2,006
Views
69
CrossRef citations to date
0
Altmetric
Review

Pharmacotherapeutic agents in the treatment of methamphetamine dependence

, , , &
Pages 563-578 | Received 19 Nov 2016, Accepted 27 Mar 2017, Published online: 07 Apr 2017

References

  • United Nations Office on Drugs and Crime. World drug report. Press Release. 2015. Available from: http://www.unodc.org/wdr2016/en/ats.html
  • Degenhardt L, Larney S, Chan G, et al. Estimating the number of regular and dependent methamphetamine users in australia, 2002-2014. Med J Aust. 2016;204(4):153.
  • Degenhardt L, Sara G, McKetin R, et al. Crystalline methamphetamine use and methamphetamine-related harms in australia. Drug Alcohol Rev. 2016;36(2):160–170.
  • Newton TF, De La Garza R 2nd, Kalechstein AD, et al. Cocaine and methamphetamine produce different patterns of subjective and cardiovascular effects. Pharmacol Biochem Behav. 2005;82(1):90–97.
  • Perez-Reyes M, White WR, McDonald SA, et al. Clinical effects of methamphetamine vapor inhalation. Life Sci. 1991;49(13):953–959.
  • Homer BD, Solomon TM, Moeller RW, et al. Methamphetamine abuse and impairment of social functioning: A review of the underlying neurophysiological causes and behavioral implications. Psychol Bull. 2008;134(2):301–310.
  • Perez-Reyes M, White WR, McDonald SA, et al. Clinical effects of daily methamphetamine administration. Clin Neuropharmacol. 1991;14(4):352–358.
  • Fleckenstein AE, Volz TJ, Hanson GR. Psychostimulant-induced alterations in vesicular monoamine transporter-2 function: neurotoxic and therapeutic implications. Neuropharmacology. 2009;56(Suppl 1):133–138.
  • Sulzer D, Sonders MS, Poulsen NW, et al. Mechanisms of neurotransmitter release by amphetamines: A review. Prog Neurobiol. 2005;75(6):406–433.
  • Fleckenstein AE, Volz TJ, Riddle EL, et al. New insights into the mechanism of action of amphetamines. Annu Rev Pharmacol Toxicol. 2007;47:681–698.
  • Panenka WJ, Procyshyn RM, Lecomte T, et al. Methamphetamine use: A comprehensive review of molecular, preclinical and clinical findings. Drug Alcohol Depend. 2013;129(3):167–179.
  • London ED, Kohno M, Morales AM, et al. Chronic methamphetamine abuse and corticostriatal deficits revealed by neuroimaging. Brain Res. 2015;1628(Pt A):174–185.
  • Chou YH, Huang WS, Su TP, et al. Dopamine transporters and cognitive function in methamphetamine abuser after a short abstinence: A spect study. Eur Neuropsychopharmacol. 2007;17(1):46–52.
  • Volkow ND, Chang L, Wang GJ, et al. Loss of dopamine transporters in methamphetamine abusers recovers with protracted abstinence. J Neurosci. 2001;21(23):9414–9418.
  • Ballard ME, Mandelkern MA, Monterosso JR, et al. Low dopamine d2/d3 receptor availability is associated with steep discounting of delayed rewards in methamphetamine dependence. Int J Neuropsychopharmacol. 2015;18(7):pyu119.
  • Volkow ND, Chang L, Wang GJ, et al. Low level of brain dopamine d2 receptors in methamphetamine abusers: association with metabolism in the orbitofrontal cortex. Am J Psychiatry. 2001;158(12):2015–2021.
  • Sekine Y, Ouchi Y, Takei N, et al. Brain serotonin transporter density and aggression in abstinent methamphetamine abusers. Arch Gen Psychiatry. 2006;63(1):90–100.
  • Johanson CE, Frey KA, Lundahl LH, et al. Cognitive function and nigrostriatal markers in abstinent methamphetamine abusers. Psychopharmacology (Berl). 2006;185(3):327–338.
  • Daumann J, Koester P, Becker B, et al. Medial prefrontal gray matter volume reductions in users of amphetamine-type stimulants revealed by combined tract-based spatial statistics and voxel-based morphometry. Neuroimage. 2011;54(2):794–801.
