304
Views
1
CrossRef citations to date
0
Altmetric
Review

Investigational inhaled therapies for non-CF bronchiectasis

Pages 139-146 | Received 29 Apr 2017, Accepted 10 Jan 2018, Published online: 25 Jan 2018

References

  • Serisier DJ, Bilton D, De Soyza A, et al. Inhaled, dual release liposomal ciprofloxacin in non-cystic fibrosis bronchiectasis (ORBIT-2): a randomised, double-blind, placebo-controlled trial. Thorax. 2013;68(9):812–817.
  • Haworth CS, Wanner A, Froelich J, et al. Inhaled liposomal ciprofloxacin in patients with non-cystic fibrosis bronchiectasis and chronic pseudomonas aeruginosa: results from two parallel phase III trials (ORBIT-3 and −4). American Journal of Respiratory and Critical Care Medicine. 2017;195:A7604
  • Aradigm Corporation. Phase 3 study with dual release ciprofloxacin for inhalation in non-CF bronchiectasis (ORBIT-3). In: ClinicalTrials.gov[Internet]. Bethesda(MD): National Library of Medicine (US). 2000. [cited 2017 Aug 27]. NLM Identifier: NCT01515007.). Available from. https://clinicaltrials.gov/ct2/show/NCT01515007?term=ORBIT-3&rank=1
  • Aradigm Corporation. Phase 3 Study With Dual Release Ciprofloxacin for Inhalation in Non-CF Bronchiectasis (ORBIT-4) In: ClinicalTrials.gov[Internet]. Bethesda(MD): National Library of Medicine (US). 2000-[cited 27.08.2017]. Available from: https://clinicaltrials.gov/ct2/show/NCT02104245?term=ORBIT-4&rank=1. NLM Identifier: NCT02104245.).
  • Wilson R, Welte T, Polverino E, et al. Ciprofloxacin dry powder for inhalation in non-cystic fibrosis bronchiectasis: a phase II randomised study. Eur Respir J. 2013;41(5):1107–1115.
  • De Soyza A, Aksamit T, Bandel T-J, et al. Efficacy and tolerability of ciprofloxacin dry powder for inhalation (ciprofloxacin dpi) in bronchiectasis (non-cf etiology): results from the phase iii respire 1 study. Chest. 2016;150(4_S):1315A–1315A.
  • Bayer. Ciprofloxacin dry powder for inhalation in non-cystic fibrosis bronchiectasis (Non-CF BE) (RESPIRE 1). In: ClinicalTrials.gov[Internet]. Bethesda(MD): National Library of Medicine (US); 2000 cited 2017 08 27. Available from https://clinicaltrials.gov/ct2/show/study/NCT01764841?term=ciprofloxacin+dry&rank=2&sect=Xdcba9870156. NLM Identifier: NCT01764841.).
  • Bayer. Ciprofloxacin Dry Powder for Inhalation (DPI) in Non-cystic Fibrosis Bronchiectasis (Non-CF BE) (RESPIRE 2). In: ClinicalTrials.gov[Internet]. Bethesda(MD): National Library of Medicine (US); 2000 [cited 2017 Aug 27]. NLM Identifier: NCT02106832. Available from https://clinicaltrials.gov/ct2/show/NCT02106832?term=RESPIRE-2&rank=1.
  • Stuart Elborn J, Geller DE, Conrad D, et al. A phase 3, open-label, randomized trial to evaluate the safety and efficacy of levofloxacin inhalation solution (APT-1026) versus tobramycin inhalation solution in stable cystic fibrosis patients. J Cystic Fibrosis. 2015;14(4):507–514
  • Vendrell M, Muñoz G, De Gracia J. Evidence of inhaled tobramycin in non-cystic fibrosis bronchiectasis. Open Respir Med J. 2015;9:30–36.
  • Ramsey BW, Pepe MS, Quan JM, et al. Intermittent administration of inhaled tobramycin in patients with cystic fibrosis. New England J Med. 1999;340(1):23–30.
  • Couch LA. Treatment with tobramycin solution for inhalation in bronchiectasis patients with Pseudomonas aeruginosa. Chest. 2001;120(3, Supplement):114S–117S.
  • Barker AF, Couch L, Fiel SB, et al. Tobramycin solution for inhalation reduces sputum Pseudomonas aeruginosa density in bronchiectasis. Am J Respir Crit Care Med. 2000;162(2 Pt 1):481–485.
  • Drobnic ME, Sune P, Montoro JB, et al. Inhaled tobramycin in non-cystic fibrosis patients with bronchiectasis and chronic bronchial infection with Pseudomonas aeruginosa. Ann Pharmacother. 2005;39(1):39–44.
  • Orriols R, Hernando R, Ferrer A, et al. Eradication therapy against Pseudomonas aeruginosa in non-cystic fibrosis bronchiectasis. Respiration. 2015;90(4):299–305.
