10,610
Views
117
CrossRef citations to date
0
Altmetric
Review

Investigational phosphodiesterase inhibitors in phase I and phase II clinical trials for Alzheimer’s disease

, &
Pages 1033-1048 | Received 27 Apr 2017, Accepted 02 Aug 2017, Published online: 09 Aug 2017

References

  • Butcher RW, Sutherland EW. Adenosine 3ʹ,5ʹ-phosphate in biological materials. I. Purification and properties of cyclic 3ʹ,5ʹ-nucleotide phosphodiesterase and use of this enzyme to characterize adenosine 3ʹ,5ʹ-phosphate in human urine. J Biol Chem. 1962;237:1244–1250. .
  • Bender AT, Beavo JA. Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev. 2006;58:488–520.
  • Zusman RM, Morales A, Glasser DB, et al. Overall cardiovascular profile of sildenafil citrate. Am J Cardiol. 1999;83:35C–44C.
  • Maurice DH, Ke H, Ahmad F, et al. Advances in targeting cyclic nucleotide phosphodiesterases. Nat Reviews. 2014;13:290–314.
  • Bollen E, Prickaerts J. Phosphodiesterases in neurodegenerative disorders. IUBMB Life. 2012;64:965–970.
  • Heckman PR, Wouters C, Prickaerts J. Phosphodiesterase inhibitors as a target for cognition enhancement in aging and Alzheimer’s disease: a translational overview. Curr Pharm Des. 2015;21:317–331.
  • Perry EK. The cholinergic hypothesis - Ten years on. Br Med Bull. 1986;42:63–69.
  • Loveman E, Green C, Kirby J, et al. The clinical and cost-effectiveness of donepezil, rivastigmine, galantamine and memantine for Alzheimer’s disease. Health Technol Assess. 2006;10:iii-iv, ix-xi, 1-160.
  • Zemek F, Drtinova L, Nepovimova E, et al. Outcomes of Alzheimer’s disease therapy with acetylcholinesterase inhibitors and memantine. Expert Opin Drug Saf. 2014;13:759–774.
  • Spilovska K, Zemek F, Korabecny J, et al. Adamantane - A lead structure for drugs in clinical practice. Curr Med Chem. 2016;23:3245–3266.
  • Lakics V, Karran EH, Boess FG. Quantitative comparison of phosphodiesterase mRNA distribution in human brain and peripheral tissues. Neuropharmacology. 2010;59:367–374.
  • Blokland A, Menniti FS, Prickaerts J. PDE inhibition and cognition enhancement. Expert Opin Ther Pat. 2012;22:349–354.
  • Gurney ME, D’Amato EC. Burgin AB: phosphodiesterase-4 (PDE4) molecular pharmacology and Alzheimer’s disease. Neurotherapeutics: Journal Am Soc Exp NeuroTherapeutics. 2015;12:49–56.
  • Richter W, Menniti FS, Zhang HT, et al. PDE4 as a target for cognition enhancement. Expert Opin Ther Targets. 2013;17:1011–1027.
  • Keravis T, Lugnier C. Cyclic nucleotide phosphodiesterase (PDE) isozymes as targets of the intracellular signalling network: benefits of PDE inhibitors in various diseases and perspectives for future therapeutic developments. Br J Pharmacol. 2012;165:1288–1305.
  • Arancio O, Kandel ER, Hawkins RD. Activity-dependent long-term enhancement of transmitter release by presynaptic 3ʹ,5ʹ-cyclic GMP in cultured hippocampal neurons. Nature. 1995;376:74–80.
  • Schoffelmeer AN, Wardeh G. Mulder AH: cyclic AMP facilitates the electrically evoked release of radiolabelled noradrenaline, dopamine and 5-hydroxytryptamine from rat brain slices. Naunyn Schmiedebergs Arch Pharmacol. 1985;330:74–76.
  • Song RS, Tolentino R, Sobie EA, et al. Cross-regulation of phosphodiesterase 1 and phosphodiesterase 2 activities controls dopamine-mediated striatal alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor trafficking. J Biol Chem. 2016;291:23257–23267.
  • Nakagawa S, Kim JE, Lee R, et al. Regulation of neurogenesis in adult mouse hippocampus by cAMP and the cAMP response element-binding protein. J Neurosci. 2002;22:3673–3682.
