88
Views
0
CrossRef citations to date
0
Altmetric
Review

A patent review on HMGB1 inhibitors for the treatment of liver diseases

, , &
Pages 127-140 | Received 15 Nov 2023, Accepted 27 Mar 2024, Published online: 09 Apr 2024

References

  • Frank MG, Weber MD, Watkins LR, et al. Stress sounds the alarmin: the role of the danger-associated molecular pattern HMGB1 in stress-induced neuroinflammatory priming. Brain Behav Immun. 2015;48:1–7. doi: 10.1016/j.bbi.2015.03.010
  • Gaskell H, Ge X, Nieto N. High-mobility group box-1 and liver disease. Hepatol Commun. 2018;2(9):1005–1020. doi: 10.1002/hep4.1223
  • Wu AH, He L, Long W, et al. Novel mechanisms of herbal therapies for inhibiting HMGB1 secretion or action. Evid Based Complement Alternat Med. 2015;2015:456305. doi: 10.1155/2015/456305
  • Kazama H, Ricci JE, Herndon JM, et al. Induction of immunological tolerance by apoptotic cells requires caspase-dependent oxidation of high-mobility group box-1 protein. Immunity. 2008;29(1):21–32. doi: 10.1016/j.immuni.2008.05.013
  • Youn JH, Shin JS. Nucleocytoplasmic shuttling of HMGB1 is regulated by phosphorylation that redirects it toward secretion. J Immunol. 2006;177(11):7889–7897.
  • Oh YJ, Youn JH, Ji Y, et al. HMGB1 is phosphorylated by classical protein kinase C and is secreted by a calcium-dependent mechanism. J Immunol. 2009;182(9):5800–5809. doi: 10.4049/jimmunol.0801873
  • Wang Y, Su L, Morin MD, et al. TLR4/MD-2 activation by a synthetic agonist with no similarity to LPS. Proc Natl Acad Sci U S A. 2016;113(7):E884–93. doi: 10.1073/pnas.1525639113
  • Cao S, Li S, Wang Y, et al. Acetylation of HMGB1 by JNK1 signaling promotes LPS-Induced peritoneal mesothelial cells apoptosis. Biomed Res Int. 2018;2018:2649585. doi: 10.1155/2018/2649585
  • Kevin JT, Huang Y, Howland Shaw W, et al., inventors; The Feinstein Institute for Medical Research, assignee. Antibodies to High Mobility Group-1 (Hmgb1) B-Box Polypeptides. US8501173B2. 2013 Aug 6.
  • Huang CM, Cai JJ, Jin SW, et al. Class IIa HDAC downregulation contributes to surgery-induced cognitive impairment through HMGB1-medIated inflammatory response in the hippocampi of aged mice. J Inflamm Res. 2021;14:2301–2315. doi: 10.2147/JIR.S304060
  • Evankovich J, Cho SW, Zhang R, et al. High mobility group box 1 release from hepatocytes during ischemia and reperfusion injury is mediated by decreased histone deacetylase activity. J Biol Chem. 2010;285(51):39888–39897. doi: 10.1074/jbc.M110.128348
  • Claveria-Cabello A, Colyn L, Arechederra M, et al. Epigenetics in liver fibrosis: could HDACs be a therapeutic target? Cells. 2020;9(10):2321. doi: 10.3390/cells9102321
  • Chen R, Kang R, Tang D. The mechanism of HMGB1 secretion and release. Exp Mol Med. 2022;54(2):91–102. doi: 10.1038/s12276-022-00736-w
  • Hori O, Brett J, Slattery T, et al. The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. Mediation of neurite outgrowth and co-expression of rage and amphoterin in the developing nervous system. J Biol Chem. 1995;270(43):25752–25761. doi: 10.1074/jbc.270.43.25752
  • Luo Y, Li SJ, Yang J, et al. HMGB1 induces an inflammatory response in endothelial cells via the RAGE-dependent endoplasmic reticulum stress pathway. Biochem Biophys Res Commun. 2013;438(4):732–738. doi: 10.1016/j.bbrc.2013.07.098
  • Sakaguchi M, Murata H, Yamamoto K, et al. TIRAP, an adaptor protein for TLR2/4, transduces a signal from RAGE phosphorylated upon ligand binding. PLoS One. 2011;6(8):e23132. doi: 10.1371/journal.pone.0023132
  • Yang H, Wang H, Ju Z, et al. MD-2 is required for disulfide HMGB1-dependent TLR4 signaling. J Exp Med. 2015;212(1):5–14. doi: 10.1084/jem.20141318
  • He M, Bianchi ME, Coleman TR, et al. Correction to: exploring the biological functional mechanism of the HMGB1/TLR4/MD-2 complex by surface plasmon resonance. Mol Med. 2018;24(1):31. doi: 10.1186/s10020-018-0030-9
