2,326
Views
8
CrossRef citations to date
0
Altmetric
Drug Evaluation

Cefiderocol: a novel siderophore cephalosporin

&
Pages 193-197 | Received 14 Nov 2017, Accepted 08 Jan 2018, Published online: 24 Jan 2018

References

  • Nordmann P, Naas T, Poirel L. Global spread of carbapenemase-producing enterobacteriaceae. Emerg Infect Dis. 2011;17(10):1791–1798.
  • Palma N, Pons MJ, Gomes C, et al. Resistance to quinolones, cephalosporins and macrolides in Escherichia coli causing bacteraemia in Peruvian children. J Glob Antimicrob Resist. 2017;11:28–33.
  • Lamba M, Ahammad SZ. Sewage treatment effluents in Delhi: a key contributor of β-lactam resistant bacteria and genes to the environment. Chemosphere. 2017;188:249–256.
  • Daoud Z, Farah J, Salem Sokhn E, et al. Multidrug-resistant enterobacteriaceae in Lebanese hospital wastewater: implication in the one health concept. Microb Drug Resist. 2017;55:1181-1192.
  • Wright H, Bonomo RA, Paterson DL. New agents for the treatment of infections with Gram-negative bacteria: restoring the miracle or false dawn? Clin Microbiol Infect. 2017;23(10):704–712.
  • Kohira N, West J, Ito A, et al. In vitro antimicrobial activity of a siderophore cephalosporin, S-649266, against enterobacteriaceae clinical isolates, including carbapenem-resistant strains. Antimicrob Agents Chemother. 2016;60(2):729–734.
  • Karpiuk I, Tyski S. Looking for the new preparations for antibacterial therapy. II. Clinical trials; new beta-lactam antibiotics and beta-lactamase inhibitors. Przegl Epidemiol. 2013;67(1):51-6, 135-40.
  • Kost K, Yi J, Rogers B, et al. Comparison of clinical methods for detecting carbapenem-resistant Enterobacteriaceae. Pract Lab Med. 2017;8:18–25.
  • Herruzo R, Ruiz G, Perez-Blanco V, et al. Bla-OXA48 gene microorganisms outbreak, in a tertiary children’s hospital, over 3 years (2012-2014): case report. Medicine (Baltimore). 2017;96(40):e7665.
  • Kasuya K, Shimokubo N, Kosuge C, et al. Three cases of Escherichia coli meningitis in chicks imported to Japan. Avian Dis. 2017;61(1):135–138.
  • Kohler PP, Volling C, Green K, et al. Carbapenem resistance, initial antibiotic therapy, and mortality in Klebsiella pneumoniae bacteremia: a systematic review and meta-analysis. Infect Control Hosp Epidemiol. 2017;49:1–10.
  • Otter JA, Doumith M, Davies F, et al. Emergence and clonal spread of colistin resistance due to multiple mutational mechanisms in carbapenemase-producing Klebsiella pneumoniae in London. Sci Rep. 2017;7(1):12711.
  • Wang M, Borris L, Aarestrup FM, et al. Identification of a Pseudomonas aeruginosa co-producing NDM-1, VIM-5 and VIM-6 metallo-β-lactamases in Denmark using whole-genome sequencing. Int J Antimicrob Agents. 2015;45(3):324–325.
  • Sharma M, Pathak S, Srivastava P. Prevalence and antibiogram of Extended Spectrum β-Lactamase (ESBL) producing Gram negative bacilli and further molecular characterization of ESBL producing Escherichia coli and Klebsiella spp. J Clin Diagn Res. 2013;7(10):2173–2177.
  • Bogaerts P, Naas T, Saegeman V, et al. OXA-427, a new plasmid-borne carbapenem-hydrolysing class D β-lactamase in Enterobacteriaceae. J Antimicrob Chemother. 2017;72(9):2469–2477.
  • Mueller KE, Fields KA. Application of β-lactamase reporter fusions as an indicator of effector protein secretion during infections with the obligate intracellular pathogen Chlamydia trachomatis. PLoS One. 2015;10(8):e0135295.