  • Ramos BP, Birnbaum SG, Lindenmayer I, et al. Dysregulation of protein kinase a signaling in the aged prefrontal cortex: new strategy for treating age-related cognitive decline. Neuron. 2003;40:835–845.
  • Reyes-Irisarri E, Markerink-Van Ittersum M, Mengod G, et al. Expression of the cGMP-specific phosphodiesterases 2 and 9 in normal and Alzheimer’s disease human brains. Eur J Neurosci. 2007;25:3332–3338.
  • McLachlan CS, Chen ML, Lynex CN, et al. Changes in PDE4D isoforms in the hippocampus of a patient with advanced Alzheimer disease. Arch Neurol. 2007;64:456–457.
  • Ugarte A, Gil-Bea F, Garcia-Barroso C, et al. Decreased levels of guanosine 3ʹ, 5ʹ-monophosphate (cGMP) in cerebrospinal fluid (CSF) are associated with cognitive decline and amyloid pathology in Alzheimer’s disease. Neuropathol Appl Neurobiol. 2015;41:471–482.
  • Perez-Torres S, Cortes R, Tolnay M, et al. Alterations on phosphodiesterase type 7 and 8 isozyme mRNA expression in Alzheimer’s disease brains examined by in situ hybridization. Exp Neurol. 2003;182:322–334.
  • Fox D 3rd, Burgin AB, Gurney ME. Structural basis for the design of selective phosphodiesterase 4B inhibitors. Cellular Signalling. 2014;26:657–663.
  • Bruno O, Ricciarelli R, Prickaerts J, et al. PDE4D inhibitors: a potential strategy for the treatment of memory impairment? Neuropharmacology. 2014;85:290–292.
  • Zhang C, Xu Y, Zhang HT, et al. Comparison of the pharmacological profiles of selective PDE4B and PDE4D inhibitors in the central nervous system. Sci Rep. 2017;7:40115.
  • Subhan Z, Hindmarch I. Psychopharmacological effects of vinpocetine in normal healthy volunteers. Eur J Clin Pharmacol. 1985;28:567–571.
  • Polich J, Gloria R. Cognitive effects of a Ginkgo biloba/vinpocetine compound in normal adults: systematic assessment of perception, attention and memory. Hum Psychopharmacol. 2001;16:409–416.
  • Richter Y, Herzog Y, Eyal I, et al. Cognitex supplementation in elderly adults with memory complaints: an uncontrolled open label trial. J Diet Suppl. 2011;8:158–168.
  • Valikovics A, Csanyi A, Nemeth L. [Study of the effects of vinpocetin on cognitive functions]. Ideggyogy Sz. 2012;65:115–120.
  • Thal LJ, Salmon DP, Lasker B, et al. The safety and lack of efficacy of vinpocetine in Alzheimer’s disease. J Am Geriatr Soc. 1989;37:515–520.
  • Szatmari SZ, Whitehouse PJ. Vinpocetine for cognitive impairment and dementia. Cochrane Database Syst Rev. 2003;1:CD003119.
  • Arai H, Takahashi T. A combination therapy of donepezil and cilostazol for patients with moderate Alzheimer disease: pilot follow-up study. Am J Geriatr Psychiatry. 2009;17:353–354.
  • Sakurai H, Hanyu H, Sato T, et al. Effects of cilostazol on cognition and regional cerebral blood flow in patients with Alzheimer’s disease and cerebrovascular disease: a pilot study. Geriatr Gerontol Int. 2013;13:90–97.
  • Tai SY, Chen CH, Chien CY, et al. Cilostazol as an add-on therapy for patients with Alzheimer’s disease in Taiwan: a case control study. BMC Neurol. 2017;17:40.
  • Tai SY, Chien CY, Chang YH, et al. Cilostazol use is associated with reduced risk of dementia: a nationwide cohort study. Neurotherapeutics: Journal Am Soc Exp NeuroTherapeutics. 2017;14:784–791.
  • Taguchi A, Takata Y, Ihara M, et al. Cilostazol improves cognitive function in patients with mild cognitive impairment: a retrospective analysis. Psychogeriatrics: Official Journal Japanese Psychogeriatric Society. 2013;13:164–169.
  • Ihara M, Nishino M, Taguchi A, et al. Cilostazol add-on therapy in patients with mild dementia receiving donepezil: a retrospective study. PLoS One. 2014;9:e89516.
