869
Views
19
CrossRef citations to date
0
Altmetric
Review

Investigational drugs in phase I and phase II clinical trials for thalassemia

, &
Pages 793-802 | Received 31 Jan 2017, Accepted 24 May 2017, Published online: 05 Jun 2017

References

  • Weatherall DJ. The inherited diseases of hemoglobin are an emerging global health burden. Blood. 2010;115:4331–4336.
  • Fucharoen S, Weatherall DJ. Progress toward the control and management of the thalassemias. Hematol Oncol Clin North Am. 2016;30:359–371.
  • Piel FB, Steinberg MH, Rees DC. Sickle cell disease. N Engl J Med. 2017;376:1561–1573.
  • Weatherall DJ. Phenotype-genotype relationships in monogenic disease: lessons from the thalassaemias. Nat Rev Genet. 2001;2:245–255.
  • Tavazzi D, Duca L, Graziadei G, et al. Membrane-bound iron contributes to oxidative damage of beta-thalassaemia intermedia erythrocytes. Br J Haematol. 2001;112:48–50.
  • Libani IV, Guy EC, Melchiori L, et al. Decreased differentiation of erythroid cells exacerbates ineffective erythropoiesis in beta-thalassemia. Blood. 2008;112:875–885.
  • Gardenghi S, Marongiu MF, Ramos P, et al. Ineffective erythropoiesis in beta-thalassemia is characterized by increased iron absorption mediated by down-regulation of hepcidin and up-regulation of ferroportin. Blood. 2007;109:5027–5035.
  • Cappellini MD, Cohen A, Porter J, et al. Guidelines for the management of transfusion dependent thalassaemia (TDT) [Internet]. 3rded. Nicosia (CY): Thalassaemia International Federation; 2014.
  • Taher A, Vichinsky E, Musallam K, et al. Guidelines for the management of non transfusion dependent thalassaemia (NTDT) [Internet]. Nicosia: Thalassaemia International Federation; 2013.
  • Musallam KM, Cappellini MD, Wood JC, et al. Elevated liver iron concentration is a marker of increased morbidity in patients with beta thalassemia intermedia. Haematologica. 2011;96:1605–1612.
  • Piga A, Serra M, Longo F, et al. Changing patterns of splenectomy in transfusion-dependent thalassemia patients. Am J Hematol. 2011;86:808–810.
  • Taher AT, Musallam KM, Karimi M, et al. Overview on practices in thalassemia intermedia management aiming for lowering complication rates across a region of endemicity: the OPTIMAL CARE study. Blood. 2010;115:1886–1892.
  • Sankaran VG, Nathan DG. Thalassemia: an overview of 50 years of clinical research. Hematol Oncol Clin North Am. 2010;24:1005–1020.
  • Platt OS. Hydroxyurea for the treatment of sickle cell anemia. N Engl J Med. 2008;358:1362–1369.
  • Foong WC, Ho JJ, Loh CK, et al. Hydroxyurea for reducing blood transfusion in non-transfusion dependent beta thalassaemias. Cochrane Database Syst Rev. 2016;10:CD011579.
  • Lucarelli G, Isgro A, Sodani P, et al. Hematopoietic stem cell transplantation in thalassemia and sickle cell anemia. Cold Spring Harb Perspect Med. 2012;2:a011825.
  • Gragert L, Eapen M, Williams E, et al. HLA match likelihoods for hematopoietic stem-cell grafts in the U.S. registry. N Engl J Med. 2014;371:339–348.
  • Locatelli F, Merli P, Strocchio L. Transplantation for thalassemia major: alternative donors. Curr Opin Hematol. 2016;23:515–523.
  • Angelucci E, Matthes-Martin S, Baronciani D, et al. Hematopoietic stem cell transplantation in thalassemia major and sickle cell disease: indications and management recommendations from an international expert panel. Haematologica. 2014;99:811–820.
  • Rivella S. Beta-thalassemias: paradigmatic diseases for scientific discoveries and development of innovative therapies. Haematologica. 2015;100:418–430.
  • Ruckle J, Jacobs M, Kramer W, et al. Single-dose, randomized, double-blind, placebo-controlled study of ACE-011 (ActRIIA-IgG1) in postmenopausal women. J Bone Miner Res. 2009;24:744–752.