  • Andersson U, Tracey KJ. HMGB1 is a therapeutic target for sterile inflammation and infection. Annu Rev Immunol. 2011;29(1):139–162. doi: 10.1146/annurev-immunol-030409-101323
  • Blanchet X, Weber C, von Hundelshausen P. Chemokine heteromers and their impact on Cellular Function—A conceptual framework. Int J Mol Sci. 2023;24(13):10925. doi: 10.3390/ijms241310925
  • De Leo F, Quilici G, Tirone M, et al. Diflunisal targets the HMGB 1/CXCL 12 heterocomplex and blocks immune cell recruitment. EMBO Rep. 2019;20(10):e47788. doi: 10.15252/embr.201947788
  • Sgrignani J, Cecchinato V, Fassi EMA, et al. Systematic development of peptide inhibitors targeting the CXCL12/HMGB1 interaction. J Med Chem. 2021;64(18):13439–13450. doi: 10.1021/acs.jmedchem.1c00852
  • Schiraldi M, Raucci A, Munoz LM, et al. HMGB1 promotes recruitment of inflammatory cells to damaged tissues by forming a complex with CXCL12 and signaling via CXCR4. J Exp Med. 2012;209(3):551–563. doi: 10.1084/jem.20111739
  • Khambu B, Yan S, Huda N, et al. Role of high-mobility group box-1 in liver pathogenesis. Int J Mol Sci. 2019;20(21):5314. doi: 10.3390/ijms20215314
  • Lea JD, Clarke JI, McGuire N, et al. Redox-dependent HMGB1 isoforms as pivotal Co-ordinators of drug-induced liver injury: mechanistic biomarkers and therapeutic targets. Antioxid Redox Signal. 2016;24(12):652–665. doi: 10.1089/ars.2015.6406
  • Pirnie R, Gillespie KP, Weng L, et al. Characterization and quantification of oxidized high mobility group box 1 proteoforms secreted from hepatocytes by toxic levels of acetaminophen. Chem Res Toxicol. 2022;35(10):1893–02. doi: 10.1021/acs.chemrestox.2c00161
  • Hernandez C, Huebener P, Pradere JP, et al. HMGB1 links chronic liver injury to progenitor responses and hepatocarcinogenesis. J Clin Invest. 2018;128(6):2436–2451. doi: 10.1172/JCI91786
  • Li R, Yang W, Yin Y, et al. 4-OI attenuates carbon tetrachloride-induced hepatic injury via regulating oxidative stress and the inflammatory response. Front Pharmacol. 2021;12:12. doi: 10.3389/fphar.2021.651444
  • Hamad Shareef S, Abdel Aziz Ibrahim I, Alzahrani AR, et al. Hepatoprotective effects of methanolic extract of green tea against thioacetamide-induced liver injury in Sprague Dawley rats. Saudi J Biol Sci. 2022;29(1):564–573. doi: 10.1016/j.sjbs.2021.09.023
  • Cheng BQ, Jia CQ, Liu CT, et al. Serum high mobility group box chromosomal protein 1 is associated with clinicopathologic features in patients with hepatocellular carcinoma. Dig Liver Dis. 2008;40(6):446–452. doi: 10.1016/j.dld.2007.11.024
  • Chang C, Wang TJ, Chen MJ, et al. Factors influencing readiness to change in patients with alcoholic liver disease: A cross-sectional study. J Psychiatr Ment Health Nurs. 2021;28(3):344–355. doi: 10.1111/jpm.12677
  • Alisi A, Nobili V, Ceccarelli S, et al. Plasma high mobility group box 1 protein reflects fibrosis in pediatric nonalcoholic fatty liver disease. Expert Rev Mol Diagn. 2014;14(6):763–771. doi: 10.1586/14737159.2014.928205
  • Arriazu E, Ge X, Leung TM, et al. Signalling via the osteopontin and high mobility group box-1 axis drives the fibrogenic response to liver injury. Gut. 2017;66(6):1123–1137. doi: 10.1136/gutjnl-2015-310752
  • Gan LT, Van Rooyen DM, Koina ME, et al. Hepatocyte free cholesterol lipotoxicity results from JNK1-mediated mitochondrial injury and is HMGB1 and TLR4-dependent. J Hepatol. 2014;61(6):1376–1384. doi: 10.1016/j.jhep.2014.07.024
  • Ge X, Arriazu E, Magdaleno F, et al. High mobility group box-1 drives fibrosis progression signaling via the receptor for advanced glycation end products in mice. Hepatology. 2018;68(6):2380–2384. doi: 10.1002/hep.30093
  • Abrams M, Chopda G, Park U, inventors; Dicerna Pharmaceuticals, Inc, assignee Compositions and methods for inhibiting HMGB1 expression Us 2022/0072024 A1. 2022 Mar 10.