  • Memory Pharmaceuticals Corp., Annual Report, 2008, Available from: https://www.sec.gov/Archives/edgar/data/1062216/000095012306004010/y19213e10vk.htm
  • Helicon study of HT-0712 on primate memory formation reveals significant enhancement, Press Release, 2008, Available from: http://www.dartneuroscience.com/press_releases/july_22_2008.pdf
  • van Duinen M, Sambeth A, Blokland A, et al. PDE4 inhibition in young healthy adults improves memory: a translational approach. Neuroscience Meeting Planner, Program No. 622.16; Society for Neuroscience, Chicago, IL, 2015. 72
  • Tetra discovery partners announces positive results from phase 1 studies of cognition drug candidate, BPN14770, Press Release, 2016, available from: http://tetradiscovery.com/wp-content/uploads/2016/11/FINAL-Tetra-Phase-1-121616-FINAL.pdf.
  • Treves TA, Korczyn AD. Denbufylline in dementia: a double-blind controlled study. Dement Geriatr Cogn Disord. 1999;10:505–510.
  • Saletu B, Anderer P, Fischhof PK, et al. EEG mapping and psychopharmacological studies with denbufylline in SDAT and MID. Biol Psychiatry. 1992;32:668–681.
  • Grass H, Klotz T, Fathian-Sabet B, et al. Sildenafil (Viagra): is there an influence on psychological performance? Int Urol Nephrol. 2001;32:409–412.
  • Schultheiss D, Muller SV, Nager W, et al. Central effects of sildenafil (Viagra) on auditory selective attention and verbal recognition memory in humans: a study with event-related brain potentials. World J Urol. 2001;19:46–50.
  • Reneerkens OA, Sambeth A, Van Duinen MA, et al. The PDE5 inhibitor vardenafil does not affect auditory sensory gating in rats and humans. Psychopharmacology (Berl). 2013;225:303–312.
  • Reneerkens O, Sambeth A, Ramaekers J, et al. The effects of the phosphodiesterase type 5 inhibitor vardenafil on cognitive performance in healthy adults: a behavioral- electroencephalography study. J Psychopharmacol. 2013;27:600–608.
  • Schwam EM, Nicholas T, Chew R, et al. A multicenter, double-blind, placebo-controlled trial of the PDE9A inhibitor, PF-04447943, in Alzheimer’s disease. Curr Alzheimer Res. 2014;11:413–421.
  • Ahn HS, Bercovici A, Boykow G, et al. Potent tetracyclic guanine inhibitors of PDE1 and PDE5 cyclic guanosine monophosphate phosphodiesterases with oral antihypertensive activity. J Med Chem. 1997;40:2196–2210.
  • Li P, Zheng H, Zhao J, et al. Discovery of potent and selective inhibitors of phosphodiesterase 1 for the treatment of cognitive impairment associated with neurodegenerative and neuropsychiatric diseases. J Med Chem. 2016;59:1149–1164.
  • Snyder GL, Prickaerts J, Wadenberg ML, et al. Preclinical profile of ITI-214, an inhibitor of phosphodiesterase 1, for enhancement of memory performance in rats. Psychopharmacology (Berl). 2016;233:3113–3124.
  • Vereczkey L. Pharmacokinetics and metabolism of vincamine and related compounds. Eur J Drug Metab Pharmacokinet. 1985;10:89–103.
  • Balestreri R, Fontana L, Astengo F. A double-blind placebo controlled evaluation of the safety and efficacy of vinpocetine in the treatment of patients with chronic vascular senile cerebral dysfunction. J Am Geriatr Soc. 1987;35:425–430.
  • Boess FG, Hendrix M. van der Staay FJ et al: inhibition of phosphodiesterase 2 increases neuronal cGMP, synaptic plasticity and memory performance. Neuropharmacology. 2004;47:1081–1092.
  • Domek-Lopacinska K, Strosznajder JB. The effect of selective inhibition of cyclic GMP hydrolyzing phosphodiesterases 2 and 5 on learning and memory processes and nitric oxide synthase activity in brain during aging. Brain Res. 2008;1216:68–77.
  • Sierksma AS, Rutten K, Sydlik S, et al. Chronic phosphodiesterase type 2 inhibition improves memory in the APPswe/PS1dE9 mouse model of Alzheimer’s disease. Neuropharmacology. 2013;64:124–136.
  • Gomez L, Breitenbucher JG. PDE2 inhibition: potential for the treatment of cognitive disorders. Bioorg Med Chem Lett. 2013;23:6522–6527.
