392
Views
14
CrossRef citations to date
0
Altmetric
Review

Investigational drugs in Phase I and Phase II for Levodopa-induced dyskinesias

, &
Pages 777-791 | Received 03 Feb 2017, Accepted 18 May 2017, Published online: 01 Jun 2017

References

  • Blandini F, Nappi G, Tassorelli C, et al. Functional changes of the basal ganglia circuitry in Parkinson’s disease. Prog Neurobiol. 2000;62:63–88.
  • Jellinger KA. Pathology of Parkinson’s disease. Changes other than the nigrostriatal pathway. Molchem Neuropathol. 1991;14:153–197.
  • Gallagher DA, Lees AJ, Schrag A. What are the most important nonmotor symptoms in patients with Parkinson’s disease and are we missing them? Mov Disord. 2010;25:2493–2500.
  • Lee A, Gilbert RM. Epidemiology of Parkinson disease. Neurol Clin. 2016;34:955–965.
  • Bobela W, Aebischer P, Schneider BL. Αlpha-synuclein as a mediator in the interplay between aging and Parkinson’s disease. Biomolecules. 2015;5:2675–2700.
  • Cotzias GC, Papavasiliou PS, Gellene R. Modification of parkinsonism? Chronic treatment with L-dopa. N Engl J Med. 1969;280:337–345.
  • Manson A, Stirpe P, Schrag A. Levodopa-induced-dyskinesias clinical features, incidence, risk factors, management and impact on quality of life. J Parkinsons Dis. 2012;2:189–198.
  • Guridi J, González-Redondo R, Obeso JA. Clinical features, pathophysiology, and treatment of levodopa-induced dyskinesias in Parkinson’s disease. Parkinsons Dis. 2012;2012:943159.
  • Sharma JC, Bachmann CG, Linazasoro G. Classifying risk factors for dyskinesia in Parkinson’s disease. Parkinsonism Relat Disord. 2010;16:490–497.
  • Hassin-Baer S, Molchadski I, Cohen OS, et al. Gender effect on time to levodopa-induced dyskinesias. J Neurol. 2011;258:2048–2053.
  • Cilia R, Akpalu A, Sarfo FS, et al. The modern pre-levodopa era of Parkinson’s disease: insights into motor complications from sub-Saharan Africa. Brain. 2014;137:2731–2742.
  • Yahalom G, Cohen OS, Warmann-Alaluf N, et al. The impact of early versus late levodopa administration. J Neural Transm. 2017;124(4):471–476.
  • Bastide MF, Meissner WG, Picconi B, et al. Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson’s disease. Prog Neurobiol. 2015;132:96–168.
  • Grosch J, Winkler J, Kohl Z. Early degeneration of both dopaminergic and serotonergic axons a common mechanism in Parkinson’s disease. Front Cell Neurosci. 2016;10:293.
  • Jiménez-Urbieta H, Gago B, de la Riva P, et al. Dyskinesias and impulse control disorders in Parkinson’s disease: from pathogenesis to potential therapeutic approaches. Neurosci Biobehav Rev. 2015;56:294–314.
  • Cenci MA. Presynaptic mechanisms of l-DOPA-induced dyskinesia: the findings, the debate, and the therapeutic implications. Front Neurol. 2014;242(15):5.
  • De Deurwaerdère P, Di Giovanni G, Millan MJ. Expanding the repertoire of L-DOPA’s actions: a comprehensive review of its functional neurochemistry. Prog Neurobiol. 2017;151:57–100.
  • Lopez A, Munoz A, Guerra MJ, et al. Mechanisms of the effects of exogenous levodopa on the dopamine-denervated striatum. Neuroscience. 2001;103:639–651.
  • Sossi V, Dinelle K, Topping GJ, et al. Dopamine transporter relation to levodopa-derived synaptic dopamine in a rat model of Parkinson’s: an in vivo imaging study. J Neurochem. 2009;109:85–92.
  • Del Sorbo F, Albanese A. Levodopa-induced dyskinesias and their management. J Neurol. 2008;255(Suppl 4):32–41.
  • Calabresi P, Di Filippo M, Ghiglieri V, et al. Molecular mechanisms underlying levodopa-induced dyskinesia. Mov Disord. 2008;23(Suppl 3):S570–9.
