib: a review in Previously untreated, EGFR mutation-positive, advanced NSCLC. Targeted Oncol. 2021 Sep;16(5):687–695. doi: 10.1007/s11523-021-00839-w
  • Frampton JE. Osimertinib: a review in completely resected, early-stage, EGFR mutation-positive NSCLC. Targeted Oncol. 2022 May;17(3):369–376. doi: 10.1007/s11523-022-00883-0
  • Di Noia V, A D, E D, et al. Treating disease progression with osimertinib in EGFR-mutated non-small-cell lung cancer: novel targeted agents and combination strategies. ESMO Open. 2021 Dec;6(6):100280. doi: 10.1016/j.esmoop.2021.100280
  • Remon J, Steuer CE, Ramalingam SS, et al. Osimertinib and other third-generation EGFR TKI in EGFR-mutant NSCLC patients. Ann Oncol. 2018 Jan 1;29(suppl_1):i20–i7. doi: 10.1093/annonc/mdx704
  • Menis J, Remon J. Befotertinib—a viable alternative in EGFR-mutant advanced NSCLC? Lancet Respir Med. 2023 May 24;(10):857–859. doi: 10.1016/S2213-2600(23)00216-3
  • Lu S, Zhou J, Jian H, et al. Befotertinib (D-0316) versus icotinib as first-line therapy for patients with EGFR-mutated locally advanced or metastatic non-small-cell lung cancer: a multicentre, open-label, randomised phase 3 study. Lancet Respir Med. 2023 May 24;11(10):905–915. doi: 10.1016/S2213-2600(23)00183-2
  • Li B, Wu L, Pan Y, et al. Efficacy and safety of ASK120067 (limertinib) in patients with locally advanced or metastatic EGFR T790M-mutated non–small cell lung cancer: a multicenter, single-arm, phase IIb study. J Clin Oncol. 2022;40(16_suppl):9106. doi: 10.1200/JCO.2022.40.16_suppl.9106
  • Shi Y, Li B, Wu L, et al. Efficacy and safety of Limertinib (ASK120067) in patients with locally advanced or metastatic EGFR Thr790Met-mutated NSCLC: a multicenter, single-arm, phase 2b study. J Thorac Oncol. 2022 Oct;17(10):1205–1215. doi: 10.1016/j.jtho.2022.05.011
  • Jia Y, Yun CH, Park E, et al. Overcoming EGFR(T790M) and EGFR(C797S) resistance with mutant-selective allosteric inhibitors. Nature. 2016 Jun 2;534(7605):129–132. doi: 10.1038/nature17960
  • Zhao P, Yao MY, Zhu SJ, et al. Crystal structure of EGFR T790M/C797S/V948R in complex with EAI045. Biochem Biophys Res Commun. 2018 Jul 20;502(3):332–337. doi: 10.1016/j.bbrc.2018.05.154
  • To C, Jang J, Chen T, et al. Single and dual targeting of mutant EGFR with an allosteric inhibitor. Cancer Discovery. 2019 Jul;9(7):926–943. doi: 10.1158/2159-8290.CD-18-0903
  • Niggenaber J, Heyden L, Grabe T, et al. Complex Crystal Structures of EGFR with third-generation kinase inhibitors and simultaneously bound allosteric ligands. ACS Med Chem Lett. 2020 Dec 10;11(12):2484–2490. doi: 10.1021/acsmedchemlett.0c00472
  • To C, Beyett TS, Jang J, et al. An allosteric inhibitor against the therapy-resistant mutant forms of EGFR in non-small cell lung cancer. Nat Cancer. 2022 Apr;3(4):402–417. doi: 10.1038/s43018-022-00351-8
  • Siddiqui AJ, Jahan S, Patel M, et al. Identifying novel and potent inhibitors of EGFR protein for the drug development against the breast cancer. J Biomol Struct Dyn. 2023;41(23):14460–14472. doi: 10.1080/07391102.2023.2181646
  • Fu K, Xie F, Wang F, et al. Therapeutic strategies for EGFR-mutated non-small cell lung cancer patients with osimertinib resistance. J Hematol Oncol. 2022 Dec 08;15(1):173. doi: 10.1186/s13045-022-01391-4