  • Thompson PM, Hayashi KM, Simon SL, et al. Structural abnormalities in the brains of human subjects who use methamphetamine. J Neurosci. 2004;24(26):6028–6036.
  • Jernigan TL, Gamst AC, Archibald SL, et al. Effects of methamphetamine dependence and hiv infection on cerebral morphology. Am J Psychiatry. 2005;162(8):1461–1472.
  • Tobias MC, O’Neill J, Hudkins M, et al. White-matter abnormalities in brain during early abstinence from methamphetamine abuse. Psychopharmacology (Berl). 2010;209(1):13–24.
  • Ernst T, Chang L, Leonido-Yee M, et al. Evidence for long-term neurotoxicity associated with methamphetamine abuse: A 1h mrs study. Neurology. 2000;54(6):1344–1349.
  • Sekine Y, Ouchi Y, Sugihara G, et al. Methamphetamine causes microglial activation in the brains of human abusers. J Neurosci. 2008;28(22):5756–5761.
  • Iudicello JE, Woods SP, Vigil O, et al. Longer term improvement in neurocognitive functioning and affective distress among methamphetamine users who achieve stable abstinence. J Clin Exp Neuropsychol. 2010;32(7):704–718.
  • Gonzalez R, Rippeth JD, Carey CL, et al. Neurocognitive performance of methamphetamine users discordant for history of marijuana exposure. Drug Alcohol Depend. 2004;76(2):181–190.
  • Woods SP, Rippeth JD, Conover E, et al. Deficient strategic control of verbal encoding and retrieval in individuals with methamphetamine dependence. Neuropsychology. 2005;19(1):35–43.
  • McKetin R, Dawe S, Burns RA, et al. The profile of psychiatric symptoms exacerbated by methamphetamine use. Drug Alcohol Depend. 2016;161:104–109.
  • Zorick T, Nestor L, Miotto K, et al. Withdrawal symptoms in abstinent methamphetamine-dependent subjects. Addiction. 2010;105(10):1809–1818.
  • Rusyniak DE. Neurologic manifestations of chronic methamphetamine abuse. Psychiatr Clin North Am. 2013;36(2):261–275.
  • Harro J. Neuropsychiatric adverse effects of amphetamine and methamphetamine. Int Rev Neurobiol. 2015;120:179–204.
  • McKetin R, Gardner J, Baker AL, et al. Correlates of transient versus persistent psychotic symptoms among dependent methamphetamine users. Psychiatry Res. 2016;238:166–171.
  • Volkow ND, Chang L, Wang GJ, et al. Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers. Am J Psychiatry. 2001;158(3):377–382.
  • Loftis JM, Choi D, Hoffman W, et al. Methamphetamine causes persistent immune dysregulation: A cross-species, translational report. Neurotox Res. 2011;20(1):59–68.
  • Hart CL, Marvin CB, Silver R, et al. Is cognitive functioning impaired in methamphetamine users? A critical review. Neuropsychopharmacology. 2012;37(3):586–608.
  • Dean AC, Groman SM, Morales AM, et al. An evaluation of the evidence that methamphetamine abuse causes cognitive decline in humans. Neuropsychopharmacology. 2013;38(2):259–274.
  • Cherner M, Bousman C, Everall I, et al. Cytochrome p450-2d6 extensive metabolizers are more vulnerable to methamphetamine-associated neurocognitive impairment: preliminary findings. J Int Neuropsychol Soc. 2010;16(5):890–901.
  • Wang GJ, Smith L, Volkow ND, et al. Decreased dopamine activity predicts relapse in methamphetamine abusers. Mol Psychiatry. 2012;17(9):918–925.
  • Scofield MD, Heinsbroek JA, Gipson CD, et al. The nucleus accumbens: mechanisms of addiction across drug classes reflect the importance of glutamate homeostasis. Pharmacol Rev. 2016;68(3):816–871.
  • Napier TC, Herrold AA, De Wit H. Using conditioned place preference to identify relapse prevention medications. Neurosci Biobehav Rev. 2013;37(9 Pt A):2081–2086.
  • Wee S, Wang Z, Woolverton WL, et al. Effect of aripiprazole, a partial dopamine d2 receptor agonist, on increased rate of methamphetamine self-administration in rats with prolonged session duration. Neuropsychopharmacology. 2007;32(10):2238–2247.