  • Picconi B, Centonze D, Håkansson K, et al. Loss of bidirectional striatal synaptic plasticity in L-DOPA-induced dyskinesia. Nat Neurosci. 2003;6:501–506.
  • Deutch AY. Striatal plasticity in parkinsonism: dystrophic changes in medium spiny neurons and progression in Parkinson’s disease. J Neural Transm Suppl. 2006;70:67–70.
  • Wang Q, Zhang W. Maladaptive synaptic plasticity in L-DOPA-induced dyskinesia. Front Neural Circuits. 2016;10:105.
  • Albarran Bravo S, Rangel-Barajas C, Garduño BF. Mental and behavioural disorders and diseases of the nervous system: “a synopsis of Parkinson’s disease”. Abdul Qayyum Rana. 2014.
  • Aristieta A, Azkona G, Sagarduy A, et al. The role of the subthalamic nucleus in L-DOPA induced dyskinesia in 6-hydroxydopamine lesioned rats. PLoS ONE. 2012;7(8):e42652.
  • Ivanova SA, Loonen AJ. Levodopa-induced dyskinesia is related to indirect pathway medium spiny neuron excitotoxicity: a hypothesis based on an unexpected finding. Parkinsons Dis. 2016;2016:6461907.
  • Blandini F, Armentero MT. Dopamine receptor agonists for Parkinson’s disease. Expert Opin Investig Drugs. 2014;23:387–410.
  • Blandini F, Armentero MT. New pharmacological avenues for the treatment of L-DOPA-induced dyskinesias in Parkinson’s disease: targeting glutamate and adenosine receptors. Expert Opin Investig Drugs. 2012;21:153–168.
  • Timpka J, Mundt-Petersen U, Odin P. Continuous dopaminergic stimulation therapy for Parkinson’s disease - recent advances. Curr Opin Neurol. 2016;29:474–479.
  • Antonini A, Fung VS, Boyd JT, et al. Effect of levodopa-carbidopa intestinal gel on dyskinesia in advanced Parkinson’s disease patients. Mov Disord. 2016;31:530–537.
  • Mazzucchi S, Frosini D, Bonuccelli U, et al. Current treatment and future prospects of dopa-induced dyskinesias. Drugs Today (Barc). 2015;51:315–329.
  • Müller T, Foley P. Clinical drug research in chronic central neurodegenerative disorders. Expert Rev Neurother. 2016 May;16(5):497–504.
  • Merello M, Nouzeilles MI, Cammarota A, et al. Effect of memantine (NMDA antagonist) on Parkinson’s disease: a double-blind crossover randomized study. Clin Neuropharmacol. 1999;22:273–276.
  • Moreau C, Delval A, Tiffreau V, et al. Memantine for axial signs in Parkinson’s disease: a randomised, double-blind, placebo-controlled pilot study. J Neurol Neurosurg Psychiatry. 2013;84:552–555.
  • Wictorin K, Widner H. Memantine and reduced time with dyskinesia in Parkinson’s disease. Acta Neurol Scand. 2016;133:355–360.
  • Kobylecki C, Burn DJ, Kass-Iliyya L, et al. Randomized clinical trial of topiramate for levodopa-induced dyskinesia in Parkinson’s disease. Parkinsonism Relat Disord. 2014;20:452–455.
  • Tison F, Keywood C, Wakefield M, et al. A phase 2A trial of the novel mGluR5-negative allosteric modulator dipraglurant for levodopa-induced dyskinesia in Parkinson’s disease. Mov Disord. 2016;31:1373–1380.
  • PRNewswire. Available from: http://www.prnewswire.com/news-releases
  • Trenkwalder C, Berg D, Rascol O, et al. A placebo-controlled trial of AQW051 in patients with moderate to severe levodopa-induced dyskinesia. Mov Disord. 2016;31:1049–1054.
  • Svenningsson P, Rosenblad C, Af Edholm Arvidsson K, et al. Eltoprazine counteracts l-DOPA-induced dyskinesias in Parkinson’s disease: a dose-finding study. Brain. 2015;138:963–973.
  • Conterapharma. Available from: http://www.conterapharma.com/page/news
  • Sage JJ, Hauser RA, Cordon ME, et al. Pilot study of the efficacy and safety of piclozotan in Parkinson’s disease patients with l-dopa induced motor complications. Mov Disord. 2009;24(Suppl 1):S277.