  • Kitadai R, Okuma Y. Treatment strategies for non-small cell lung cancer harboring common and uncommon EGFR mutations: drug sensitivity based on Exon Classification, and structure-function analysis. Cancers (Basel). 2022;14(10):2519. doi: 10.3390/cancers14102519
  • Eno MS, Brubaker JD, Campbell JE, et al. Discovery of BLU-945, a reversible, potent, and wild-type-sparing next-generation EGFR mutant inhibitor for treatment-resistant non-small-cell lung cancer. J Med Chem. 2022 Jul 28;65(14):9662–9677. doi: 10.1021/acs.jmedchem.2c00704
  • Shi F, Liu Y, Zhou X, et al. Disitamab vedotin: a novel antibody-drug conjugates for cancer therapy. Drug Delivery. 2022 Dec;29(1):1335–1344. doi: 10.1080/10717544.2022.2069883
  • Chen M, Yao K, Cao M, et al. HER2-targeting antibody-drug conjugate RC48 alone or in combination with immunotherapy for locally advanced or metastatic urothelial carcinoma: a multicenter, real-world study. Cancer Immunol Immunother. 2023 Jul;72(7):2309–2318. doi: 10.1007/s00262-023-03419-1
  • Powles T, Yu EY, Iyer G, et al. Phase 2 clinical study evaluating the efficacy and safety of disitamab vedotin with or without pembrolizumab in patients with HER2-expressing urothelial carcinoma (RC48G001). J Clin Oncol. 2023;41(6_suppl):TPS594–TPS. doi: 10.1200/JCO.2023.41.6_suppl.TPS594
  • Miyanaga A, Asahina H, Watanabe S, et al. A phase I/II study of necitumumab plus pembrolizumab, Nab-Paclitaxel, and carboplatin for Previously untreated advanced squamous non-small cell lung cancer study: (NEJ048A/NEXUS). Clin Lung Cancer. 2023 Jun;24(4):371–375. doi: 10.1016/j.cllc.2023.01.008
  • Koyama K, Ishikawa H, Abe M, et al. Patritumab deruxtecan (HER3-DXd), a novel HER3 directed antibody drug conjugate, exhibits in vitro activity against breast cancer cells expressing HER3 mutations with and without HER2 overexpression. PloS One. 2022;17(5):e0267027. doi: 10.1371/journal.pone.0267027
  • ClinicalTrials.gov. Identifier: NCT05338970. HERTHENA-Lung02: a study of patritumab deruxtecan versus platinum-based chemotherapy in metastatic or locally advanced EGFRm NSCLC after failure of EGFR TKI therapy [Internet]. [cited 2023 Jul 5]. Available from: https://classic.clinicaltrials.gov/ct2/show/NCT05338970
  • Lim SM, Kim CG, Lee JB, et al. Patritumab Deruxtecan: paving the way for EGFR-TKI-Resistant NSCLC. Cancer Discovery. 2022 Jan;12(1):16–19. doi: 10.1158/2159-8290.CD-21-1429
  • Yonesaka K, Tanizaki J, Maenishi O, et al. HER3 augmentation via blockade of EGFR/AKT signaling enhances anticancer activity of HER3-targeting patritumab deruxtecan in EGFR-mutated non-small cell lung cancer. Clin Cancer Res. 2022 Jan 15;28(2):390–403. doi: 10.1158/1078-0432.CCR-21-3359
  • Meric-Bernstam F, Beeram M, Hamilton E, et al. Zanidatamab, a novel bispecific antibody, for the treatment of locally advanced or metastatic HER2-expressing or HER2-amplified cancers: a phase 1, dose-escalation and expansion study. Lancet Oncol. 2022 Dec;23(12):1558–1570. doi: 10.1016/S1470-2045(22)00621-0