  • Wu H, An L-L, Kiener P, et al., inventor; Jonathan Klein-Evans, assignee. Antagonists of HMGB1 and/or RAGE and method of use thereof. Us 20080311122A1. 2008 Dec 18.
  • Abraham E, Arcaroli J, Carmody A, et al. Michael P. Cancro, Peripheral B-cell maturation: the intersection of selection and homeostasis. Immunol Rev. 2004;197(1):89–101. doi: 10.1111/j.0105-2896.2004.0099.x
  • Marie - Lise gougeon NP, Saidi, inventor; Institut Pasteur, assignee. Specific antibodies for various redox forms of HMGB1. Us 20220317131 A1. 2022 Oct 6.
  • Masahiro Asakura A, Keshi KA, Sakamoto N, et al., inventors; Fuso Pharmaceutical Industries, Ltd. assignee. Antibody, method for measuring disulfide-type HMGB1 and kit for said measurement, and measurement method capable of quantitating all of HMGB1 molecules including reduced HMGB1, disulfide-type HMGB1 and thrombin-cleavable HMGB1 and kit for said measurement. US11174310 B2.2021 Nov 16.
  • Koide H, Kiyokawa C, Okishima A, et al. Design of an Anti-HMGB1 synthetic antibody for in vivo ischemic/reperfusion injury therapy. J Am Chem Soc. 2023;145(42):23143–23151. doi: 10.1021/jacs.3c06799
  • Andrea C, Jacopo S, Mariagrazia U, inventors; Institute for Research in Biomedicine, assignee. Peptide Inhibitors targeting CXCL12/HMGB1 interaction and uses thereof. US2020153792A1. 2022 May 19.
  • Kevin JT, Huang Y, Yousef A-A, inventor; The FeinsteinInstitute for MedicalResearch, assignee. Treatment of HMGB1-mediated inflammation. Us 20210052690 A1. 2021 Feb 25.
  • Al-Abed Y, Huan Yang, inventor; The Feinstein Institute for Medical Research, assignee. HMGB1 antagonist. US11471507B2. 2022 Oct 18.
  • Agarwal B, Acharya S, Panda SK, AyuVis Research, Inc. Novel compositions and therapeutics. AU 2023222844 Al. 2023.
  • Park S, Shin HJ, Shah M, et al. TLR4/MD2 specific peptides stalled in vivo LPS-induced immune exacerbation. Biomaterials. 2017;126:49–60. doi: 10.1016/j.biomaterials.2017.02.023
  • Choi S, Yoo TH, Park SH, inventors; Genesen Co. Ltd. assignee. Toll - like receptor 4 (TLR4)antagonist. United States patent US10435443 B2. 2019 Oct 8.
  • Craig D, Logsdon T, inventor; Board of Regents,University of TexasSystem, assignee. Antagonsts of the Receptor for Advanced Glycation End-Products (RAGE). US20100249038A1. 2010 Sep 30.
  • Arumugam T, Ramachandran V, Gomez SB, et al. S100P-derived RAGE antagonistic peptide reduces tumor growth and metastasis. Clin Cancer Res. 2012;18(16):4356–4364. doi: 10.1158/1078-0432.CCR-12-0221
  • Zhao F, Fang Y, Deng S, et al. Glycyrrhizin protects rats from sepsis by blocking HMGB1 Signaling. Biomed Res Int. 2017;2017:9719647. doi: 10.1155/2017/9719647
  • Ding JW, Luo CY, Wang XA, et al. Glycyrrhizin, a high-mobility group box 1 inhiBItor, improves lipid metabolism and suppresses vascular inflammation in apolipoprotein E knockout mice. J Vasc Res. 2018;55(6):365–377. doi: 10.1159/000495310
  • Heo T-H, Shin KJ Composition for preventing or treating TNF - related diseases, containing novel derivative as active ingredient, and method for inhibiting tnf activity by using same. International Journal of Biological Sciences: uS 11,504,349 B2. 2022 Nov 22.