  • Lewitt PA, Hauser RA, Lu M, et al. Randomized clinical trial of fipamezole for dyskinesia in Parkinson disease (FJORD study). Neurology. 2012 Jul 10;79(2):163–169.
  • Meco G, Fabrizio E, Epifanio A, et al. Levetiracetam in L-dopa-induced dyskinesia. Clin Neuropharmacol. 2005;28:102–103.
  • Wong KK, Alty JE, Goy AG, et al. A randomized, double-blind, placebo-controlled trial of levetiracetam for dyskinesia in Parkinson’s disease. Mov Disord. 2011;26:1552–1555.
  • Wolz M, Löhle M, Strecker K, et al. Levetiracetam for levodopa-induced dyskinesia in Parkinson’s disease: a randomized, double-blind, placebo-controlled trial. J Neural Transm (Vienna). 2010;117:1279–1286.
  • Lyons KE, Pahwa R. Efficacy and tolerability of levetiracetam in Parkinson disease patients with levodopa-induced dyskinesia. Clin Neuropharmacol. 2006;29:148–153.
  • Paoletti P, Neyton J. NMDA receptor subunits: function and pharmacology. Curr Opin Pharmacol. 2007;7:39–47.
  • Greger IH, Ziff EB, Penn AC. Molecular determinants of AMPA receptor subunit assembly. Trends Neurosci. 2007;30:407–416.
  • Huettner JE. Kainate receptors and synaptic transmission. Prog Neurobiol. 2003;70:387–407.
  • Rondard P, Pin JP. Dynamics and modulation of metabotropic glutamate receptors. Curr Opin Pharmacol. 2015;20:95–101.
  • Calon F, Rajput AH, Hornykiewicz O, et al. Levodopa-induced motor complications are associated with alterations of glutamate receptors in Parkinson’s disease. Neurobiol Dis. 2003;14:404–416.
  • Stayte S, Vissel B. Advances in non-dopaminergic treatments for Parkinson’s disease. Front Neurosci. 2014;8:113.
  • Huot P, Johnston TH, Koprich JB, et al. The pharmacology of L-DOPA-induced dyskinesia in Parkinson’s disease. Pharmacol Rev. 2013;65:171–222.
  • Morin N, Di Paolo T. Pharmacological treatments inhibiting levodopa-induced dyskinesias in MPTP-lesioned monkeys: brain glutamate biochemical correlates. Front Neurol. 2014;5:144.
  • Marin C, Jimenez A, Bonastre M, et al. Non-NMDA receptor-mediated mechanisms are involved in levodopa-induced motor response alterations in Parkinsonian rats. Synapse. 2000;36:267–274.
  • Gardoni F, Picconi B, Ghiglieri V, et al. A critical interaction between NR2B and MAGUK in L-DOPA induced dyskinesia. J Neurosci. 2006;26:2914–2922.
  • Napolitano M, Picconi B, Centonze D, et al. L-DOPA treatment of parkinsonian rats changes the expression of Src, Lyn and PKC kinases. Neurosci Lett. 2006;398:211–214.
  • Hallett PJ, Dunah AW, Ravenscroft P, et al. Alterations of striatal NMDA receptor subunits associated with the development of dyskinesia in the MPTP-lesioned primate model of Parkinson’s disease. Neuropharmacology. 2005;48:503–516.
  • Nash JE, Ravenscroft P, McGuire S, et al. The NR2B-selective NMDA receptor antagonist CP-101,606 exacerbates L-DOPA-induced dyskinesia and provides mild potentiation of anti-parkinsonian effects of L-DOPA in the MPTP-lesioned marmoset model of Parkinson’s disease. Exp Neurol. 2004;188:471–479.
  • Gardoni F, Sgobio C, Pendolino V, et al. Targeting NR2A-containing NMDA receptors reduces L-DOPA-induced dyskinesias. Neurobiol Aging. 2011;33:2138–2144.
  • Ahmed I, Bose SK, Pavese N, et al. Glutamate NMDA receptor dysregulation in Parkinson’s disease with dyskinesias. Brain. 2011;134:979–986.
  • Blanchet PJ, Konitsiotis S, Chase TN. Amantadine reduces levodopa-induced dyskinesias in parkinsonian monkeys. Mov Disord. 1998;13:798–802.
