382
Views
2
CrossRef citations to date
0
Altmetric
Review

Investigational beta-2 adrenergic agonists for the treatment of chronic obstructive pulmonary disease

, , , &
Pages 319-329 | Received 29 Sep 2016, Accepted 23 Jan 2017, Published online: 06 Feb 2017

References

  • GOLD. Global strategy for the diagnosis, managment, and prevention of cronic obstuctive pulmonary disease. GOLD Guidel. 2015.
  • Celli BR, MacNee W, Agusti A, et al. Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. Eur Respir J. 2004;23:932–946.
  • Montuschi P, Malerba M, Macis G, et al. Triple inhaled therapy for chronic obstructive pulmonary disease. Drug Discov Today. 2016;21(11):1820–1827.
  • Cazzola M, Rogliani P, Segreti A. An update on bronchodilators in Phase I and II clinical trials. Expert Opin Investig Drugs. 2012;21:1489–1501.
  • Prakash A, Babu KS, Morjaria JB. Novel anti-cholinergics in COPD. Drug Discov Today. 2013;18:1117–1126.
  • Malerba M, Radaeli A, Morjaria JB. Therapeutic potential for novel ultra long-acting β 2- agonists in the management of COPD: biological and pharmacological aspects. Drug Discov Today. 2012;17:495–504.
  • Billington CK, Ojo OO, Penn RB, et al. cAMP regulation of airway smooth muscle function. Pulm Pharmacol Ther. 2013;26:112–120.
  • Cazzola M, Page CP, Rogliani P, et al. β 2 -agonist therapy in lung disease. Am J Respir Crit Care Med. 2013;187:690–696.
  • Billington CK, Penn RB. Signaling and regulation of G protein-coupled receptors in airway smooth muscle. Respir Res. 2003;4:2.
  • Spina D. Current and novel bronchodilators in respiratory disease. Curr Opin Pulm Med. 2014;20:73–86.
  • Lin Y, Smrcka AV. Understanding molecular recognition by G protein βγ subunits on the path to pharmacological targeting. Mol Pharmacol. 2011;80:551–557.
  • Roscioni SS, Maarsingh H, Elzinga CRS, et al. Epac as a novel effector of airway smooth muscle relaxation. J Cell Mol Med. 2011;15:1551–1563.
  • Janssen LJ, Tazzeo T, Enhanced Myosin ZJ. Phosphatase and Ca 2+ -uptake mediate adrenergic relaxation of airway smooth muscle. Am J Respir Cell Mol Biol. 2004;30:548–554.
  • Westfall TC, Westfall DP. Adrenergic agonists andantagonists. In: Brunton LL, Chabner BA, Knollmann BC,eds. Goodman and Gilman’s The Pharmacological Basis ofTherapeutics. 12th ed. New York, NY: McGraw-Hill Companies,Inc; 2011.
  • Procopiou PA, Barrett VJ, Bevan NJ, et al. Synthesis and structure−activity relationships of long-acting β 2 adrenergic receptor agonists incorporating metabolic inactivation: an antedrug approach. J Med Chem. 2010;53:4522–4530.
  • Isogaya M, Yamagiwa Y, Fujita S, et al. Identification of a key amino acid of the beta2-adrenergic receptor for high affinity binding of salmeterol. Mol Pharmacol. 1998;54:616–622.
  • Slack RJ, Barrett VJ, Morrison VS, et al. In vitro pharmacological characterization of vilanterol, a novel long-acting 2-adrenoceptor agonist with 24-hour duration of action. J Pharmacol Exp Ther. 2013;344:218–230.
  • Bouyssou T, Hoenke C, Rudolf K, et al. Discovery of olodaterol, a novel inhaled β2-adrenoceptor agonist with a 24h bronchodilatory efficacy. Bioorg Med Chem Lett. 2010;20:1410–1414.
  • Rosethorne EM, Turner RJ, Fairhurst RA, et al. Efficacy is a contributing factor to the clinical onset of bronchodilation of inhaled β2-adrenoceptor agonists. Naunyn Schmiedebergs Arch Pharmacol. 2010;382:255–263.
  • Anderson GP, Lindén A, Rabe KF. Why are long-acting beta-adrenoceptor agonists long-acting? Eur Respir J. 1994;7:569–578.
  • Vauquelin G, Charlton SJ. Long-lasting target binding and rebinding as mechanisms to prolong in vivo drug action. Br J Pharmacol. 2010;161:488–508.
  • Lombardi D, Cuenoud B, Krämer SD. Lipid membrane interactions of indacaterol and salmeterol: do they influence their pharmacological properties? Eur J Pharm Sci. 2009;38:533–547.
  • Coleman RA. On the mechanism of the persistent action of salmeterol: what is the current position? Br J Pharmacol. 2009;158:180–182.