  • Park SH, Kim JH, Bae SS, et al. Protective effect of the phosphodiesterase III inhibitor cilostazol on amyloid beta-induced cognitive deficits associated with decreased amyloid beta accumulation. Biochem Biophys Res Commun. 2011;408:602–608.
  • Hiramatsu M, Takiguchi O, Nishiyama A, et al. Cilostazol prevents amyloid beta peptide(25-35)-induced memory impairment and oxidative stress in mice. Br J Pharmacol. 2010;161:1899–1912.
  • Birk S, Kruuse C, Petersen KA, et al. The phosphodiesterase 3 inhibitor cilostazol dilates large cerebral arteries in humans without affecting regional cerebral blood flow. J Cereb Blood Flow Metab. 2004;24:1352–1358.
  • Shirayama Y, Konishi T, Hashimoto K. Effects of add-on cilostazol on cognition in patients with schizophrenia: an open-label pilot trial. J Clin Psychopharmacol. 2011;31:659–661.
  • Chapman TM. Goa KL: cilostazol: a review of its use in intermittent claudication. Am J Cardiovasc Drugs. 2003;3:117–138.
  • Esposito K, Reierson GW, Luo HR, et al. Phosphodiesterase genes and antidepressant treatment response: a review. Ann Med. 2009;41:177–185.
  • Zeller E, Stief HJ, Pflug B, et al. Results of a phase II study of the antidepressant effect of rolipram. Pharmacopsychiatry. 1984;17:188–190.
  • Fleischhacker WW, Hinterhuber H, Bauer H, et al. A multicenter double-blind study of three different doses of the new cAMP-phosphodiesterase inhibitor rolipram in patients with major depressive disorder. Neuropsychobiology. 1992;26:59–64.
  • Robichaud A, Savoie C, Stamatiou PB, et al. Assessing the emetic potential of PDE4 inhibitors in rats. Br J Pharmacol. 2002;135:113–118.
  • Burgin AB, Magnusson OT, Singh J, et al. Design of phosphodiesterase 4D (PDE4D) allosteric modulators for enhancing cognition with improved safety. Nat Biotechnol. 2010;28:63–70.
  • Bruno O, Fedele E, Prickaerts J, et al. GEBR-7b, a novel PDE4D selective inhibitor that improves memory in rodents at non-emetic doses. Br J Pharmacol. 2011;164:2054–2063.
  • Ricciarelli R, Brullo C, Prickaerts J, et al. Memory-enhancing effects of GEBR-32a, a new PDE4D inhibitor holding promise for the treatment of Alzheimer’s disease. Sci Rep. 2017;7:46320.
  • Sierksma AS, Van Den Hove DL, Pfau F, et al. Improvement of spatial memory function in APPswe/PS1dE9 mice after chronic inhibition of phosphodiesterase type 4D. Neuropharmacology. 2014;77:120–130.
  • Comery TA, Martone RL, Aschmies S, et al. Acute gamma-secretase inhibition improves contextual fear conditioning in the Tg2576 mouse model of Alzheimer’s disease. J Neurosci. 2005;25:8898–8902.
  • Gong B, Vitolo OV, Trinchese F, et al. Persistent improvement in synaptic and cognitive functions in an Alzheimer mouse model after rolipram treatment. J Clin Invest. 2004;114:1624–1634.
  • Myeku N, Clelland CL, Emrani S, et al. Tau-driven 26S proteasome impairment and cognitive dysfunction can be prevented early in disease by activating cAMP-PKA signaling. Nat Med. 2016;22:46–53.
  • Leaker BR, Singh D, Ali FY, et al. The effect of the novel phosphodiesterase-4 inhibitor MEM 1414 on the allergen induced responses in mild asthma. BMC Pulm Med. 2014;14:166.
  • Gallant M, Aspiotis R, Day S, et al. Discovery of MK-0952, a selective PDE4 inhibitor for the treatment of long-term memory loss and mild cognitive impairment. Bioorg Med Chem Lett. 2010;20:6387–6393.
  • MacDonald E, van der Lee H, Pocock D, et al. A novel phosphodiesterase type 4 inhibitor, HT-0712, enhances rehabilitation-dependent motor recovery and cortical reorganization after focal cortical ischemia. Neurorehabil Neural Repair. 2007;21:486–496.
  • Puhan M. Phosphodiesterase 4 inhibitors for chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2003;8:CD003119.