  • Futamura T, Akiyama S, Sugino H, et al. Aripiprazole attenuates established behavioral sensitization induced by methamphetamine. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34(6):1115–1119.
  • Kitanaka N, Kitanaka J, Hall FS, et al. Pretreatment or posttreatment with aripiprazole attenuates methamphetamine-induced stereotyped behavior in mice. J Exp Neurosci. 2015;9(Suppl 1):1–10.
  • Reichel CM, See RE. Chronic modafinil effects on drug-seeking following methamphetamine self-administration in rats. Int J Neuropsychopharmacol. 2012;15(7):919–929.
  • Reichel CM, Gilstrap MG, Ramsey LA, et al. Modafinil restores methamphetamine induced object-in-place memory deficits in rats independent of glutamate n-methyl-d-aspartate receptor expression. Drug Alcohol Depend. 2014;134:115–122.
  • Gonzalez B, Raineri M, Cadet JL, et al. Modafinil improves methamphetamine-induced object recognition deficits and restores prefrontal cortex erk signaling in mice. Neuropharmacology. 2014;87:188–197.
  • Raineri M, Gonzalez B, Goitia B, et al. Modafinil abrogates methamphetamine-induced neuroinflammation and apoptotic effects in the mouse striatum. Plos One. 2012;7(10):e46599.
  • Cao J, Slack RD, Bakare OM, et al. Novel and high affinity 2-[(diphenylmethyl)sulfinyl]acetamide (modafinil) analogues as atypical dopamine transporter inhibitors. J Med Chem. 2016;59(23):10676–10691.
  • Soeiro Ada C, Moreira KD, Abrahao KP, et al. Individual differences are critical in determining modafinil-induced behavioral sensitization and cross-sensitization with methamphetamine in mice. Behav Brain Res. 2012;233(2):367–374.
  • Holtz NA, Lozama A, Prisinzano TE, et al. Reinstatement of methamphetamine seeking in male and female rats treated with modafinil and allopregnanolone. Drug Alcohol Depend. 2012;120(1–3):233–237.
  • Chen Y, Song R, Yang RF, et al. A novel dopamine d3 receptor antagonist yqa14 inhibits methamphetamine self-administration and relapse to drug-seeking behaviour in rats. Eur J Pharmacol. 2014;743:126–132.
  • Sun L, Song R, Chen Y, et al. A selective d3 receptor antagonist yqa14 attenuates methamphetamine-induced behavioral sensitization and conditioned place preference in mice. Acta Pharmacol Sin. 2016;37(2):157–165.
  • Gong X, Yue K, Ma B, et al. Levo-tetrahydropalmatine, a natural, mixed dopamine receptor antagonist, inhibits methamphetamine self-administration and methamphetamine-induced reinstatement. Pharmacol Biochem Behav. 2016;144:67–72.
  • Mi G, Gao Y, Yan H, et al. L-scoulerine attenuates behavioural changes induced by methamphetamine in zebrafish and mice. Behav Brain Res. 2016;298(Pt A):97–104.
  • Mo J, Guo Y, Yang YS, et al. Recent developments in studies of l-stepholidine and its analogs: chemistry, pharmacology and clinical implications. Curr Med Chem. 2007;14(28):2996–3002.
  • De Boer T. The pharmacologic profile of mirtazapine. J Clin Psychiatry. 1996;57(Suppl 4):19–25.
  • Nakayama K, Sakurai T, Katsu H. Mirtazapine increases dopamine release in prefrontal cortex by 5-ht1a receptor activation. Brain Res Bull. 2004;63(3):237–241.
  • Chanrion B, Mannoury La Cour C, Gavarini S, et al. Inverse agonist and neutral antagonist actions of antidepressants at recombinant and native 5-hydroxytryptamine2c receptors: differential modulation of cell surface expression and signal transduction. Mol Pharmacol. 2008;73(3):748–757.
  • McDaid J, Tedford CE, Mackie AR, et al. Nullifying drug-induced sensitization: behavioral and electrophysiological evaluations of dopaminergic and serotonergic ligands in methamphetamine-sensitized rats. Drug Alcohol Depend. 2007;86(1):55–66.