  • Balder R, Shaffer TL, Lafontaine ER. Moraxella catarrhalis uses a twin-arginine translocation system to secrete the β-lactamase BRO-2. BMC Microbiol. 2013;13:140.
  • Lee D, Das S, Dawson NL, et al. Novel computational protocols for functionally classifying and characterising serine beta-lactamases. PLoS Comput Biol. 2016;12(6):e1004926.
  • Bush K. Proliferation and significance of clinically relevant β-lactamases. Ann N Y Acad Sci. 2013;1277:84–90.
  • Abboud MI, Damblon C, Brem J, et al. Interaction of avibactam with Class B Metallo-β-Lactamases. Antimicrob Agents Chemother. 2016;60(10):5655–5662.
  • Thomas PW, Spicer T, Cammarata M, et al. An altered zinc-binding site confers resistance to a covalent inactivator of New Delhi metallo-beta-lactamase-1 (NDM-1) discovered by high-throughput screening. Bioorg Med Chem. 2013;21(11):3138–3146.
  • Bonnin RA, Didi J, Ergani A, et al. Chromosome-encoded broad-spectrum ambler Class A β-Lactamase RUB-1 from Serratia rubidaea. Antimicrob Agents Chemother. 2017;61:2.
  • Bassetti M, Giacobbe DR, Giamarellou H, et al. Management of KPC-producing Klebsiella pneumoniae infections. Clin Microbiol Infect. 2017;32:1331-1441.
  • Botelho J, Grosso F, Peixe L. Unravelling the genome of a Pseudomonas aeruginosa isolate belonging to the high-risk clone ST235 reveals an integrative conjugative element housing a blaGES-6 carbapenemase. J Antimicrob Chemother. 2017;11:841-862.
  • Carosso S, Liu R, Miller PA, et al. Methodology for monobactam diversification: syntheses and studies of 4-thiomethyl substituted β-lactams with activity against Gram-negative bacteria, including carbapenemase producing acinetobacter baumannii. J Med Chem. 2017;13:441-472.
  • Fransen F, Hermans K, Melchers MJB, et al. Pharmacodynamics of fosfomycin against ESBL- and/or carbapenemase-producing Enterobacteriaceae. J Antimicrob Chemother. 2017;48:911-931.
  • Queenan AM, Bush K. Carbapenemases: the versatile beta-lactamases. Clin Microbiol Rev. 2007;20(3): 440–458. table of contents.
  • Sheng ZK, Li JJ, Sheng GP, et al. Emergence of Klebsiella pneumoniae carbapenemase-producing Proteus mirabilis in Hangzhou, China. Chin Med J (Engl). 2010;123(18):2568–2570.
  • Pasteran F, Veliz O, Faccone D, et al. A simple test for the detection of KPC and metallo-β-lactamase carbapenemase-producing Pseudomonas aeruginosa isolates with the use of meropenem disks supplemented with aminophenylboronic acid, dipicolinic acid and cloxacillin. Clin Microbiol Infect. 2011;17(9):1438–1441.
  • Arnold RS, Thom KA, Sharma S, et al. Emergence of Klebsiella pneumoniae carbapenemase-producing bacteria. South Med J. 2011;104(1):40–45.
  • Watanabe M, Iyobe S, Inoue M, et al. Transferable imipenem resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1991;35(1):147–151.
  • Paton R, Miles RS, Hood J, et al. ARI 1: beta-lactamase-mediated imipenem resistance in Acinetobacter baumannii. Int J Antimicrob Agents. 1993;2(2):81–87.
  • Donald HM, Scaife W, Amyes SG, et al. Sequence analysis of ARI-1, a novel OXA beta-lactamase, responsible for imipenem resistance in Acinetobacter baumannii 6B92. Antimicrob Agents Chemother. 2000;44(1):196–199.
  • Zhang F, Barns K, Hoffmann FM, et al. Thalassosamide, a siderophore discovered from the marine-derived bacterium thalassospira profundimaris. J Nat Prod. 2017;80(9):2551–2555.