  • Rabe KF, Bateman ED, O’Donnell D, et al. Roflumilast–an oral anti-inflammatory treatment for chronic obstructive pulmonary disease: a randomised controlled trial. Lancet. 2005;366:563–571.
  • Hansen RT 3rd, Zhang HT. Phosphodiesterase-4 modulation as a potential therapeutic for cognitive loss in pathological and non-pathological aging: possibilities and pitfalls. Curr Pharm Des. 2015;21:291–302.
  • Puzzo D, Staniszewski A, Deng SX, et al. Phosphodiesterase 5 inhibition improves synaptic function, memory, and amyloid-beta load in an Alzheimer’s disease mouse model. J Neurosci. 2009;29:8075–8086.
  • Zhang J, Guo J, Zhao X, et al. Phosphodiesterase-5 inhibitor sildenafil prevents neuroinflammation, lowers beta-amyloid levels and improves cognitive performance in APP/PS1 transgenic mice. Behav Brain Res. 2013;250:230–237.
  • Cuadrado-Tejedor M, Hervias I, Ricobaraza A, et al. Sildenafil restores cognitive function without affecting beta-amyloid burden in a mouse model of Alzheimer’s disease. Br J Pharmacol. 2011;164:2029–2041.
  • Garcia-Barroso C, Ricobaraza A, Pascual-Lucas M, et al. Tadalafil crosses the blood-brain barrier and reverses cognitive dysfunction in a mouse model of AD. Neuropharmacology. 2013;64:114–123.
  • Kruuse C, Thomsen LL, Jacobsen TB, et al. The phosphodiesterase 5 inhibitor sildenafil has no effect on cerebral blood flow or blood velocity, but nevertheless induces headache in healthy subjects. J Cereb Blood Flow Metab. 2002;22:1124–1131.
  • Arnavaz A, Aurich A, Weissenborn K, et al. Effect of sildenafil (Viagra) on cerebral blood flow velocity: a pilot study. Psychiatry Res. 2003;122:207–209.
  • Goff DC, Cather C, Freudenreich O, et al. A placebo-controlled study of sildenafil effects on cognition in schizophrenia. Psychopharmacology (Berl). 2009;202:411–417.
  • Shim YS, Pae CU, Cho KJ, et al. Effects of daily low-dose treatment with phosphodiesterase type 5 inhibitor on cognition, depression, somatization and erectile function in patients with erectile dysfunction: a double-blind, placebo-controlled study. Int J Impot Res. 2014;26:76–80.
  • Hopkins Tanne J. Approved drugs are to be studied for use in Alzheimer’s disease. Bmj. 2016;354:i5063.
  • Perez-Gonzalez R, Pascual C, Antequera D, et al. Phosphodiesterase 7 inhibitor reduced cognitive impairment and pathological hallmarks in a mouse model of Alzheimer’s disease. Neurobiology of Aging. 2013;34:2133–2145.
  • DeNinno MP, Wright SW, Visser MS, et al. 1,5-Substituted nipecotic amides: selective PDE8 inhibitors displaying diastereomer-dependent microsomal stability. Bioorg Med Chem Lett. 2011;21:3095–3098.
  • Tsai LC, Chan GC, Nangle SN, et al. Inactivation of Pde8b enhances memory, motor performance, and protects against age-induced motor coordination decay. Genes Brain Behav. 2012;11:837–847.
  • van der Staay FJ, Rutten K, Barfacker L, et al. The novel selective PDE9 inhibitor BAY 73-6691 improves learning and memory in rodents. Neuropharmacology. 2008;55:908–918.
  • Kleiman RJ, Chapin DS, Christoffersen C, et al. Phosphodiesterase 9A regulates central cGMP and modulates responses to cholinergic and monoaminergic perturbation in vivo. J Pharmacol Exp Ther. 2012;341:396–409.
  • Hutson PH, Finger EN, Magliaro BC, et al. The selective phosphodiesterase 9 (PDE9) inhibitor PF-04447943 (6-[(3S,4S)-4-methyl-1-(pyrimidin-2-ylmethyl)pyrrolidin-3-yl]-1-(tetrahydro-2H-py ran-4-yl)-1,5-dihydro-4H-pyrazolo[3,4-d]pyrimidin-4-one) enhances synaptic plasticity and cognitive function in rodents. Neuropharmacology. 2011;61:665–676.