  • Voigt RM, Napier TC. Context-dependent effects of a single administration of mirtazapine on the expression of methamphetamine-induced conditioned place preference. Front Behav Neurosci. 2011;5:92.
  • Herrold AA, Shen F, Graham MP, et al. Mirtazapine treatment after conditioning with methamphetamine alters subsequent expression of place preference. Drug Alcohol Depend. 2009;99(1–3):231–239.
  • Voigt RM, Mickiewicz AL, Napier TC. Repeated mirtazapine nullifies the maintenance of previously established methamphetamine-induced conditioned place preference in rats. Behav Brain Res. 2011;225(1):91–96.
  • Graves SM, Napier TC. Mirtazapine alters cue-associated methamphetamine seeking in rats. Biol Psychiatry. 2011;69(3):275–281.
  • Bhatia KS, Szabo ST, Fowler JC, et al. Reversal of long-term methamphetamine sensitization by combination of pergolide with ondansetron or ketanserin, but not mirtazapine. Behav Brain Res. 2011;223(1):227–232.
  • Graves SM, Napier TC. Sb 206553, a putative 5-ht2c inverse agonist, attenuates methamphetamine-seeking in rats. BMC Neurosci. 2012;13:65.
  • Ascher JA, Cole JO, Colin JN, et al. Bupropion: A review of its mechanism of antidepressant activity. J Clin Psychiatry. 1995;56(9):395–401.
  • Reichel CM, Murray JE, Grant KM, et al. Bupropion attenuates methamphetamine self-administration in adult male rats. Drug Alcohol Depend. 2009;100(1–2):54–62.
  • Mori T, Shibasaki M, Ogawa Y, et al. Comparison of the behavioral effects of bupropion and psychostimulants. Eur J Pharmacol. 2013;718(1–3):370–375.
  • Heal DJ, Cheetham SC, Smith SL. The neuropharmacology of adhd drugs in vivo: insights on efficacy and safety. Neuropharmacology. 2009;57(7–8):608–618.
  • Schindler CW, Gilman JP, Panlilio LV, et al. Comparison of the effects of methamphetamine, bupropion, and methylphenidate on the self-administration of methamphetamine by rhesus monkeys. Exp Clin Psychopharmacol. 2011;19(1):1–10.
  • Marusich JA, Beckmann JS, Gipson CD, et al. Methylphenidate as a reinforcer for rats: contingent delivery and intake escalation. Exp Clin Psychopharmacol. 2010;18(3):257–266.
  • Lile JA, Charnigo RJ, Nader MA. The relative reinforcing strength of methamphetamine and d-amphetamine in monkeys self-administering cocaine. Behav Pharmacol. 2013;24(5–6):482–485.
  • Miller GM. Avenues for the development of therapeutics that target trace amine associated receptor 1 (taar1). J Med Chem. 2012;55(5):1809–1814.
  • Reese EA, Bunzow JR, Arttamangkul S, et al. Trace amine-associated receptor 1 displays species-dependent stereoselectivity for isomers of methamphetamine, amphetamine, and para-hydroxyamphetamine. J Pharmacol Exp Ther. 2007;321(1):178–186.
  • Jing L, Zhang Y, Li JX. Effects of the trace amine associated receptor 1 agonist ro5263397 on abuse-related behavioral indices of methamphetamine in rats. Int J Neuropsychopharmacol. 2014;18(4): pyu060.
  • Achat-Mendes C, Lynch LJ, Sullivan KA, et al. Augmentation of methamphetamine-induced behaviors in transgenic mice lacking the trace amine-associated receptor 1. Pharmacol Biochem Behav. 2012;101(2):201–207.
  • Voigt RM, Herrold AA, Napier TC. Baclofen facilitates the extinction of methamphetamine-induced conditioned place preference in rats. Behav Neurosci. 2011;125(2):261–267.
  • Li SM, Yin LL, Ren YH, et al. Gaba(b) receptor agonist baclofen attenuates the development and expression of d-methamphetamine-induced place preference in rats. Life Sci. 2001;70(3):349–356.
  • Ranaldi R, Poeggel K. Baclofen decreases methamphetamine self-administration in rats. Neuroreport. 2002;13(9):1107–1110.