  • Harding JJ, Fan J, Oh DY, et al. Zanidatamab for HER2-amplified, unresectable, locally advanced or metastatic biliary tract cancer (HERIZON-BTC-01): a multicentre, single-arm, phase 2b study. Lancet Oncol. 2023 Jun 2;24(7):772–782. doi: 10.1016/S1470-2045(23)00242-5
  • Skoulidis F, Li BT, Dy GK, et al. Sotorasib for lung cancers with KRAS p.G12C mutation. N Engl J Med. 2021 Jun 24;384(25):2371–2381. doi: 10.1056/NEJMoa2103695
  • Blair HA. Sotorasib: First Approval. Drugs. 2021 Sep;81(13):1573–1579. doi: 10.1007/s40265-021-01574-2
  • Strickler JH, Satake H, George TJ, et al. Sotorasib in KRAS p.G12C-Mutated advanced pancreatic cancer. N Engl J Med. 2023 Jan 5;388(1):33–43. doi: 10.1056/NEJMoa2208470
  • Lee A. Sotorasib: A Review in KRAS G12C Mutation-Positive Non-small Cell Lung Cancer. Targeted Oncol. 2022 Nov;17(6):727–733. doi: 10.1007/s11523-022-00922-w
  • Nakajima EC, Drezner N, Li X, et al. FDA approval summary: sotorasib for KRAS G12C-Mutated metastatic NSCLC. Clin Cancer Res. 2022 Apr 14;28(8):1482–1486. doi: 10.1158/1078-0432.CCR-21-3074
  • Zheng X, Luo J, Liu W, et al. Sotorasib: a treatment for non-small cell lung cancer with the KRAS G12C mutation. Drugs Today (Barc). 2022 Apr;58(4):175–185. doi: 10.1358/dot.2022.58.4.3400573
  • Weiss A, Lorthiois E, Barys L, et al. Discovery, preclinical characterization, and early clinical activity of JDQ443, a structurally novel, potent, and selective covalent oral inhibitor of KRASG12C. Cancer Discovery. 2022 Jun 2;12(6):1500–1517. doi: 10.1158/2159-8290.CD-22-0158
  • Kwan AK, Piazza GA, Keeton AB, et al. The path to the clinic: a comprehensive review on direct KRASG12C inhibitors. J Exp Clin Cancer Res. 2022 Jan 19;41(1):27. doi: 10.1186/s13046-021-02225-w
  • Purkey H. Abstract ND11: discovery of GDC-6036, a clinical stage treatment for KRAS G12C-positive cancers. Cancer Res. 2022;82(12_Supplement):ND11–ND. doi: 10.1158/1538-7445.AM2022-ND11
  • Xu J, Lim N-K, Timmerman JC, et al. Second-generation atroposelective synthesis of KRAS G12C covalent inhibitor GDC-6036. Org Lett. 2023 May 19;25(19):3417–3422. doi: 10.1021/acs.orglett.3c00961
  • ClinicalTrials.gov. Identifier: NCT04449874. A study to evaluate the safety, pharmacokinetics, and activity of GDC-6036 alone or in combination in participants with advanced or metastatic solid tumors with a KRAS G12C mutation [Internet]. [cited 2023 Jul 6]. Available from: https://classic.clinicaltrials.gov/ct2/show/NCT04449874
  • Desai J, Han S-W, Lee J-S, et al. Abstract CT029: phase ib study of GDC-6036 in combination with cetuximab in patients with colorectal cancer (CRC) with KRAS G12C mutation. Cancer Res. 2023;83(8_Supplement):CT029–CT. doi: 10.1158/1538-7445.AM2023-CT029
  • Desai J, Han S-W, Forster M, et al. 362P phase ia study to evaluate GDC-6036 monotherapy in patients with colorectal cancer (CRC) with KRAS G12C mutation. Ann Oncol. 2022;33:S701–S2. doi: 10.1016/j.annonc.2022.07.500
  • Patel M, Lee J, De Miguel M, et al. 459MO phase ia study to evaluate GDC-6036 monotherapy in patients with solid tumors with a KRAS G12C mutation. Ann Oncol. 2022;33:S749. doi: 10.1016/j.annonc.2022.07.588
  • Wang X, Allen S, Blake JF, et al. Identification of MRTX1133, a Noncovalent, Potent, and Selective KRAS(G12D) Inhibitor. J Med Chem. 2022 Feb 24;65(4):3123–3133. doi: 10.1021/acs.jmedchem.1c01688