  • Moschetti V, Boland K, Feifel U, et al. First-in-human study assessing safety, tolerability and pharmacokinetics of BI 409306, a selective phosphodiesterase 9A inhibitor, in healthy males. Br J Clin Pharmacol. 2016;82:1315–1324.
  • Kehler J, Nielsen J. PDE10A inhibitors: novel therapeutic drugs for schizophrenia. Curr Pharm Des. 2011;17:137–150.
  • Schmidt CJ, Chapin DS, Cianfrogna J, et al. Preclinical characterization of selective phosphodiesterase 10A inhibitors: a new therapeutic approach to the treatment of schizophrenia. J Pharmacol Exp Ther. 2008;325:681–690.
  • Menniti FS, Chappie TA, Humphrey JM, et al. Phosphodiesterase 10A inhibitors: a novel approach to the treatment of the symptoms of schizophrenia. Curr Opin Investig Drugs. 2007;8:54–59.
  • Reneerkens OA, Rutten K, Bollen E, et al. Inhibition of phoshodiesterase type 2 or type 10 reverses object memory deficits induced by scopolamine or MK-801. Behav Brain Res. 2013;236:16–22.
  • Grauer SM, Pulito VL, Navarra RL, et al. Phosphodiesterase 10A inhibitor activity in preclinical models of the positive, cognitive, and negative symptoms of schizophrenia. J Pharmacol Exp Ther. 2009;331:574–590.
  • Rodefer JS, Saland SK, Eckrich SJ. Selective phosphodiesterase inhibitors improve performance on the ED/ID cognitive task in rats. Neuropharmacology. 2012;62:1182–1190.
  • Hegde S, Capell WR, Ibrahim BA, et al. Phosphodiesterase 11A (PDE11A), enriched in ventral hippocampus neurons, is required for consolidation of social but not nonsocial memories in mice. Neuropsychopharmacology. 2016;41:2920–2931.
  • Hegde S, Ji H, Oliver D, et al. PDE11A regulates social behaviors and is a key mechanism by which social experience sculpts the brain. Neuroscience. 2016;335:151–169.
  • Ceyhan O, Birsoy K, Hoffman CS. Identification of biologically active PDE11-selective inhibitors using a yeast-based high-throughput screen. Chem Biol. 2012;19:155–163.
  • Vanmierlo T, Creemers P, Akkerman S, et al. The PDE4 inhibitor roflumilast improves memory in rodents at non-emetic doses. Behav Brain Res. 2016;303:26–33.
  • Rutten K, Van Donkelaar EL, Ferrington L, et al. Phosphodiesterase inhibitors enhance object memory independent of cerebral blood flow and glucose utilization in rats. Neuropsychopharmacology. 2009;34:1914–1925.
  • Hatzelmann A, Morcillo EJ, Lungarella G, et al. The preclinical pharmacology of roflumilast–a selective, oral phosphodiesterase 4 inhibitor in development for chronic obstructive pulmonary disease. Pulm Pharmacol Ther. 2010;23:235–256.
  • Bollen E, Puzzo D, Rutten K, et al. Improved long-term memory via enhancing cGMP-PKG signaling requires cAMP-PKA signaling. Neuropsychopharmacology. 2014;39:2497–2505.
  • Martinez A, Gil C. cAMP-specific phosphodiesterase inhibitors: promising drugs for inflammatory and neurological diseases. Expert Opin Ther Pat. 2014;24:1311–1321.
  • Blokland A, van Goethem N, Heckman P, et al. Translational issues with the development of cognition enhancing drugs. Front Neurol. 2014;5:190.
  • Wesnes KA, Annas P, Basun H, et al. Performance on a pattern separation task by Alzheimer’s patients shows possible links between disrupted dentate gyrus activity and apolipoprotein E in4 status and cerebrospinal fluid amyloid-beta42 levels. Alzheimers Res Ther. 2014;6:20.
  • van Hagen BT, van Goethem NP, Lagatta DC, et al. The object pattern separation (OPS) task: a behavioral paradigm derived from the object recognition task. Behav Brain Res. 2015;285:44–52.
  • Reagh ZM, Roberts JM, Ly M, et al. Spatial discrimination deficits as a function of mnemonic interference in aged adults with and without memory impairment. Hippocampus. 2014;24:303–314.
  • Borota D, Murray E, Keceli G, et al. Post-study caffeine administration enhances memory consolidation in humans. Nat Neurosci. 2014;17:201–203.