  • Kurokawa K, Shibasaki M, Mizuno K, et al. Gabapentin blocks methamphetamine-induced sensitization and conditioned place preference via inhibition of alpha(2)/delta-1 subunits of the voltage-gated calcium channels. Neuroscience. 2011;176:328–335.
  • He Z, Chen Y, Dong H, et al. Inhibition of vesicular glutamate transporters contributes to attenuate methamphetamine-induced conditioned place preference in rats. Behav Brain Res. 2014;267:1–5.
  • McKetin R, Dean OM, Baker AL, et al. A potential role for n-acetylcysteine in the management of methamphetamine dependence. Drug Alcohol Rev. 2016;36(2):153–159.
  • Hashimoto K, Tsukada H, Nishiyama S, et al. Effects of n-acetyl-l-cysteine on the reduction of brain dopamine transporters in monkey treated with methamphetamine. Ann N Y Acad Sci. 2004;1025:231–235.
  • Fukami G, Hashimoto K, Koike K, et al. Effect of antioxidant n-acetyl-l-cysteine on behavioral changes and neurotoxicity in rats after administration of methamphetamine. Brain Res. 2004;1016(1):90–95.
  • Anggadiredja K, Sakimura K, Hiranita T, et al. Naltrexone attenuates cue- but not drug-induced methamphetamine seeking: A possible mechanism for the dissociation of primary and secondary reward. Brain Res. 2004;1021(2):272–276.
  • Shen X, Purser C, Tien LT, et al. Mu-opioid receptor knockout mice are insensitive to methamphetamine-induced behavioral sensitization. J Neurosci Res. 2010;88(10):2294–2302.
  • Lan KC, Ma T, Lin-Shiau SY, et al. Methamphetamine-elicited alterations of dopamine- and serotonin-metabolite levels within mu-opioid receptor knockout mice: A microdialysis study. J Biomed Sci. 2008;15(3):391–403.
  • Gou H, Wen D, Ma C, et al. Protective effects of cholecystokinin-8 on methamphetamine-induced behavioral changes and dopaminergic neurodegeneration in mice. Behav Brain Res. 2015;283:87–96.
  • Motojima Y, Kawasaki M, Matsuura T, et al. Effects of peripherally administered cholecystokinin-8 and secretin on feeding/drinking and oxytocin-mrfp1 fluorescence in transgenic rats. Neurosci Res. 2016;109:63–69.
  • Baracz SJ, Everett NA, McGregor IS, et al. Oxytocin in the nucleus accumbens core reduces reinstatement of methamphetamine-seeking behaviour in rats. Addict Biol. 2016;21(2):316–325.
  • Hicks C, Cornish JL, Baracz SJ, et al. Adolescent pre-treatment with oxytocin protects against adult methamphetamine-seeking behavior in female rats. Addict Biol. 2016;21(2):304–315.
  • Cox BM, Bentzley BS, Regen-Tuero H, et al. Oxytocin acts in nucleus accumbens to attenuate methamphetamine seeking and demand. Biol Psychiatry. 2016. DOI:http://dx.doi.org/10.1016/j.biopsych.2016.11.011
  • Baracz SJ, Cornish JL. The neurocircuitry involved in oxytocin modulation of methamphetamine addiction. Front Neuroendocrinol. 2016;43:1–18.
  • Desai RI, Bergman J. Drug discrimination in methamphetamine-trained rats: effects of cholinergic nicotinic compounds. J Pharmacol Exp Ther. 2010;335(3):807–816.
  • Pittenger ST, Barrett ST, Chou S, et al. The effects of varenicline on methamphetamine self-administration and drug-primed reinstatement in female rats. Behav Brain Res. 2016;300:150–159.
  • Pittenger ST, Barrett ST, Chou S, et al. The effects of varenicline on methamphetamine self-administration and drug-primed reinstatement in male rats. Behav Brain Res. 2017;320:195–199.
  • Beardsley PM, Shelton KL, Hendrick E, et al. The glial cell modulator and phosphodiesterase inhibitor, av411 (ibudilast), attenuates prime- and stress-induced methamphetamine relapse. Eur J Pharmacol. 2010;637(1–3):102–108.