  • Issahaku AR, Mukelabai N, Agoni C, et al. Characterization of the binding of MRTX1133 as an avenue for the discovery of potential KRAS(G12D) inhibitors for cancer therapy. Sci Rep. 2022 Oct 22;12(1):17796. doi: 10.1038/s41598-022-22668-1
  • Kemp SB, Cheng N, Markosyan N, et al. Efficacy of a small-molecule inhibitor of KrasG12D in immunocompetent models of pancreatic cancer. Cancer Discovery. 2023 Feb 6;13(2):298–311. doi: 10.1158/2159-8290.CD-22-1066
  • Shi Z, Weng J, Fan X, et al. Abstract 932: discovery of D-1553, a novel and selective KRas-G12C Inhibitor with potent anti-tumor activity in a broad spectrum of tumor cell lines and xenograft models. Cancer Res. 2021;81(13_Supplement):932. doi: 10.1158/1538-7445.AM2021-932
  • Shi Z, Weng J, Niu H, et al. D-1553: a novel KRASG12C inhibitor with potent and selective cellular and in vivo antitumor activity. Cancer Sci. 2023;114(7):2951–2960. doi: 10.1111/cas.15829
  • ClinicalTrials.gov. Identifier: NCT04585035. Study to evaluate D-1553 in subjects with solid tumors [Internet]. [cited 2023 Jul 8]. Available from: https://classic.clinicaltrials.gov/ct2/show/NCT04585035
  • Li Z, Jiang K, Zhu X, et al. Encorafenib (LGX818), a potent BRAF inhibitor, induces senescence accompanied by autophagy in BRAFV600E melanoma cells. Cancer Lett. 2016 Jan 28;370(2):332–344. doi: 10.1016/j.canlet.2015.11.015
  • Koelblinger P, Thuerigen O, Dummer R. Development of encorafenib for BRAF-mutated advanced melanoma. Curr Opin Oncol. 2018 Mar;30(2):125–133. doi: 10.1097/CCO.0000000000000426
  • Henry JT, Coker O, Chowdhury S, et al. Comprehensive clinical and molecular characterization of KRAS G12C-mutant colorectal cancer. JCO Precis Oncol. 2021;5(5):613–621. doi: 10.1200/PO.20.00256
  • Amodio V, Yaeger R, Arcella P, et al. EGFR blockade reverts resistance to KRASG12C inhibition in colorectal cancer. Cancer Discov. 2020;10(8):1129–1139. doi: 10.1158/2159-8290.CD-20-0187
  • Rheault TR, Stellwagen JC, Adjabeng GM, et al. Discovery of Dabrafenib: a selective inhibitor of Raf Kinases with antitumor activity against B-Raf-driven tumors. ACS Med Chem Lett. 2013 Mar 14;4(3):358–362. doi: 10.1021/ml4000063
  • Ascierto PA, Ferrucci PF, Fisher R, et al. Dabrafenib, trametinib and pembrolizumab or placebo in BRAF-mutant melanoma. Nature Med. 2019;25(6):941–946. doi: 10.1038/s41591-019-0448-9
  • Dummer R, Long GV, Robert C, et al. Randomized Phase III Trial Evaluating Spartalizumab Plus Dabrafenib and Trametinib for BRAF V600-Mutant Unresectable or Metastatic Melanoma. J Clin Oncol. 2022 May 1;40(13):1428–1438. doi: 10.1200/JCO.21.01601
  • Stachyra‑Strawa P, Ciesielka M, Janiszewski M, et al. The role of immunotherapy and molecular‑targeted therapy in the treatment of melanoma. Oncol Rep. 2021;46(2):1–12. doi: 10.3892/or.2021.8109
  • Cox AD, Der CJ. The RAF inhibitor paradox revisited. Cancer Cell. 2012 Feb 14;21(2):147–149. doi: 10.1016/j.ccr.2012.01.017
  • Marjomäki V, Laajala M, Martikainen M, inventorsVemurafenib and salts thereof for use in the treatment of enteroviral infections. World Patent, WO/2020/070390. 2020 Apr 9.