  • Green SA, Spasoff AP, Coleman RA, et al. Sustained activation of a G protein-coupled receptor via “anchored” agonist binding. Molecular localization of the salmeterol exosite within the 2-adrenergic receptor. J Biol Chem. 1996;271:24029–24035.
  • Bao Y, Lemoine H. [Inquiry into the mechanism of long-acting bronchodilators]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 1998;20:191–196.
  • Hughes AD, Jones LH. Dual-pharmacology muscarinic antagonist and β 2 agonist molecules for the treatment of chronic obstructive pulmonary disease. Future Med Chem. 2011;3:1585–1605.
  • Hughes AD, McNamara A, Multivalent Dual ST. Pharmacology Muscarinic Antagonist and β2 Agonist (MABA) molecules for the treatment of COPD. Prog Med Chem. 2012;51:71–95.
  • Kikkawa H, Isogaya M, Nagao T, et al. The role of the seventh transmembrane region in high affinity binding of a beta 2-selective agonist TA-2005. Mol Pharmacol. 1998;53:128–134.
  • Voss HP, Donnell D, Bast A. Atypical molecular pharmacology of a new long-acting beta 2-adrenoceptor agonist, TA 2005. Eur J Pharmacol. 1992;227:403–409.
  • Summerhill S, Stroud T, Nagendra R, et al. A cell-based assay to assess the persistence of action of agonists acting at recombinant human β2 adrenoceptors. J Pharmacol Toxicol Methods. 2008;58:189–197.
  • Make B, Kanniess F, Bateman E, et al. Efficacy of 3 different doses of carmoterol, a long-acting beta 2 agonist in patients with COPD. Proc Am Thorac Soc. 2008;5:A961.
  • Rossing TH, Make BJ, Heyman ER. Carmoterol does not induce tolerance in COPD. Am J Respir Crit Care Med. 2008;5:A962.
  • Bateman E, Make B, Nandeuil M. Safety and tolerability of a long-acting beta2-agonist in patients with COPD. Am J Respir Crit Care Med. 2008;5:A653.
  • Aparici M, Gomez-Angelats M, Vilella D, et al. Pharmacological characterization of abediterol, a novel inhaled 2-adrenoceptor agonist with long duration of action and a favorable safety profile in preclinical models. J Pharmacol Exp Ther. 2012;342:497–509.
  • Timmer W, Massana E, Jimenez E, et al. First-in-human study of the safety, tolerability, pharmacokinetics and pharmacodynamics of abediterol (LAS100977), a novel long-acting Β 2 -agonist. J Clin Pharmacol. 2014;54:1347–1353.
  • Beier J, Pujol H, Seoane B, et al. Abediterol, a novel long-acting β2-agonist: bronchodilation, safety, tolerability and pharmacokinetic results from a single-dose, dose-ranging, active-comparator study in patients with COPD. BMC Pulm Med. 2016;16:102.
  • Singh D, Pujol H, Ribera A, et al. A dose-ranging study of the bronchodilator effects of abediterol (LAS100977), a long-acting β 2 -adrenergic agonist, in asthma; a Phase II, randomized study. BMC Pulm Med. 2014;14:176.
  • Beier J, Fuhr R, Massana E, et al. Abediterol (LAS100977), a novel long-acting β2-agonist: efficacy, safety and tolerability in persistent asthma. Respir Med. 2014;108:1424–1429.
  • Glossop PA, Lane CAL, Price DA, et al. Inhalation by design: novel ultra-long-acting β 2 -adrenoreceptor agonists for inhaled once-daily treatment of asthma and chronic obstructive pulmonary disease that utilize a sulfonamide agonist headgroup. J Med Chem. 2010;53:6640–6652.
  • Li G, Mac Intyre F, Surujbally B, et al. Pharmacokinetics of PF-00610355, a novel inhaled long-acting β2-adrenoreceptor agonist. Eur Respir J. 2009:34;777S.
  • Diderichsen PM, Cox E, Martin SW, et al. Predicted heart rate effect of inhaled PF-00610355, a long acting β-adrenoceptor agonist, in volunteers and patients with chronic obstructive pulmonary disease. Br J Clin Pharmacol. 2013;76:752–762.
  • Diderichsen PM, Cox E, Martin SW, et al. Characterizing systemic exposure of inhaled drugs: application to the long-acting β2-agonist PF-00610355. Clin Pharmacokinet. 2013;52:443–452.
  • Austin RP, Barton P, Bonnert RV, et al. QSAR and the rational design of long-acting dual D 2 -receptor/β 2 -adrenoceptor agonists. J Med Chem. 2003;46:3210–3220.
  • Alcaraz L, Bailey A, Cadogan E, et al. From libraries to candidate: the discovery of new ultra long-acting dibasic β2-adrenoceptor agonists. Bioorg Med Chem Lett. 2012;22:689–695.
  • Stocks MJ, Alcaraz L, Bailey A, et al. Discovery of AZD3199, an inhaled ultralong acting β2 receptor agonist with rapid onset of action. ACS Med Chem Lett. 2014;5:416–421.