  • Kuroda N, Sato T. Novel mechanisn supporting therapeutics effects of glycyrrhizin in acute or chronic hepatitis. In: Biological Activities And Action Mechanisms Of Licorice Ingredients. Japan: IntechOpen; 2017. p. 135–141. https://www.intechopen.com/books/5680
  • Gao R, Zhang Y, Kang Y, et al. Glycyrrhizin inhibits PEDV infection and proinflammatory cytokine secretion via the HMGB1/TLR4-MAPK p38 pathway. Int J Mol Sci. 2020;21(8):2961. doi: 10.3390/ijms21082961
  • Rasool M, Iqbal J, Malik A, et al. Hepatoprotective effects of Silybum marianum (silymarin) and Glycyrrhiza glabra (Glycyrrhizin) in combination: a possible synergy. Evid Based Complement Alternat Med. 2014;2014:1–9. doi: 10.1155/2014/641597
  • Mollica L, Curioni A, Andreoni W, et al. The binding domain of the HMGB1 inhibitor carbenoxolone: theory and experiment. Chem Phys Lett. 2008;456(4–6):236–242. doi: 10.1016/j.cplett.2008.03.022
  • Mollica L, Morra G, Colombo G, et al. HMGB1-carbenoxolone interactions: Dynamics insights from combined nuclear magnetic resonance and molecular dynamics. Chem Asian J. 2011;6(5):1171–1180. doi: 10.1002/asia.201000726
  • Li W, Li J, Sama AE, et al. Carbenoxolone blocks endotoxin-induced protein kinase R (PKR) activation and high mobility group box 1 (HMGB1) release. Mol Med. 2013;19(1):203–211. doi: 10.2119/molmed.2013.00064
  • Zhang Y, Geng C, Liu X, et al. Celastrol ameliorates liver metabolic damage caused by a high-fat diet through Sirt1. Mol Metabol. 2016;6(1):138–147. doi: 10.1016/j.molmet.2016.11.002
  • Zhang X, Zhao W, Liu X, et al. Celastrol ameliorates inflammatory pain and modulates HMGB1/NF-κB signaling pathway in dorsal root ganglion. Neurosci lett. 2019;692:83–89. doi: 10.1016/j.neulet.2018.11.002
  • Liu DD, Luo P, Gu L, et al. Celastrol exerts a neuroprotective effect by directly binding to HMGB1 protein in cerebral ischemia–reperfusion. J Neuroinflammation. 2021;18(1):174. doi: 10.1186/s12974-021-02216-w
  • Luo P, Liu D, Zhang Q, et al. Celastrol induces ferroptosis in activated HSCs to ameliorate hepatic fibrosis via targeting peroxiredoxins and HO-1. Acta Pharm Sin B. 2022;12(5):2300–2314. doi: 10.1016/j.apsb.2021.12.007
  • Lee W, Lee H, Lee T, et al. Inhibitory functions of maslinic acid, a natural triterpene, on HMGB1-mediated septic responses. Phytomedicine. 2020;69:153200. doi: 10.1016/j.phymed.2020.153200
  • Yan S, Yang H, Lee H, et al. Protective effects of maslinic acid against alcohol-induced acute liver injury in mice. Food Chem Toxicol. 2014;74:149–155. doi: 10.1016/j.fct.2014.09.018
  • Li T, Wang H, Dong S, et al. Protective effects of maslinic acid on high fat diet-induced liver injury in mice. Life Sci. 2022;301:120634. doi: 10.1016/j.lfs.2022.120634
  • Shen P, Sun Y, Jiang X, et al. Interaction of bioactive kaempferol with HMGB1: Investigation by multi-spectroscopic and molecular simulation methods. Spectrochim Acta A Mol Biomol Spectrosc. 2023;292:122360. doi: 10.1016/j.saa.2023.122360
  • Cheng X, Yang YL, Yang H, et al. Kaempferol alleviates LPS-induced neuroinflammation and BBB dysfunction in mice via inhibiting HMGB1 release and down-regulating TLR4/MyD88 pathway. Int Immunopharmacol. 2018;56:29–35. doi: 10.1016/j.intimp.2018.01.002
  • Fang P, Liang J, Jiang X, et al. Quercetin Attenuates d-GaLN-Induced L02 cell damage by suppressing oxidative stress and mitochondrial apoptosis via inhibition of HMGB1. Front Pharmacol. 2020;11:608. doi: 10.3389/fphar.2020.00608
  • Simanjuntak KE, Simanjuntak J, Rosmalena RD, et al. Structure–Based drug design of quercetin and its derivatives against HMGB1. Biomed Pharm J. 2017;10(4):1973–1982. doi: 10.13005/bpj/1318
  • Beglov D, Hall DR, Wakefield AE, et al. Exploring the structural origins of cryptic sites on proteins. Proc Natl Acad Sci U S A. 2018;115(15):E3416–E3425. doi: 10.1073/pnas.1711490115
  • Bigoniya P, Singh C, Singh CS. Hepatoprotective activity of luteolin isolated from A. millefolium on CCl4 intoxicated rat hepatoprotective activity of luteolin from A. millefolium in CCl 4 Intoxicated rat model. Int J Indig Med Plants. 2013;46(4):2051–4263.