  • Study to evaluate the effects of ACE-536 in patients with beta-thalassemia. Clinicaltrials.gov. 2017 Jan 26 [cited 2017 Jan 28]. Available from: https://clinicaltrials.gov/ct2/show/NCT01749540?term=NCT01749540&rank=1
  • ACE-536 extension study - beta thalassemia. Clinicaltrials.gov. 2017 Jan 26 [cited 2017 Jan 28]. Available from: https://clinicaltrials.gov/ct2/show/NCT02268409?term=NCT01749540&rank=2
  • Study to determine the safety and tolerability of sotatercept (ACE-011) in adults with beta(β)- thalassemia. Clinicaltrials.gov. 2017 Jan 26 [cited 2017 Jan 28]. Available from: https://clinicaltrials.gov/ct2/show/NCT01571635?term=NCT01571635&rank=1
  • Piga AG, Tartaglione I, Gamberini R, et al. Luspatercept increases hemoglobin, decreases transfusion burden and improves iron overload in adults with beta-thalassemia [abstract]. Blood. 2016;128(22):851.
  • Cappellini MD, Porter J, Origa R, et al. Interim results from a phase 2A, open-label, dose-finding study of sotatercept (ACE-011) in adult patients (PTS) with beta-thalssemia [abstract]. Haematologica. 2015;100(s1):17–18.
  • An efficacy and safety study of luspatercept (ACE-536) versus placebo in adults who require regular red blood cell transfusions due to beta (β) thalassemia (BELIEVE). Clinicaltrials.gov. 2017 Jan 19 [cited 2017 Jan 22]. Available from: https://clinicaltrials.gov/ct2/show/NCT02604433?term=NCT02604433&rank=1
  • Study of efficacy and safety of INC424 in regularly transfused patients with thalassemia. Clinicaltrials.gov. 2017 Jan 23 [cited 2017 Jan 23]. Available from: https://clinicaltrials.gov/ct2/show/NCT02049450?term=NCT02049450&rank=1
  • Phase II study to investigate the benefits of an improved deferasirox formulation (film-coated tablet). Clinicaltrials.gov. 2017 Jan 23 [cited 2017 Jan 23]. Available from: https://clinicaltrials.gov/ct2/show/NCT02125877?term=NCT02125877&rank=1
  • Rider CC, Mulloy B. Bone morphogenetic protein and growth differentiation factor cytokine families and their protein antagonists. Biochem J. 2010;429:1–12.
  • Zermati Y, Fichelson S, Valensi F, et al. Transforming growth factor inhibits erythropoiesis by blocking proliferation and accelerating differentiation of erythroid progenitors. Exp Hematol. 2000;28:885–894.
  • Ronzoni L, Sonzogni L, Duca L, et al. Growth differentiation factor 15 expression and regulation during erythroid differentiation in non-transfusion dependent thalassemia. Blood Cells Mol Dis. 2015;54:26–28.
  • Tanno T, Noel P, Miller JL. Growth differentiation factor 15 in erythroid health and disease. Curr Opin Hematol. 2010;17:184–190.
  • Dussiot M, Maciel TT, Fricot A, et al. An activin receptor IIA ligand trap corrects ineffective erythropoiesis in beta-thalassemia. Nat Med. 2014;20:398–407.
  • Suragani RN, Cawley SM, Li R, et al. Modified activin receptor IIB ligand trap mitigates ineffective erythropoiesis and disease complications in murine beta-thalassemia. Blood. 2014;123:3864–3872.
  • Suragani RN, Cadena SM, Cawley SM, et al. Transforming growth factor-beta superfamily ligand trap ACE-536 corrects anemia by promoting late-stage erythropoiesis. Nat Med. 2014;20:408–414.
  • Oikonomidou PR, La P, Gupta R, et al. Genetic investigation of the role of GDF11 in the treatment of β-thalassemia and MDS [abstract]. Blood. 2016;128(22):2439.
  • Jakavi® (ruxolitinib) tablets: EU summary of product characteristics. Novartis. 2015 Mar.
  • Vannucchi AM, Harrison C. Emerging treatments for classical myeloproliferative neoplasms. Blood. 2016 [cited 2017 Jan 23]. 10:695965.
  • Grinfeld J, Godfrey AL. After 10 years of JAK2V617F: disease biology and current management strategies in polycythaemia vera. Blood Rev. 2016;31(3):101–118.
  • Aydinok Y, Karakas Z, Cassinerio E, et al. Efficacy and safety of ruxolitinib in regularly transfused patients with thalassemia: results from single-arm, multicenter, phase 2a truth study [abstract]. Blood. 2016;128(22):852.
  • Ramos P, Casu C, Gardenghi S, et al. Macrophages support pathological erythropoiesis in polycythemia vera and beta-thalassemia. Nat Med. 2013;19:437–445.
  • Crielaard BJ, Rivella S. Beta-thalassemia and polycythemia vera: targeting chronic stress erythropoiesis. Int J Biochem Cell Biol. 2014;51:89–92.
  • Casu C, Ramos P, Melchiori L, et al. Potential therapeutic applications of Jak2 inhibitors in beta-thalassemia and sickle cell disease [abstract]. Blood. 2011;118(21):3187.