  • Rasco DW, Medina T, Corrie P, et al. Phase 1 study of the pan-RAF inhibitor tovorafenib in patients with advanced solid tumors followed by dose expansion in patients with metastatic melanoma. Cancer Chemother Pharmacol. 2023 Jul;92(1):15–28. doi: 10.1007/s00280-023-04544-5
  • Zhang HL, Li Y. The Patent Landscape of BRAF Target and KRAS Target. Recent patents on anti-cancer drug discovery. Recent Patents Anti-Cancer Drug Disc. 2023;18(4):495–505. doi: 10.2174/1574892818666221207091329
  • Lacouture ME, Wainberg ZA, Patel AB, et al. Reducing skin toxicities from EGFR inhibitors with topical BRAF inhibitor therapy. Cancer Discov. 2021 Sep;11(9):2158–2167 doi: 10.1158/2159-8290.CD-20-1847
  • Tkacik E, Li K, Gonzalez-Del Pino G, et al. Structure and RAF family kinase isoform selectivity of type II RAF inhibitors tovorafenib and naporafenib. J Biol Chem. 2023 May;299(5):104634. doi: 10.1016/j.jbc.2023.104634
  • de Braud F, Dooms C, Heist RS, et al. Initial evidence for the efficacy of naporafenib in combination with trametinib in NRAS-mutant melanoma: results from the expansion arm of a phase ib, open-label study. J Clin Oncol. 2023;41(14):2651–2660. doi: 10.1200/JCO.22.02018
  • Ohoka N, Suzuki M, Uchida T, et al. Development of a potent small-molecule degrader against oncogenic BRAF(V600E) protein that evades paradoxical MAPK activation. Cancer Sci. 2022 Aug;113(8):2828–2838. doi: 10.1111/cas.15401
  • ClinicalTrials.gov. Identifier: NCT05503797. A study to assess the efficacy and safety of FORE8394 in participants with cancer harboring BRAF alterations [Internet]. (cited 2023 Sep 5]. Available from: https://classic.clinicaltrials.gov/ct2/show/NCT05503797
  • Ono H, Horinaka M, Sukeno M, et al. Novel RAF/MEK inhibitor CH5126766/VS-6766 has efficacy in combination with eribulin for the treatment of triple-negative breast cancer. Cancer Sci. 2021 Oct;112(10):4166–4175.doi: 10.1111/cas.15071
  • Capelletto E, Bironzo P, Denis L, et al. Single agent VS-6766 or VS-6766 plus defactinib in KRAS-mutant non-small-cell lung cancer: the RAMP-202 phase II trial. Future Oncol. 2022;18(16):1907–1915. doi: 10.2217/fon-2021-1582
  • Yuan X, Zhang X, Du R, et al. Abstract 6415: RAF dimer inhibitor lifirafenib enhances the antitumor activity of MEK inhibitor mirdametinib in RAS mutant tumors. Cancer Res. 2020;80(16_Supplement):6415. doi: 10.1158/1538-7445.AM2020-6415
  • Desai J, Gan H, Barrow C, et al. Phase I, open-label, dose-Escalation/Dose-expansion study of lifirafenib (BGB-283), an RAF family kinase inhibitor, in patients with solid tumors. J Clin Oncol. 2020 Jul 1;38(19):2140–2150. doi: 10.1200/JCO.19.02654
  • Awada G, Neyns B. Melanoma with genetic alterations beyond the BRAF V600 mutation: management and new insights. Curr Opin Oncol. 2022;34(2):115–122. doi: 10.1097/CCO.0000000000000817
  • Li J, Li X, Dong N, et al. Driver and targetable alterations in Chinese patients with small bowel carcinoma. J Cancer Res Clin Oncol. 2023;149(9):6139–6150. doi: 10.1007/s00432-022-04521-0
  • Gouda MA, Subbiah V. Precision oncology for BRAF-mutant cancers with BRAF and MEK inhibitors: from melanoma to tissue-agnostic therapy. ESMO Open. 2023 Apr 1;8(2):100788. doi: 10.1016/j.esmoop.2023.100788