  • Ye J, Huang Y, Jiang X, et al. Research on the interaction of astragaloside IV and calycosin in Astragalus membranaceus with HMGB1. Chin Med (United Kingdom). 2023;18(1). doi: 10.1186/s13020-023-00789-7
  • Huang LF, Yao YM, Li JF, et al. The effect of Astragaloside IV on immune function of regulatory T cell mediated by high mobility group box 1 protein in vitro. Fitoterapia. 2012;83(8):1514–1522. doi: 10.1016/j.fitote.2012.08.019
  • Sunitha S, Nagaraj M, Varalakshmi P. Hepatoprotective effect of lupeol and lupeol linoleate on tissue antioxidant defence system in cadmium-induced hepatotoxicity in rats. Fitoterapia. 2001;72(5):516–523. doi: 10.1016/S0367-326X(01)00259-3
  • Jayavabhushana V, Vishnupriya V, Ponnulakshmi R, et al. Lupeol supplementation attenuates overexpression of sterol regulatory element-binding protein in hepatocytes: An experimental study. Drug Invention Today. 2019;12(5):2084–2086.
  • Shen X, Cui X, Cui H, et al. Geraniol and lupeol inhibit growth and promote apoptosis in human hepatocarcinoma cells through the MAPK signaling pathway. J Cell Biochem. 2019;120(4):5033–5041. doi: 10.1002/jcb.27779
  • Huang S, Mo C, Zeng T, et al. Lupeol ameliorates LPS/D-GalN induced acute hepatic damage by suppressing inflammation and oxidative stress through TGFβ1-Nrf2 signal pathway. Aging. 2021;13(5):6592–6605. doi: 10.18632/aging.202409
  • Wang Y, Li L, Deng S, et al. Ursolic acid ameliorates inflammation in cerebral ischemia and reperfusion injury possibly via high mobility group box 1/toll-like receptor 4/NFκB pathway. Front Neurol. 2018;9(253). doi: 10.3389/fneur.2018.00253
  • Habtemariam S. Antioxidant and anti-inflammatory mechanisms of neuroprotection by ursolic acid: addressing brain injury, cerebral ischemia, cognition deficit, anxiety, and depression. Oxid Med Cell Longev. 2019;2019:8512048. doi: 10.1155/2019/8512048
  • Wan Y, Zhang W, Huang C, et al. Ursolic acid alleviates Kupffer cells pyroptosis in liver fibrosis by the NOX2/NLRP3 inflammasome signaling pathway. Int Immunopharmacol. 2022;113:10932. doi: 10.1016/j.intimp.2022.109321
  • Murphy BT, MacKinnon SL, Yan X, et al. Identification of triterpene hydroxycinnamates with in vitro antitumor activity from whole cranberry fruit (Vaccinium macrocarpon). J Agric Food Chemistry. 2003;51(12):3541–3545. doi: 10.1021/jf034114g
  • Mankani KL, Krishna V, Manjunatha BK, et al. Hepatoprotective effects of the triterpenes isolated from the stem bark of Diospyros cordifolia Roxb. J Nat Remedies. 2006;6(2):147–152.
  • Parvez MK, Alam P, Arbab AH, et al. Analysis of antioxidative and antiviral biomarkers beta-amyrin, beta-sitosterol, lupeol, ursolic acid in Guiera senegalensis leaves extract by validated HPTLC methods. Saudi Pharm J. 2018;26(5):685–693. doi: 10.1016/j.jsps.2018.02.022
  • Wan S, Luo F, Huang C, et al. Ursolic acid reverses liver fibrosis by inhibiting interactive NOX4/ROS and RhoA/ROCK1 signalling pathways. Aging. 2020;12(11):10614–10632. doi: 10.18632/aging.103282
  • Bakhtiari N, Mirzaie S, Hemmati R, et al. Mounting evidence validates Ursolic Acid directly activates SIRT1: A powerful STAC which mimic endogenous activator of SIRT1. Arch Biochem Biophys. 2018;650:39–48. doi: 10.1016/j.abb.2018.05.012
  • Wang W, Wu L, Li J, et al. Alleviation of hepatic ischemia reperfusion injury by oleanolic acid pretreating via reducing HMGB1 release and inhibiting apoptosis and autophagy. Mediators Inflamm. 2019;2019:3240713. doi: 10.1155/2019/3240713
  • Ouyang C, Ma X, Zhao J, et al. Protective effect of oleanolic acid on liver injury induced by acute exposure to mercury chloride and its possible mechanism. J Occup Environ Med. 2022;39(11):1298–03.
  • Liu J, Lu YF, Wu Q, et al. Oleanolic acid reprograms the liver to protect against hepatotoxicants, but is hepatotoxic at high doses. Liver International: Blackwell Publishing Ltd; 2019. p. 427–439.