  • Procopiou PA, Barrett VJ, Biggadike K, et al. Discovery of a rapidly metabolized, long-acting β 2 adrenergic receptor agonist with a short onset time incorporating a sulfone group suitable for once-daily dosing. J Med Chem. 2014;57:159–170.
  • Bjermer L, Kuna P, Jorup C, et al. Clinical pharmacokinetics of AZD3199, an inhaled ultra-long-acting β2-adrenoreceptor agonist (uLABA). Drug Des Devel Ther. 2015;9:753–762.
  • Kuna P, Ivanov Y, Trofimov V, et al. Efficacy and safety of AZD3199 vs formoterol in COPD: a randomized, double-blind study. Respir Res. 2013;14:64.
  • Tricco AC, Strifler L, Veroniki -A-A, et al. Comparative safety and effectiveness of long-acting inhaled agents for treating chronic obstructive pulmonary disease: a systematic review and network meta-analysis. BMJ Open. 2015;5:e009183.
  • Cazzola M, Tashkin DP. Combination of formoterol and tiotropium in the treatment of COPD: effects on lung function. Copd. 2009;6:404–415.
  • Cazzola M, Molimard M. The scientific rationale for combining long-acting β2-agonists and muscarinic antagonists in COPD. Pulm Pharmacol Ther. 2010;23:257–267.
  • López-Campos JL. Interacción M2-β2: bases para el tratamiento broncodilatador combinado. Arch Bronconeumol. 2013;49:279–281.
  • Hegde SS, Hughes AD, Chen Y, et al. Pharmacologic characterization of GSK-961081 (TD-5959), a first-in-class inhaled bifunctional bronchodilator possessing muscarinic receptor antagonist and 2-adrenoceptor agonist properties. J Pharmacol Exp Ther. 2014;351:190–199.
  • Bateman ED, Kornmann O, Ambery C, et al. Pharmacodynamics of GSK961081, a bi-functional molecule, in patients with COPD. Pulm Pharmacol Ther. 2013;26:581–587.
  • Wielders PLML, Ludwig-Sengpiel A, Locantore N, et al. A new class of bronchodilator improves lung function in COPD: a trial with GSK961081. Eur Respir J. 2013;42:972–981.
  • Ambery CL, Wielders P, Ludwig-Sengpiel A, et al. Population pharmacokinetics and pharmacodynamics of GSK961081 (Batefenterol), a muscarinic antagonist and β2-agonist, in moderate-to-severe COPD patients: substudy of a randomized trial. Drugs R D. 2015;15:281–291.
  • Norris V, Ambery C. Use of propranolol blockade to explore the pharmacology of GSK961081, a Bi-functional bronchodilator, in healthy volunteers: results from two randomized trials. Drugs R D. 2014;14:241–251.
  • Ambery C, Riddell K, Daley-Yates P. Open-label, randomized, 6-way crossover, single-dose study to determine the pharmacokinetics of batefenterol (GSK961081) and fluticasone furoate when administered alone or in combination. Clin Pharmacol Drug Dev. 2016;5:399–407.
  • Norman P. Evaluation of WO-2012085582 and WO-2012085583 two identified MABAs: backups to AZD-2115? Expert Opin Ther Pat. 2012;22:1377–1383.
  • Yamada M, Ichinose M. Cutting edge of COPD therapy: current pharmacological therapy and future direction. COPD Res Pract. 2015;1:5.
  • Tashkin DP, Ferguson GT. Combination bronchodilator therapy in the management of chronic obstructive pulmonary disease. Respir Res. 2013;14:49.
  • Malerba M, Radaeli A, Montuschi P, et al. Vilanterol trifenatate for the treatment of COPD. Expert Rev Respir Med. 2016;10(7):719–731.
  • Fuso L, Mores N, Valente S, et al. Long-acting beta-agonists and their association with inhaled corticosteroids in COPD. Curr Med Chem. 2013;20(12):1477–1495.
  • Sannigrahi S, Wang C, Zhou X, et al. LANTERN: a randomized study of QVA149 versus salmeterol/fluticasone combination in patients with COPD. Int J Chron Obstruct Pulmon Dis. 2015;10:1015.
  • Wedzicha JA, Banerji D, Chapman KR, et al. Indacaterol–Glycopyrronium versus Salmeterol–Fluticasone for COPD. N Engl J Med. 2016;374:2222–2234.
  • Vogelmeier C, Paggiaro PL, Dorca J, et al. Efficacy and safety of aclidinium/formoterol versus salmeterol/fluticasone: a phase 3 COPD study. Eur Respir J. 2016;48:1030–1039.
  • Mulhall AM, Zafar MA, Record S, et al. A tablet-based multimedia education tool improves provider and patient knowledge of inhaler use techniques. Respir Care. 2017;62(2):163–171.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.