  • Casu C, Oikonomidou PR, Lo Presti V, et al. Potential therapeutic applications of Jak2 inhibitors and Hif2a-ASO for the treatment of β-thalassemia intermedia and major [abstract]. Blood. 2016;128(22):1012.
  • Borgna-Pignatti C, Cappellini MD, De Stefano P, et al. Survival and complications in thalassemia. Ann N Y Acad Sci. 2005;1054:40–47.
  • Novartis Pharmaceuticals Corporation. Desferal® deferoxamine mesylate for injection USP. [updated 2011 Dec; cited 2017 May]. Available from: https://www.pharma.us.novartis.com/sites/www.pharma.us.novartis.com/files/desferal.pdf
  • ApoPharma. FERRIPROX® (deferiprone) tablets, for oral use. [updated 2015 Feb; cited 2017 May]. Available from: http://www.ferriprox.com/us/pdf/ferriprox_full_pi.pdf
  • Halawi R, Motta I, Taher A, et al. Deferasirox: an orphan drug for chronic iron overload in non-transfusion dependent thalassemia syndromes. Expert Opin on Orphan Drugs. 2016;1–10;4(6):677–686.
  • Taher AT, Origa R, Perrotta S, et al. Improved patient-reported outcomes with a film-coated versus dispersible tablet formulation of deferasirox: results from the randomized, phase II E.C.L.I.P.S.E. study [abstract]. Blood. 2016;128(22):850.
  • Amlodipine in the prevention and treatment of iron overload in patients with thalassemia major (AmloThal). Clinicaltrials.gov. 2017 Jan 26 [ cited 2017 Jan 27]. Available from: https://clinicaltrials.gov/ct2/show/NCT01395199?term=NCT01395199&rank=1
  • Fernandes JL, Loggetto SR, Veríssimo MP, et al. A randomized trial of amlodipine in addition to standard chelation therapy in patients with thalassemia major. Blood. 2016;128:1555–1561.
  • Arumugam P, Malik P. Genetic therapy for beta-thalassemia: from the bench to the bedside. Hematology Am Soc Hematol Educ Program. 2010;2010:445–450.
  • Sadelain M, Lisowski L, Samakoglu S, et al. Progress toward the genetic treatment of the beta-thalassemias. Ann N Y Acad Sci. 2005;1054:78–91.
  • Wilber A, Hargrove PW, Kim YS, et al. Therapeutic levels of fetal hemoglobin in erythroid progeny of beta-thalassemic CD34+ cells after lentiviral vector-mediated gene transfer. Blood. 2011;117:2817–2826.
  • Gene therapy for transfusion dependent beta-thalassemia (TIGET-BTHAL). Clinicaltrials.gov 2017 Jan 26 [cited 2017 Jan 28]; Available from: https://clinicaltrials.gov/ct2/show/NCT02453477?term=NCT02453477&rank=1
  • A study evaluating the safety and efficacy of the LentiGlobin® BB305 drug product in beta-thalassemia major subjects. Clinicaltrials.gov 2017 Jan 26 [cited 2017 Jan 28]. Available from: https://clinicaltrials.gov/ct2/show/NCT01745120?term=HGB-204&rank=1
  • A study evaluating the safety and efficacy of the LentiGlobin® BB305 drug product in beta-thalassemia major subjects. Clinicaltrials.gov 2017 Jan 26 [cited 2017 Jan 28]. Available from: https://clinicaltrials.gov/ct2/show/NCT02151526?term=HGB-205&rank=1
  • A study evaluating the efficacy and safety of the LentiGlobin® BB305 drug product in subjects with transfusion-dependent β-thalassemia. Clinicaltrials.gov 2017 Jan 26 [cited 2017 Jan 28]. Available from: https://clinicaltrials.gov/ct2/show/NCT02906202?term=NCT02906202&rank=1
  • ß-thalassemia major with autologous CD34+ hematopoietic progenitor cells transduced with TNS9.3.55 a lentiviral vector encoding the normal human ß-globin gene. Clinicaltrials.gov 2017 Jan 26 [cited 2017 Jan 28]. Available from: https://clinicaltrials.gov/ct2/show/NCT01639690?term=NCT01639690&rank=1
  • Adachi K, Konitzer P, Surrey S. Role of gamma 87 Gln in the inhibition of hemoglobin S polymerization by hemoglobin F. J Biol Chem. 1994;269:9562–9567.
  • Thompson AA, Kwiatkowski J, Rasko J, et al. Lentiglobin gene therapy for transfusion-dependent β-thalassemia: update from the northstar Hgb-204 phase 1/2 clinical study [abstract]. Blood. 2016;128(22):1175.
  • Negre O, Eggimann AV, Beuzard Y, et al. Gene therapy of the beta-hemoglobinopathies by lentiviral transfer of the beta(A(T87Q))-globin gene. Hum Gene Ther. 2016;27:148–165.