  • Luginger E, Wenning GK, Bosch S, et al. Beneficial effects of amantadine on L-dopa-induced dyskinesias in Parkinson’s disease. Mov Disord. 2000;15:873–878.
  • Verhagen ML, Del Dotto P, van Den MP, et al. Amantadine as treatment for dyskinesias and motor fluctuations in Parkinson’s disease. Neurology. 1998;50:1323–1326.
  • Crosby NJ, Deane KH, Clarke CE. Amantadine for dyskinesia in Parkinson’s disease. Cochrane Database Syst Rev. 2003;(2):CD003467.
  • Snow BJ, Macdonald L, Mcauley D, et al. The effect of amantadine on levodopa-induced dyskinesias in Parkinson’s disease: a double-blind, placebo-controlled study. Clin Neuropharmacol. 2000;23:82–85.
  • Wolf E, Seppi K, Katzenschlager R, et al. Long-term antidyskinetic efficacy of amantadine in Parkinson’s disease. Mov Disord. 2010;25:1357–1363.
  • Sawada H, Oeda T, Kuno S, et al. Amantadine for dyskinesias in Parkinson’s disease: a randomized controlled trial. PLoS ONE. 2010;5:e15298.
  • Pahwa R, Tanner CM, Hauser RA, et al. Amantadine extended release for levodopa-induced dyskinesia in Parkinson’s disease (EASED Study). Mov Disord. 2015;30:788–795.
  • Menniti F, Chenard B, Collins M, et al. CP-101,606, a potent neuroprotectant selective for forebrain neurons. Eur J Pharmacol. 1997;331:117–126.
  • Nutt JG, Gunzler SA, Kirchhoff T, et al. Effects of a NR2B selective NMDA glutamate antagonist, CP-101,606, on dyskinesia and Parkinsonism. Mov Disord. 2008;23:1860–1866.
  • Kobylecki C, Cenci MA, Crossman AR, et al. Calcium-permeable AMPA receptors are involved in the induction and expression of l-DOPA-induced dyskinesia in Parkinson’s disease. J Neurochem. 2010;114:499–511.
  • Ouattara B, Hoyer D, Gregoire L, et al. Changes of AMPA receptors in MPTP monkeys with levodopa-induced dyskinesias. Neuroscience. 2010;167:1160–1167.
  • Konitsiotis S, Blanchet PJ, Verhagen L, et al. AMPA receptor blockade improves levodopa-induced dyskinesia in MPTP monkeys. Neurology. 2000;54:1589–1595.
  • Conn PJ, Battaglia G, Marino MJ, et al. Metabotropic glutamate receptors in the basal ganglia motor circuit. Nat Rev Neurosci. 2005;6:787–798.
  • Samadi P, Gregoire L, Morissette M, et al. mGluR5 metabotropic glutamate receptors and dyskinesias in MPTP monkeys. Neurobiol Aging. 2008;29:1040–1051.
  • Ouattara B, Gregoire L, Morissette M, et al. Metabotropic glutamate receptor type 5 in levodopa-induced motor complications. Neurobiol Aging. 2011;32:1286–1295.
  • Mela F, Marti M, Dekundy A, et al. Antagonism of metabotropic glutamate receptor type 5 attenuates L-DOPA-induced dyskinesia and its molecular and neurochemical correlates in a rat model of Parkinson’s disease. J Neurochem. 2007;101:483–497.
  • Dekundy A, Pietraszek M, Schaefer D, et al. Effects of group I metabotropic glutamate receptors blockade in experimental models of Parkinson’s disease. Brain Res Bull. 2006;69:318–326.
  • Yamamoto N, Soghomonian JJ. Metabotropic glutamate mGluR5 receptor blockade opposes abnormal involuntary movements and the increases in glutamic acid decarboxylase mRNA levels induced by L-DOPA in striatal neurons of 6-hydroxydopamine-lesioned rats. Neuroscience. 2009;163:1171–1180.
  • Levandis G, Bazzini E, Armentero MT, et al. Systemic administration of an mGluR5 antagonist, but not unilateral subthalamic lesion, counteracts l-DOPA-induced dyskinesias in a rodent model of Parkinson’s disease. Neurobiol Dis. 2008;29:161–168.
  • Johnston TH, Fox SH, McIldowie MJ, et al. Reduction of L-DOPA-induced dyskinesia by the selective metabotropic glutamate receptor 5 antagonist 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned macaque model of Parkinson’s disease. J Pharmacol Exp Ther. 2010;333:865–873.