  • Charntikov S, Pittenger ST, Thapa I, et al. Ibudilast reverses the decrease in the synaptic signaling protein phosphatidylethanolamine-binding protein 1 (pebp1) produced by chronic methamphetamine intake in rats. Drug Alcohol Depend. 2015;152:15–23.
  • Kim DH, Yang CH, Hwang M. Sauchinone blocks methamphetamine-induced hyperlocomotion and place preference in mice. Phytomedicine. 2013;20(12):1071–1075.
  • Meng X, Kim I, Jeong YJ, et al. Anti-inflammatory effects of saururus chinensis aerial parts in murine macrophages via induction of heme oxygenase-1. Exp Biol Med (Maywood). 2016;241(4):396–408.
  • Ren Q, Zhang JC, Ma M, et al. 7,8-dihydroxyflavone, a trkb agonist, attenuates behavioral abnormalities and neurotoxicity in mice after administration of methamphetamine. Psychopharmacology (Berl). 2014;231(1):159–166.
  • Hambuchen MD, Carroll FI, Ruedi-Bettschen D, et al. Combining active immunization with monoclonal antibody therapy to facilitate early initiation of a long-acting anti-methamphetamine antibody response. J Med Chem. 2015;58(11):4665–4677.
  • Duryee MJ, Bevins RA, Reichel CM, et al. Immune responses to methamphetamine by active immunization with peptide-based, molecular adjuvant-containing vaccines. Vaccine. 2009;27(22):2981–2988.
  • Ohia-Nwoko O, Kosten TA, Haile CN. Animal models and the development of vaccines to treat substance use disorders. Int Rev Neurobiol. 2016;126:263–291.
  • Miller ML, Moreno AY, Aarde SM, et al. A methamphetamine vaccine attenuates methamphetamine-induced disruptions in thermoregulation and activity in rats. Biol Psychiatry. 2013;73(8):721–728.
  • Miller ML, Aarde SM, Moreno AY, et al. Effects of active anti-methamphetamine vaccination on intravenous self-administration in rats. Drug Alcohol Depend. 2015;153:29–36.
  • Ruedi-Bettschen D, Wood SL, Gunnell MG, et al. Vaccination protects rats from methamphetamine-induced impairment of behavioral responding for food. Vaccine. 2013;31(41):4596–4602.
  • Shen XY, Kosten TA, Lopez AY, et al. A vaccine against methamphetamine attenuates its behavioral effects in mice. Drug Alcohol Depend. 2013;129(1–2):41–48.
  • Haile CN, Kosten TA, Shen XY, et al. Altered methamphetamine place conditioning in mice vaccinated with a succinyl-methamphetamine-tetanus-toxoid vaccine. Am J Addict. 2015;24(8):748–755.
  • Stevens MW, Gunnell MG, Tawney R, et al. Optimization of a methamphetamine conjugate vaccine for antibody production in mice. Int Immunopharmacol. 2016;35:137–141.
  • Chen YH, Wu KL, Tsai HM, et al. Treatment of methamphetamine abuse: an antibody-based immunotherapy approach. J Food Drug Anal. 2013;21(4):S82–S86.
  • Haney M, Spealman R. Controversies in translational research: drug self-administration. Psychopharmacology (Berl). 2008;199(3):403–419.
  • Newton TF, Reid MS, De La Garza R, et al. Evaluation of subjective effects of aripiprazole and methamphetamine in methamphetamine-dependent volunteers. Int J Neuropsychopharmacol. 2008;11(8):1037–1045.
  • Sevak RJ, Vansickel AR, Stoops WW, et al. Discriminative-stimulus, subject-rated, and physiological effects of methamphetamine in humans pretreated with aripiprazole. J Clin Psychopharmacol. 2011;31(4):470–480.
  • Stoops WW, Bennett JA, Lile JA, et al. Influence of aripiprazole pretreatment on the reinforcing effects of methamphetamine in humans. Prog Neuropsychopharmacol Biol Psychiatry. 2013;47:111–117.
  • Coffin PO, Santos GM, Das M, et al. Aripiprazole for the treatment of methamphetamine dependence: A randomized, double-blind, placebo-controlled trial. Addiction. 2013;108(4):751–761.