  • Yen I, Shanahan F, Lee J, et al. ARAF mutations confer resistance to the RAF inhibitor belvarafenib in melanoma. Nature. 2021;594(7863):418–423. doi: 10.1038/s41586-021-03515-1
  • Cross DA, Ashton SE, Ghiorghiu S, et al. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discovery. 2014 Sep;4(9):1046–1061. doi: 10.1158/2159-8290.CD-14-0337
  • Leonetti A, Sharma S, Minari R, et al. Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. Br J Cancer. 2019 Oct;121(9):725–737. doi: 10.1038/s41416-019-0573-8
  • Balko JM, Jones BR, Coakley VL, et al. MEK and EGFR inhibition demonstrate synergistic activity in EGFR-dependent NSCLC. Cancer Biol Ther. 2009 Mar 15;8(6):522–530. doi: 10.4161/cbt.8.6.7690
  • Kim D, Xue JY, Lito P. Targeting KRAS(G12C): from inhibitory mechanism to modulation of antitumor effects in patients. Cell. 2020 Nov 12;183(4):850–859. doi: 10.1016/j.cell.2020.09.044
  • Van Cutsem E, Yaeger R, Delord JP, et al. Phase Ib/II study of the efficacy and safety of binimetinib (MEK162) plus Panitumumab for mutant or wild-type RAS metastatic colorectal cancer. Oncology. 2023 Dec 11;28(12):e1209–e18. doi: 10.1093/oncolo/oyad210
  • Fawwaz M, Mishiro K, Nishii R, et al. Synthesis and fundamental evaluation of radioiodinated rociletinib (CO-1686) as a probe to lung cancer with L858R/T790M mutations of epidermal growth factor receptor (EGFR). Molecules (Basel, Switzerland). 2020 Jun 24;25(12). doi: 10.3390/molecules25122914
  • Shi S, Du Y, Huang L, et al. Discovery of novel potent covalent inhibitor-based EGFR degrader with excellent in vivo efficacy. Bioorg Chem. 2022 Mar;120:105605. doi: 10.1016/j.bioorg.2022.105605
  • Jang J, To C, De Clercq DJH, et al. Mutant-Selective Allosteric EGFR Degraders are effective against a broad range of drug-resistant mutations. Angew Chem Int Ed Engl. 2020 Aug 17;59(34):14481–14489. doi: 10.1002/anie.202003500
  • Zhang H, Xie R, Ai-Furas H, et al. Design, synthesis, and biological evaluation of novel EGFR PROTACs targeting Del19/T790M/C797S mutation. ACS Med Chem Lett. 2022 Feb 10;13(2):278–283. doi: 10.1021/acsmedchemlett.1c00645
  • Zhao HY, Wang HP, Mao YZ, et al. Discovery of potent PROTACs targeting EGFR mutants through the optimization of covalent EGFR ligands. J Med Chem. 2022 Mar 24;65(6):4709–4726. doi: 10.1021/acs.jmedchem.1c01827
  • Yang N, Fan Z, Sun S, et al. Discovery of highly potent and selective KRAS(G12C) degraders by VHL-recruiting PROTACs for the treatment of tumors with KRAS(G12C)-mutation. Eur J Med Chem. 2023 Dec 5;261:115857. doi: 10.1016/j.ejmech.2023.115857
  • Zeng M, Xiong Y, Safaee N, et al. Exploring targeted degradation strategy for oncogenic KRAS(G12C). Cell Chem Biol. 2020 Jan 16;27(1):19–31.e6. doi: 10.1016/j.chembiol.2019.12.006
  • Marini E, Marino M, Gionfriddo G, et al. Investigation into the use of encorafenib to develop potential PROTACs directed against BRAF(V600E) protein. Molecules (Basel, Switzerland). 2022 Dec 3;27(23):8513. doi: 10.3390/molecules27238513

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.