  • Marin C, Bonastre M, Aguilar E, et al. The metabotropic glutamate receptor antagonist 2-methyl-6-(phenylethynyl) pyridine decreases striatal VGlut2 expression in association with an attenuation of L-dopa-induced dyskinesias. Synapse. 2011;65:1080–1086.
  • Trenkwalder C, Stocchi F, Poewe W, et al. Mavoglurant in Parkinson’s patients with l-Dopa-induced dyskinesias: two randomized phase 2 studies. Mov Disord. 2016;31:1054–1058.
  • Bargiotas P, Konitsiotis S. Levodopa-induced dyskinesias in Parkinson’s disease: emerging treatments. Neuropsychiatr Dis Treat. 2013;9:1605–1617.
  • Quik M, Cox H, Parameswaran N, et al. Nicotine reduces levodopa-induced dyskinesias in lesioned monkeys. Ann Neurol. 2007;62:588–596.
  • Bordia T, Campos C, Huang L, et al. Continuous and intermittent nicotine treatment reduces L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesias in a rat model of Parkinson’s disease. J Pharmacol Exp Ther. 2008;327:239–247.
  • Girasole AE, Nelson AB. Bridging the gap: muscarinic M4 receptors promote striatal plasticity in health and disease. Neuron. 2015;88:621–623.
  • Carta M, Carlsson T, Muñoz A, et al. Involvement of the serotonin system in L-dopa-induced dyskinesias. Parkinsonism Relat Disord. 2008;14(Suppl 2):S154–8
  • Carta M, Carlsson T, Muñoz A, et al. Role of serotonin neurons in the induction of levodopa- and graft-induced dyskinesias in Parkinson’s disease. Mov Disord. 2010;25(Suppl 1):S174–9.
  • Arai R, Karasawa N, Geffard M, et al. L-DOPA is converted to dopamine in serotonergic fibers of the striatum of the rat: a double-labeling immunofluorescence study. Neurosci Lett. 1995;195:195–198.
  • Yamada H, Aimi Y, Nagatsu I, et al. Immunohistochemical detection of L-DOPA-derived dopamine within serotonergic fibers in the striatum and the substantia nigra pars reticulata in Parkinsonian model rats. Neurosci Res. 2007;59:1–7.
  • Carta M, Bezard E. Contribution of pre-synaptic mechanisms to L-DOPA-induced dyskinesia. Neuroscience. 2011;198:245–251.
  • Carta M, Tronci E. Serotonin system implication in l-DOPA-induced dyskinesia: from animal models to clinical investigations. Front Neurol. 2014;5:78.
  • Navailles S, De Deurwaerdère P. Presynaptic control of serotonin on striatal dopamine function. Psychopharmacology (Berl). 2011;213:213–242.
  • Nevalainen N, Af Bjerkén S, Gerhardt GA, et al. Serotonergic nerve fibers in L-DOPA-derived dopamine release and dyskinesia. Neuroscience. 2014;260:73–86.
  • Roth BL. Multiple serotonin receptors: clinical and experimental aspects. Ann Clin Psychiatry. 1994;6:67–78.
  • Baumgarten HG, Grozdanovic Z. Psychopharmacology of central serotonergic systems. Pharmacopsychiatry. 1995;28(Suppl 2):73–79.
  • Ciranna L. Serotonin as a modulator of glutamate- and GABA-mediated neurotransmission: implications in physiological functions and in pathology. Curr Neuropharmacol. 2006;4:101–114.
  • Dupre KB, Ostock CY, Eskow Jaunarajs KL, et al. Local modulation of striatal glutamate efflux by serotonin 1A receptor stimulation in dyskinetic, hemiparkinsonian rats. Exp Neurol. 2011;229:288–299.
  • Mignon L, Wolf WA. Postsynaptic 5-HT(1A) receptors mediate an increase in locomotor activity in the monoamine-depleted rat. Psychopharmacology (Berl). 2002;163:85–94.
  • Iderberg H, McCreary AC, Varney MA, et al. Activity of serotonin 5-HT(1A) receptor ‘biased agonists’ in rat models of Parkinson’s disease and L-DOPA-induced dyskinesia. Neuropharmacology. 2015;93:52–67.