  • Mansilla-Soto J, Riviere I, Boulad F, et al. Cell and gene therapy for the beta-thalassemias: advances and prospects. Hum Gene Ther. 2016;27:295–304.
  • Cox DB, Platt RJ, Zhang F. Therapeutic genome editing: prospects and challenges. Nat Med. 2015;21:121–131.
  • Ganz T. Hepcidin and iron regulation, 10 years later. Blood. 2011;117:4425–4433.
  • Casu C, Oikonomidou PR, Chen H, et al. Minihepcidin peptides as disease modifiers in mice affected by beta-thalassemia and polycythemia vera. Blood. 2016;128:265–276.
  • Casu C, Aghajan M, Oikonomidou PR, et al. Combination of Tmprss6- ASO and the iron chelator deferiprone improves erythropoiesis and reduces iron overload in a mouse model of beta-thalassemia intermedia. Haematologica. 2016;101:e8–e11.
  • Schmidt PJ, Racie T, Westerman M, et al. Combination therapy with a Tmprss6 RNAi-therapeutic and the oral iron chelator deferiprone additively diminishes secondary iron overload in a mouse model of beta-thalassemia intermedia. Am J Hematol. 2015;90:310–313.
  • Tallack MR, Perkins AC. Three fingers on the switch: kruppel-like factor 1 regulation of gamma-globin to beta-globin gene switching. Curr Opin Hematol. 2013;20:193–200.
  • Xu XS, Hong X, Wang G. Induction of endogenous gamma-globin gene expression with decoy oligonucleotide targeting Oct-1 transcription factor consensus sequence. J Hematol Oncol. 2009;2:15.
  • Jiang J, Best S, Menzel S, et al. cMYB is involved in the regulation of fetal hemoglobin production in adults. Blood. 2006;108:1077–1083.
  • Roosjen M, McColl B, Kao B, et al. Transcriptional regulators Myb and BCL11A interplay with DNA methyltransferase 1 in developmental silencing of embryonic and fetal beta-like globin genes. FASEB J. 2014;28:1610–1620.
  • Sankaran VG, Menne TF, Xu J, et al. Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science. 2008;322:1839–1842.
  • Sankaran VG. Targeted therapeutic strategies for fetal hemoglobin induction. Hematology Am Soc Hematol Educ Program. 2011;2011:459–465.
  • Zhou D, Liu K, Sun CW, et al. KLF1 regulates BCL11A expression and gamma- to beta-globin gene switching. Nat Genet. 2010;42:742–744.
  • Deng W, Lee J, Wang H, et al. Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell. 2012;149:1233–1244.
  • Deng W, Rupon JW, Krivega I, et al. Reactivation of developmentally silenced globin genes by forced chromatin looping. Cell. 2014;158:849–860.
  • Breda L, Motta I, Lourenco S, et al. Forced chromatin looping raises fetal hemoglobin in adult sickle cells to higher levels than pharmacologic inducers. Blood. 2016;128:1139–1143.
  • Ou Z, Niu X, He W, et al. The combination of CRISPR/Cas9 and iPSC technologies in the gene therapy of human beta-thalassemia in mice. Sci Rep. 2016;6:32463.
  • Dever DP, Bak RO, Reinisch A, et al. CRISPR/Cas9 beta-globin gene targeting in human haematopoietic stem cells. Nature. 2016;539:384–389.
  • Canver MC, Smith EC, Sher F, et al. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature. 2015;527:192–197.
  • Ye L, Wang J, Tan Y, et al. Genome editing using CRISPR-Cas9 to create the HPFH genotype in HSPCs: an approach for treating sickle cell disease and beta-thalassemia. Proc Natl Acad Sci USA. 2016;113:10661–10665.
  • Traxler EA, Yao Y, Wang YD, et al. A genome-editing strategy to treat beta-hemoglobinopathies that recapitulates a mutation associated with a benign genetic condition. Nat Med. 2016;22:987–990.
  • Ma N, Liao B, Zhang H, et al. Transcription activator-like effector nuclease (TALEN)-mediated gene correction in integration-free beta-thalassemia induced pluripotent stem cells. J Biol Chem. 2013;288:34671–34679.
  • Xu P, Tong Y, Liu XZ, et al. Both TALENs and CRISPR/Cas9 directly target the HBB IVS2-654 (C > T) mutation in beta-thalassemia-derived iPSCs. Sci Rep. 2015;5:12065.
  • Makis A, Hatzimichael E, Papassotiriou I, et al. Clinical trials update in new treatments of beta-thalassemia. Am J Hematol. 2017;2016(91):1135–1145.
  • Cavazzana M, Antoniani C, Miccio A. Gene therapy for beta-hemoglobinopaties. Mol Ther. 2017;25:1142–1154.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.