  • Liu J, Liu J, Meng C, et al. Oleanolic acid alleviates ANIT-induced cholestatic liver injury by activating Fxr and Nrf2 pathways to ameliorate disordered bile acids homeostasis. Phytomedicine. 2022;102:154173. doi: 10.1016/j.phymed.2022.154173
  • Kawahara K, Hashiguchi T, Masuda K, et al. Mechanism of HMGB1 release inhibition from RAW264.7 cells by oleanolic acid in Prunus mume Sieb. et Zucc. Int J Mol Med. 2009;23(5):615–620. doi: 10.3892/ijmm_00000172
  • Horiuchi T, Sakata N, Narumi Y, et al. Metformin directly binds the alarmin HMGB1 and inhibits its proinflammatory activity. J Biol Chem. 2017;292(20):8436–8446. doi: 10.1074/jbc.M116.769380
  • Teng S, Zhu Z, Wu C, et al. Inflachromene inhibits intimal hyperplasia through the HMGB1/2- regulated TLR4-NF-kappaB pathway. Int Immunopharmacol. 2023;119:110198. doi: 10.1016/j.intimp.2023.110198
  • Yuan S, Liu Z, Xu Z, et al. High mobility group box 1 (HMGB1): a pivotal regulator of hematopoietic malignancies. J Hematol Oncol. 2020;13(1):91. doi: 10.1186/s13045-020-00920-3
  • Choi HW, Tian M, Song F, et al. Aspirin’s active metabolite salicylic acid targets high mobility group box 1 to modulate inflammatory responses. Mol Med (Cambridge, Mass). 2015;21(1):526–535. doi: 10.2119/molmed.2015.00148
  • Liu Y, Wang Y, Hu Y, et al. The apoptotic inducible effects of salicylic acid on hepatoma cell line: relationship with nitric oxide signaling. J Cell Commun Signal. 2017;11(3):245. doi: 10.1007/s12079-017-0380-z
  • Opal SM, Laterre P-F, Francois B, et al. Effect of eritoran, an antagonist of MD2-TLR4, on mortality in patients with severe sepsis the ACCESS randomized trial. JAMA. 2013;309(11):1154–1162.
  • Ling Y, Yang ZY, Yin T, et al. Heparin changes the conformation of high-mobility group protein 1 and decreases its affinity toward receptor for advanced glycation endproducts in vitro. Int Immunopharmacol. 2011;11(2):187–193. doi: 10.1016/j.intimp.2010.11.014
  • Li L, Ling Y, Huang M, et al. Heparin inhibits the inflammatory response induced by LPS and HMGB1 by blocking the binding of HMGB1 to the surface of macrophages. Cytokine. 2015;72(1):36–42. doi: 10.1016/j.cyto.2014.12.010
  • Choi YI, Ahn S, Kim HY, et al. Abstract 5599: a novel orally available anti-cancer drug candidate, SB17170, represses myeloid-derived suppressor cells by targeting HMGB1. Cancer Res. 2022;82(12_Supplement):5599. doi: 10.1158/1538-7445.AM2022-5599
  • Kenzo Takada TT, Nishibori M, inventor; National University Corporation Okayama Universtity, assignee. Humanized anti-HMGB1antibody or antigen-binding fragment thereo F US 2015/0361164 A1. 2015 Dec 17.
  • Frejd, inventor; AFFIBODY AB, assignee. IL - 6 - binding polypeptide complex. Us 10,633,423 B2. 2020 Apr 28.