  • McCreary AC, Varney MA, Newman-Tancredi A. The novel 5-HT1A receptor agonist, NLX-112 reduces l-DOPA-induced abnormal involuntary movements in rat: a chronic administration study with microdialysis measurements. Neuropharmacology. 2016;105:651–660.
  • Paolone G, Brugnoli A, Arcuri L, et al. Eltoprazine prevents levodopa-induced dyskinesias by reducing striatal glutamate and direct pathway activity. Mov Disord. 2015;30:1728–1738.
  • Lindgren HS, Andersson DR, Lagerkvist S, et al. L-DOPA-induced dopamine efflux in the striatum and the substantia nigra in a rat model of Parkinson’s disease: temporal and quantitative relationship to the expression of dyskinesia. J Neurochem. 2010;112:1465–1476.
  • Bezard E, Tronci E, Pioli EY, et al. Study of the antidyskinetic effect of eltoprazine in animal models of levodopa-induced dyskinesia. Mov Disord. 2013;28:1088–1096.
  • Ghiglieri V, Mineo D, Vannelli A, et al. Modulation of serotonergic transmission by eltoprazine in L-DOPA-induced dyskinesia: behavioral, molecular, and synaptic mechanisms. Neurobiol Dis. 2016;86:140–153.
  • Pinna A, Ko WK, Costa G, et al. Antidyskinetic effect of A2A and 5HT1A/1B receptor ligands in two animal models of Parkinson’s disease. Mov Disord. 2016;31:501–511.
  • Conti MM, Ostock CY, Lindenbach D, et al. Effects of prolonged selective serotonin reuptake inhibition on the development and expression of L-DOPA-induced dyskinesia in hemi-parkinsonian rats. Neuropharmacology. 2014;77:1–8.
  • Conti MM, Meadows SM, Melikhov-Sosin M, et al. Monoamine transporter contributions to l-DOPA effects in hemi-parkinsonian rats. Neuropharmacology. 2016;110(Pt A):125–134.
  • Lindenbach D, Palumbo N, Ostock CY, et al. Side effect profile of 5-HT treatments for Parkinson’s disease and L-DOPA-induced dyskinesia in rats. Br J Pharmacol. 2015;172:119–130.
  • Jones BE, Yang TZ. The efferent projections from the reticular formation and the locus coeruleus studied by anterograde and retrograde axonal transport in the rat. J Comp Neurol. 1985 Dec 1;242(1):56–92.
  • Zhang W, Ordway GA. The alpha2C-adrenoceptor modulates GABA release in mouse striatum. Brain Res Mol Brain Res. 2003 Apr 10;112(1–2):24–32.
  • Henry B, Fox SH, Peggs D, et al. The alpha2-adrenergic receptor antagonist idazoxan reduces dyskinesia and enhances anti-parkinsonian actions of L-dopa in the MPTP-lesioned primate model of Parkinson’s disease. Mov Disord. 1999 Sep;14(5):744–753.
  • Xu T, Bajjalieh SM. SV2 modulates the size of the readily releasable pool of secretory vesicles. Nat Cell Biol. 2001;3:691–698.
  • Brotchie JM. Nondopaminergic mechanisms in levodopa-induced dyskinesia. Mov Disord. 2005;20:919–931.
  • Bezard E, Hill MP, Crossman AR, et al. Levetiracetam improves choreic levodopa-induced dyskinesia in the MPTP-treated macaque. Eur J Pharmacol. 2004;485:159–164.
  • Da Silva-Júnior FP, Braga-Neto P, Sueli Monte F, et al. Amantadine reduces the duration of levodopa-induced dyskinesia: a randomized, double-blind, placebo-controlled study. Parkinsonism Relat Disord. 2005;11:449–452.
  • Ory-Magne F, Corvol JC, Azulay JP, et al. Withdrawing amantadine in dyskinetic patients with Parkinson disease: the AMANDYSK trial. Neurology. 2014;82:300–307.
  • Thomas A, Iacono D, Luciano AL, et al. Duration of amantadine benefit on dyskinesia of severe Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2004 Jan;75(1):141–143.
  • Aarsland D, Ballard C, Walker Z, et al. Memantine in patients with Parkinson’s disease dementia or dementia with Lewy bodies: a double-blind, placebo-controlled, multicentre trial. Lancet Neurol. 2009;8:613–618.