  • Sulaiman AH, Gill JS, Said MA, et al. A randomized, placebo-controlled trial of aripiprazole for the treatment of methamphetamine dependence and associated psychosis. Int J Psychiatry Clin Pract. 2013;17(2):131–138.
  • Heinzerling KG, Shoptaw S, Peck JA, et al. Randomized, placebo-controlled trial of baclofen and gabapentin for the treatment of methamphetamine dependence. Drug Alcohol Depend. 2006;85(3):177–184.
  • Elkashef A, Kahn R, Yu E, et al. Topiramate for the treatment of methamphetamine addiction: A multi-center placebo-controlled trial. Addiction. 2012;107(7):1297–1306.
  • Rezaei F, Ghaderi E, Mardani R, et al. Topiramate for the management of methamphetamine dependence: A pilot randomized, double-blind, placebo-controlled trial. Fundam Clin Pharmacol. 2016;30(3):282–289.
  • Verrico CD, Mahoney JJ 3rd, Thompson-Lake DG, et al. Safety and efficacy of varenicline to reduce positive subjective effects produced by methamphetamine in methamphetamine-dependent volunteers. Int J Neuropsychopharmacol. 2014;17(2):223–233.
  • Kalechstein AD, Mahoney JJ 3rd, Verrico CD, et al. Short-term, low-dose varenicline administration enhances information processing speed in methamphetamine-dependent users. Neuropharmacology. 2014;85:493–498.
  • De La Garza R, Shoptaw S, Newton TF. Evaluation of the cardiovascular and subjective effects of rivastigmine in combination with methamphetamine in methamphetamine-dependent human volunteers. Int J Neuropsychopharmacol. 2008;11(6):729–741.
  • De La Garza R 2nd, Newton TF, Haile CN, et al. Rivastigmine reduces “likely to use methamphetamine” in methamphetamine-dependent volunteers. Prog Neuropsychopharmacol Biol Psychiatry. 2012;37(1):141–146.
  • Jenkins TA, Mendelsohn FA, Chai SY. Angiotensin-converting enzyme modulates dopamine turnover in the striatum. J Neurochem. 1997;68(3):1304–1311.
  • Newton TF, De La Garza R 2nd, Grasing K. The angiotensin-converting enzyme inhibitor perindopril treatment alters cardiovascular and subjective effects of methamphetamine in humans. Psychiatry Res. 2010;179(1):96–100.
  • Verrico CD, Haile CN, De La Garza R 2nd, et al. Subjective and cardiovascular effects of intravenous methamphetamine during perindopril maintenance: A randomized, double-blind, placebo-controlled human laboratory study. Int J Neuropsychopharmacol. 2016;19(7):pyw029.
  • Pike E, Stoops WW, Hays LR, et al. Methamphetamine self-administration in humans during d-amphetamine maintenance. J Clin Psychopharmacol. 2014;34(6):675–681.
  • Galloway GP, Buscemi R, Coyle JR, et al. A randomized, placebo-controlled trial of sustained-release dextroamphetamine for treatment of methamphetamine addiction. Clin Pharmacol Ther. 2011;89(2):276–282.
  • Rezaei F, Emami M, Zahed S, et al. Sustained-release methylphenidate in methamphetamine dependence treatment: A double-blind and placebo-controlled trial. Daru. 2015;23(1):2.
  • Ling W, Chang L, Hillhouse M, et al. Sustained-release methylphenidate in a randomized trial of treatment of methamphetamine use disorder. Addiction. 2014;109(9):1489–1500.
  • Levin FR, Mariani JJ, Bisaga A, et al. ’S ‘sustained-release methylphenidate in a randomized trial of treatment of methamphetamine use disorder’. Addiction. 2015;110(5):875–876. .
  • De La Garza R 2nd, Zorick T, London ED, et al. Evaluation of modafinil effects on cardiovascular, subjective, and reinforcing effects of methamphetamine in methamphetamine-dependent volunteers. Drug Alcohol Depend. 2010;106(2–3):173–180.
  • Dean AC, Sevak RJ, Monterosso JR, et al. Acute modafinil effects on attention and inhibitory control in methamphetamine-dependent humans. J Stud Alcohol Drugs. 2011;72(6):943–953.