  • Perrin-Cocon L, Aublin-Gex A, Sestito SE, et al. TLR4 antagonist FP7 inhibits LPS-induced cytokine production and glycolytic reprogramming in dendritic cells, and protects mice from lethal influenza infection. Sci Rep. 2016;7(1):40791. doi: 10.1038/srep40791
  • Stevens NE, Chapman MJ, Fraser CK, et al. Therapeutic targeting of HMGB1 during experimental sepsis modulates the inflammatory cytokine profile to one associated with improved clinical outcomes. Sci Rep. 2017;7(1):5850. doi: 10.1038/s41598-017-06205-z
  • Sun S, He M, Wang Y, et al. Folic acid derived-P5779 mimetics regulate DAMP-mediated inflammation through disruption of HMGB1: TLR4: MD-2 axes. PLoS One. 2018;13(2):e0193028. doi: 10.1371/journal.pone.0193028
  • Yamaguchi H, Kidachi Y, Kamiie K, et al. Structural insight into the ligand-receptor interaction between glycyrrhetinic acid (GA) and the high-mobility group protein B1 (HMGB1)-DNA complex. Bioinformation. 2012;8(23):1147–1153. doi: 10.6026/97320630081147
  • Du D, Yan J, Ren J, et al. Synthesis, biological evaluation, and molecular modeling of glycyrrhizin derivatives as potent high-mobility group box-1 inhibitors with anti-heart-failure activity in vivo. J Med Chem. 2013;56(1):97–108. doi: 10.1021/jm301248y
  • Kamble SM, Patel HM, Goyal SN, et al. In silico evidence for binding of pentacyclic triterpenoids to Keap1-Nrf2 protein-protein Binding site. Comb Chem High Throughput Screen. 2017;20(3):215–234. doi: 10.2174/1386207319666161214111822
  • Wang Y, Yu Z, Yuan H, et al. Structure-based design of glycyrrhetinic acid derivatives as potent anti-sepsis agents targeting high-mobility group box-1. Bioorg Chem. 2021;106:104461. doi: 10.1016/j.bioorg.2020.104461
  • Hu Z, Xiao M, Cai H, et al. Glycyrrhizin regulates rat TMJOA progression by inhibiting the HMGB1-RAGE/TLR4-NF-kappaB/AKT pathway. J Cell Mol Med. 2022;26(3):925–936. doi: 10.1111/jcmm.17149
  • Sun Y, Chen H, Dai J, et al. Glycyrrhizin protects mice against experimental autoimmune encephalomyelitis by inhibiting high-mobility group box 1 (HMGB1) expression and Neuronal HMGB1 Release. Front Immunol. 2018;9:1518. doi: 10.3389/fimmu.2018.01518
  • Tan JY, Zhao F, Deng SX, et al. Glycyrrhizin affects monocyte migration and apoptosis by blocking HMGB1 signaling. Mol Med Rep. 2018;17(4). doi: 10.3892/mmr.2018.8598
  • Mollica L, De Marchis F, Spitaleri A, et al. Glycyrrhizin binds to high-mobility group box 1 protein and inhibits its cytokine activities. Chem Biol. 2007;14(4):431–441. doi: 10.1016/j.chembiol.2007.03.007
  • Ahmad Bhat S, Islam Siddiqui Z, Ahmad Parray Z, et al. Naturally occurring HMGB1 inhibitor delineating the anti-hepatitis B virus mechanism of glycyrrhizin via in vitro and in silico studies. J Mol Liq. 2022;356:119029. doi: 10.1016/j.molliq.2022.119029
  • Bhat SA, Hasan SK, Parray ZA, et al. Potential antiviral activities of chrysin against hepatitis B virus. Gut Pathog. 2023;15(1):11. doi: 10.1186/s13099-023-00531-6
  • Yang G, Zhang L, Ma L, et al. Glycyrrhetinic acid prevents acetaminophen-induced acute liver injury via the inhibition of CYP2E1 expression and HMGB1-TLR4 signal activation in mice. Int Immunopharmacol. 2017;50:186–193. doi: 10.1016/j.intimp.2017.06.027
  • Bianchi Marco Emilio C, Maura V, Joe E, et al., inventor; Ospedale San Raffaele Srl, assignee. HMGB1 variants and uses thereof 2014 2014 Jan 30.
  • Wang J, Shen P, Jiang X, et al. Microbial transformation of maslinic acid for potential food supplements against sterile inflammation. ACS Food Sci Technol. 2023;3(4):808–815. doi: 10.1021/acsfoodscitech.3c00108
  • Bea JS; inventor. Ulsan University Industry-Academic Cooperation Foundation; assignee. Composition for prevention or treatment of sepsis or septic shock comprising maslinic acid. KR20210061217A. 2021 Dec 24.