  • Yu S, Teng C, Bai X, et al. Optimization of siderophore production by bacillus sp. PZ-1 and its potential enhancement of phytoextration of Pb from soil. J Microbiol Biotechnol. 2017;27(8):1500–1512.
  • Wiche O, Tischler D, Fauser C, et al. Effects of citric acid and the siderophore desferrioxamine B (DFO-B) on the mobility of germanium and rare earth elements in soil and uptake in Phalaris arundinacea. Int J Phytoremediation. 2017;19(8):746–754.
  • Katsube T, Echols R, Arjona Ferreira JC, et al. Cefiderocol, a siderophore cephalosporin for Gram-negative bacterial infections: pharmacokinetics and safety in subjects with renal impairment. J Clin Pharmacol. 2017;57(5):584–591.
  • Tillotson GS. Trojan horse antibiotics-a novel way to circumvent Gram-negative bacterial resistance? Infect Dis (Auckl). 2016;9:45–52.
  • Górska A, Sloderbach A, Marszałł MP. Siderophore-drug complexes: potential medicinal applications of the ‘Trojan horse’ strategy. Trends Pharmacol Sci. 2014;35(9):442–449.
  • Kovacevic Z, Kalinowski DS, Lovejoy DB, et al. The medicinal chemistry of novel iron chelators for the treatment of cancer. Curr Top Med Chem. 2011;11(5):483–499.
  • Hackel MA, Tsuji M, Yamano Y, et al. In vitro activity of the siderophore cephalosporin, cefiderocol, against a recent collection of clinically relevant gram-negative bacilli from North America and Europe, including carbapenem-nonsusceptible isolates (SIDERO-WT-2014 study). Antimicrob Agents Chemother. 2017;61:9.
  • Wyckoff EE, Allred BE, Raymond KN, et al. Catechol siderophore transport by vibrio cholerae. J Bacteriol. 2015;197(17):2840–2849.
  • Shin HS, Satsu H, Bae MJ, et al. Catechol groups enable reactive oxygen species scavenging-mediated suppression of PKD-NFkappaB-IL-8 signaling pathway by chlorogenic and caffeic acids in human intestinal cells. Nutrients. 2017;9:2.
  • Katsube T, Wajima T, Ishibashi T, et al. Pharmacokinetic/pharmacodynamic modeling and simulation of cefiderocol, a parenteral siderophore cephalosporin, for dose adjustment based on renal function. Antimicrob Agents Chemother. 2017;61:1.
  • Matsumoto S, Singley CM, Hoover J, et al. Efficacy of cefiderocol against carbapenem-resistant gram-negative bacilli in immunocompetent-rat respiratory tract infection models recreating human plasma pharmacokinetics. Antimicrob Agents Chemother. 2017;61:9.
  • Monogue ML, Tsuji M, Yamano Y, et al. Efficacy of humanized exposures of Cefiderocol (S-649266) against a diverse population of Gram-negative bacteria in the murine thigh infection model. Antimicrob Agents Chemother. 2017;81:2210-2222.
  • https://www.prnewswire.com/news-releases/shionogi-announces-positive-top-line-results-for-cefiderocol-pivotal-cuti-clinical-trial-300389912.html
  • Keener AB. First QIDP drug approved, but designation may fail urgent needs. Nat Med. 2014;20(7):690–691.
  • Bush K. Investigational agents for the treatment of Gram-negative bacterial infections: a reality check. ACS Infect Dis. 2015;1(11):509–511.
  • https://www.prnewswire.com/news-releases/shionogi-presents-positive-clinical-efficacy-trial-results-and-in-vitro-data-on-cefiderocol-at-idweek-2017-300531234.html
  • Dobias J, Dénervaud-Tendon V, Poirel L, et al. Activity of the novel siderophore cephalosporin cefiderocol against multidrug-resistant gram-negative pathogens. Eur J Clin Microbiol Infect Dis. 2017;11:751-777.
  • Ito A, Nishikawa T, Matsumoto S, et al. Siderophore cephalosporin cefiderocol utilizes ferric iron transporter systems for antibacterial activity against pseudomonas aeruginosa. Antimicrob Agents Chemother. 2016;60(12):7396–7401.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.