  • Shearer J, Darke S, Rodgers C, et al. A double-blind, placebo-controlled trial of modafinil (200 mg/day) for methamphetamine dependence. Addiction. 2009;104(2):224–233.
  • Heinzerling KG, Swanson AN, Kim S, et al. Randomized, double-blind, placebo-controlled trial of modafinil for the treatment of methamphetamine dependence. Drug Alcohol Depend. 2010;109(1–3):20–29.
  • Newton TF, Roache JD, De La Garza R 2nd, et al. Bupropion reduces methamphetamine-induced subjective effects and cue-induced craving. Neuropsychopharmacology. 2006;31(7):1537–1544.
  • Shoptaw S, Heinzerling KG, Rotheram-Fuller E, et al. Randomized, placebo-controlled trial of bupropion for the treatment of methamphetamine dependence. Drug Alcohol Depend. 2008;96(3):222–232.
  • Elkashef AM, Rawson RA, Anderson AL, et al. Bupropion for the treatment of methamphetamine dependence. Neuropsychopharmacology. 2008;33(5):1162–1170.
  • Anderson AL, Li SH, Markova D, et al. Bupropion for the treatment of methamphetamine dependence in non-daily users: A randomized, double-blind, placebo-controlled trial. Drug Alcohol Depend. 2015;150:170–174.
  • Heinzerling KG, Swanson AN, Hall TM, et al. Randomized, placebo-controlled trial of bupropion in methamphetamine-dependent participants with less than daily methamphetamine use. Addiction. 2014;109(11):1878–1886.
  • Colfax GN, Santos GM, Das M, et al. Mirtazapine to reduce methamphetamine use: A randomized controlled trial. Arch Gen Psychiatry. 2011;68(11):1168–1175. .
  • Ray LA, Bujarski S, Courtney KE, et al. The effects of naltrexone on subjective response to methamphetamine in a clinical sample: A double-blind, placebo-controlled laboratory study. Neuropsychopharmacology. 2015;40(10):2347–2356.
  • Boutrel B. A neuropeptide-centric view of psychostimulant addiction. Br J Pharmacol. 2008;154(2):343–357.
  • Grant JE, Odlaug BL, Kim SW. A double-blind, placebo-controlled study of n-acetyl cysteine plus naltrexone for methamphetamine dependence. Eur Neuropsychopharmacol. 2010;20(11):823–828.
  • Mousavi SG, Sharbafchi MR, Salehi M, et al. The efficacy of n-acetylcysteine in the treatment of methamphetamine dependence: A double-blind controlled, crossover study. Arch Iran Med. 2015;18(1):28–33.
  • DeYoung DZ, Heinzerling KG, Swanson AN, et al. Safety of intravenous methamphetamine administration during ibudilast treatment. J Clin Psychopharmacol. 2016;36(4):347–354.
  • Worley MJ, Heinzerling KG, Roche DJ, et al. Ibudilast attenuates subjective effects of methamphetamine in a placebo-controlled inpatient study. Drug Alcohol Depend. 2016;162:245–250.
  • Ezard N, Dunlop A, Clifford B, et al. Study protocol: A dose-escalating, phase-2 study of oral lisdexamfetamine in adults with methamphetamine dependence. BMC Psychiatry. 2016;16:(1):428.
  • Koob GF, Kenneth Lloyd G, Mason BJ. Development of pharmacotherapies for drug addiction: A rosetta stone approach. Nat Rev Drug Discov. 2009;8(6):500–515.
  • Morley KC, Logge W, Pearson SA, et al. National trends in alcohol pharmacotherapy: findings from an australian claims database. Drug Alcohol Depend. 2016;166:254–257.
  • Hermanstyne KA, Santos GM, Vittinghoff E, et al. Event-level relationship between methamphetamine use significantly associated with non-adherence to pharmacologic trial medications in event-level analyses. Drug Alcohol Depend. 2014;143:277–280.
  • Kemp R, Hayward P, Applewhaite G, et al. Compliance therapy in psychotic patients: randomised controlled trial. Bmj. 1996;312(7027):345–349.
  • Zorick T, Sevak RJ, Miotto K, Shoptaw S, Swanson AN, Clement C, et al. Pilot safety evaluation of varenicline for the treatment of methamphetamine dependence. J Exp Pharmacol. 2009;2010:13–18.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.