  • Lee W, Lee H, Lee T, et al. Inhibitory functions of maslinic acid, a natural triterpene, on HMGB1-mediated septic responses. Phytomedicine. 2020;69:15320. doi: 10.1016/j.phymed.2020.153200
  • Roy NK, Parama D, Banik K, et al. An update on pharmacological potential of boswellic acids against chronic diseases. Int J Mol Sci MDPI AG. 2019;20(17):4101. doi: 10.3390/ijms20174101
  • Chen X, Wan Y, Zhou T, et al. Ursolic acid attenuates lipopolysaccharide-induced acute lung injury in a mouse model. Immunotherapy. 2013;5(1):39–47. doi: 10.2217/imt.12.144
  • Zhang C, Wang C, Li W, et al. Pharmacokinetics and pharmacodynamics of the triterpenoid ursolic acid in regulating the antioxidant, anti-inflammatory, and epigenetic gene responses in rat leukocytes. Mol Pharmaceut. 2017;14(11):3709–3717. doi: 10.1021/acs.molpharmaceut.7b00469
  • Niu X, Yu Y, Guo H, et al. Molecular modeling reveals the inhibition mechanism and binding mode of ursolic acid to TLR4-MD2. Comput Theor Chem. 2018;1123:73–78. doi: 10.1016/j.comptc.2017.11.016
  • Wei ZY, Chi KQ, Wang KS, et al. Design, synthesis, evaluation, and molecular docking of ursolic acid derivatives containing a nitrogen heterocycle as anti-inflammatory agents. Bioorg Med Chem Lett. 2018;28(10):1797–1803. doi: 10.1016/j.bmcl.2018.04.021
  • Jiang X, Shen P, Zhou J, et al. Microbial transformation and inhibitory effect assessment of uvaol derivates against LPS and HMGB1 induced NO production in RAW264.7 macrophages. Bioorganic Med Chem Lett. 2022;58:128523. doi: 10.1016/j.bmcl.2021.128523
  • Shen P, Zhou J, Jiang X, et al. Microbial-catalyzed baeyer-villiger oxidation for 3,4-seco-triterpenoids as potential HMGB1 inhibitors. ACS Omega. 2022;7(22):18745–18751. doi: 10.1021/acsomega.2c01352
  • Shen P, Peng Y, Zhou X, et al. A comprehensive spectral and in silico analysis on the interactions between quercetin, isoquercitrin, rutin and HMGB1. LWT. 2022;169:113983. doi: 10.1016/j.lwt.2022.113983
  • Kim YH, Kwak MS, Shin JM, et al. Inflachromene inhibits autophagy through modulation of Beclin 1 activity. J Cell Sci. 2018;131(4):211021. doi: 10.1242/jcs.211201
  • Lee S, Nam Y, JYo K, et al. A small molecule binding HMGB1 and HMGB2 inhibits microglia-mediated neuroinflammation. Nat Chem Biol. 2014;10(12):1055–1060. doi: 10.1038/nchembio.1669
  • Cho W, Koo JY, Park Y, et al. Treatment of sepsis pathogenesis with high mobility group box protein 1-regulating anti-inflammatory agents. J Med Chem. 2017;60(1):170–179. doi: 10.1021/acs.jmedchem.6b00954
  • Mardente S, Mari E, Massimi I, et al. From human megakaryocytes to platelets: effects of aspirin on high-mobility group box 1/receptor for advanced glycation end products axis. Front Immunol. 2017;8:1946. doi: 10.3389/fimmu.2017.01946
  • Klessig DF, Park S-W, Choi HW, et al., inventors; Boyce Thompson Institute for Plant Research, Inc, assignee. Structure and function of the salicyclic acid binding sites on human HMGB1 and methods of use thereof for the rational design of both salicyclic acid derivatives and other agents that alter animal and plant HMGBs activities patent Us 20180045715 A1. 2018 Feb 15.
  • De Leo F, Quilici G, De Marchis F, et al. Discovery of 5,5’-methylenedi-2,3-cresotic acid as a potent inhibitor of the chemotactic activity of the HMGB1.CXCL12 heterocomplex using virtual screening and NMR validation. Front Chem. 2020;8:598710. doi: 10.3389/fchem.2020.598710
  • Sun B, Ying S, Ma Q, et al. Metformin ameliorates HMGB1-mediated oxidative stress through mTOR pathway in experimental periodontitis. Genes Dis. 2023;10(2):542–553. doi: 10.1016/j.gendis.2021.06.003
  • McDonald KA, Huang H, Tohme S, et al. Toll-like receptor 4 (TLR4) antagonist eritoran tetrasodium attenuates liver ischemia and reperfusion injury through inhibition of high-mobility group box protein B1 (HMGB1) signaling. Mol Med. 2015;20(1):639–648. doi: 10.2119/molmed.2014.00076
  • Tracey KJ, Yang H, Al-Abed Y, inventors; The Fienstien Institute for Medical Research, assignee. Treatment of HMGB1 - mediated inflammation US2021/052690A1. 2021 Feb 25.
  • Kennedy TP, inventor; University of Utah Research Foundation, assignee. Method for blocking ligation of the receptor for advanced glycation end-products (RAGE). US20120083465A1. 2012 Apr 5.
  • Arnold K, Xu Y, Sparkenbaugh EM, et al. Design of anti-inflammatory heparan sulfate to protect against acetaminophen-induced acute liver failure. Sci Transl Med. 2020;12(535):8075. doi: 10.1126/scitranslmed.aav8075
  • Katelyn A, Liu J, Pawlinski CB, inventors; The University of North Carolina at Chapel Hill, assignee. Heparan sulfate (HS) oligosaccharides effect in liver ischemia reperfusion injury US 2022/0265699 A1. 2022 Aug 25.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.