  • Leroi I, Overshott R, Byrne EJ, et al. Randomized controlled trial of memantine in dementia associated with Parkinson’s disease. Mov Disord. 2009;24:1217–1221.
  • Emre M, Tsolaki M, Bonuccelli U, et al. Memantine for patients with Parkinson’s disease dementia or dementia with Lewy bodies: a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2010;9:969–977.
  • Arnone D. Review of the use of Topiramate for treatment of psychiatric disorders. Ann Gen Psychiatry. 2005;4:5.
  • Vijayakumar D, Jankovic J. Drug-induced dyskinesia, part 1: treatment of levodopa-induced dyskinesia. Drugs. 2016;76:759–777.
  • White HS, Brown SD, Woodhead JH, et al. Topiramate modulates GABA-evoked currents in murine cortical neurons by a nonbenzodiazepine mechanism. Epilepsia. 2000;41(Suppl 1):S17–20.
  • Bezard E, Pioli EY, Li Q, et al. The mGluR5 negative allosteric modulator dipraglurant reduces dyskinesia in the MPTP macaque model. Mov Disord. 2014;29:1074–1079.
  • Thiriez C, Villafane G, Grapin F, et al. Can nicotine be used medicinally in Parkinson’s disease? Expert Rev Clin Pharmacol. 2011;4:429–436.
  • Quik M, Bordia T, Zhang D, et al. Nicotine and nicotinic receptor drugs: potential for Parkinson’s disease and drug-induced movement disorders. Int Rev Neurobiol. 2015;124:247–271.
  • Mos J, Olivier B, Poth M, et al. The effects of intraventricular administration of eltoprazine, 1-(3-trifluoromethylphenyl) piperazine hydrochloride and 8-hydroxy-2-(di-n-propylamino)tetralin on resident intruder aggression in the rat. Eur J Pharmacol. 1992;212:295–298.
  • Thomsen MS, Hansen JB. JM-010, a new promising safe treatment paradigm for L-DOPA induced dyskinesia [abstract]. Mov Disord. 2013;28(Suppl 1):337.
  • Bonifati V, Fabrizio E, Cipriani R, et al. Buspirone in levodopa-induced dyskinesias. Clin Neuropharmacol. 1994;17:73–82.
  • Politis M, Wu K, Loane C, et al. Serotonergic mechanisms responsible for levodopa-induced dyskinesias in Parkinson’s disease patients. J Clin Invest. 2014;124:1340–1349.
  • Tani Y, Ogata A, Koyama M, et al. Effects of piclozotan (SUN N4057), a partial serotonin 1A receptor agonist, on motor complications induced by repeated administration of levodopa in parkinsonian rats. Eur J Pharmacol. 2010 Dec 15;649(1–3):218–223.
  • Savola JM, Hill M, Engstrom M, et al. Fipamezole (JP-1730) is a potent alpha2 adrenergic receptor antagonist that reduces levodopa-induced dyskinesia in the MPTP-lesioned primate model of Parkinson’s disease. Mov Disord. 2003 Aug;18(8):872–883.
  • Stathis P, Konitsiotis S, Tagaris G, et al. Levetiracetam for the management of levodopa-induced dyskinesias in Parkinson’s disease. Mov Disord. 2011;26:264–270.
  • Garay RP, Citrome L, Grossberg GT, et al. Investigational drugs for treating agitation in persons with dementia. Expert Opin Investig Drugs. 2016;25:973–983.
  • Olney N, Rosen H. AVP-923, a combination of dextromethorphan hydrobromide and quinidine sulfate for the treatment of pseudobulbar affect and neuropathic pain. IDrugs. 2010;13:254–265.
  • Pioro EP. Review of dextromethorphan 20 mg/Quinidine 10 mg (NUEDEXTA(®)) for pseudobulbar affect. Neurol Ther. 2014;3:15–28.
  • Goetz CG, Damier P, Hicking C, et al. Sarizotan as a treatment for dyskinesias in Parkinson’s disease: a double-blind placebo-controlled trial. Mov Disord. 2007 Jan 15;22(2):179–186.
  • Kannari K, Kurahashi K, Tomiyama M, et al. Tandospirone citrate, a selective 5-HT1A agonist, alleviates L-DOPA-induced dyskinesia in patients with Parkinson’s disease. No To Shinkei. 2002 Feb;54(2):133–137.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.