  • Bilton D, Henig N, Morrissey B, et al. Addition of inhaled tobramycin to ciprofloxacin for acute exacerbations of Pseudomonas aeruginosa infection in adult bronchiectasis. Chest. 2006;130(5):1503–1510.
  • Alkmaar MC. Inhaled nebulized tobramycin in non-cystic fibrosis bronchiectasis (BATTLE). In: ClinicalTrials.gov[Internet]. Bethesda(MD): National Library of Medicine (US). 2000. [cited 2017 Apr 28]. NLM Identifier: NCT02657473. Available from. https://clinicaltrials.gov/ct2/show/NCT02657473?term=tobramycin&rank=32
  • Hoppentocht M, Akkerman OW, Hagedoorn P, et al. Tolerability and pharmacokinetic evaluation of inhaled dry powder tobramycin free base in non-cystic fibrosis bronchiectasis patients. PLoS ONE. 2016;11(3):e0149768.
  • Novartis Pharmaceuticals. Dose-finding study to assess the efficacy, safety and tolerability of tobramycin inhalation powder in patients with non-cystic fibrosis bronchiectasis and pulmonary P. Aeruginosa Infection (iBEST-1). In: ClinicalTrials.gov[Internet]. Bethesda(MD): National Library of Medicine (US). 2000. [cited 2017 Apr 28]. NLM Identifier: NCT02712983. Available from. https://clinicaltrials.gov/ct2/show/NCT02712983?term=bronchiectasis&rank=45
  • Murray MP, Govan JR, Doherty CJ, et al. A randomized controlled trial of nebulized gentamicin in non-cystic fibrosis bronchiectasis. Am J Respir Crit Care Med. 2011;183(4):491–499.
  • Aquino RP, Auriemma G, Mencherini T, et al. Design and production of gentamicin/dextrans microparticles by supercritical assisted atomisation for the treatment of wound bacterial infections. Int J Pharm. 2013;440(2):188–194.
  • Aquino RP, Prota L, Auriemma G, et al. Dry powder inhalers of gentamicin and leucine: formulation parameters, aerosol performance and in vitro toxicity on CuFi1 cells. Int J Pharm. 2012;426(1–2):100–107.
  • Hospital Q. Combined administration of nebulized amikacin in patients with acute exacerbation of non-cystic fibrosis bronchiectasis. In: ClinicalTrials.gov[Internet]. Bethesda(MD): National Library of Medicine (US). 2000. [cited 2016 Nov 23]. NLM Identifier: NCT02081963. Available from. https://clinicaltrials.gov/ct2/show/NCT02081963?term=inhaled+amikacin&rank=18
  • Olivier KN, Shaw PA, Glaser TS, et al. Inhaled amikacin for treatment of refractory pulmonary nontuberculous mycobacterial disease. Ann Am Thorac Soc. 2014;11(1):30–35.
  • Conole D, Keating GM. Colistimethate sodium dry powder for inhalation: a review of its use in the treatment of chronic Pseudomonas aeruginosa infection in patients with cystic fibrosis. Drugs. 2014;74(3):377–387.
  • Haworth CS, Foweraker JE, Wilkinson P, et al. Inhaled colistin in patients with bronchiectasis and chronic Pseudomonas aeruginosa infection. Am J Respir Crit Care Med. 2014;189(8):975–982.
  • SpA Z. Trial in non-cystic fibrosis bronchiectasis patients with chronic lung infections treated with colistimethate sodium (PROMIS-I). In: ClinicalTrials.gov[Internet]. Bethesda(MD): National Library of Medicine (US). 2000. [cited 28. Apr 2017 28]. Available from: https://clinicaltrials.gov/ct2/show/NCT03093974?term=colistimethate&rank=3.NCT03093974.
  • Sciences G. International safety and efficacy study of aztreonam for inhalation solution (AZLI) in cystic fibrosis patients with P. Aeruginosa (AIR-CF1). In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000. cited 2017 04 28. Available from: https://clinicaltrials.gov/ct2/show/results/NCT00112359?term=inhaled+aztreonam&rank=13&sect=X70156).
  • Sciences G. Safety and effectiveness of AZLI (an inhaled antibiotic) in adults with non-cystic fibrosis bronchiectasis (AIR-BX1). In: ClinicalTrials.gov[Internet]. Bethesda(MD): National Library of Medicine (US). 2000. [cited 2017 Apr 28]. NLM Identifier. NCT01313624 . Available from. https://clinicaltrials.gov/ct2/show/results/NCT01313624?sect=X9870156&term=inhaled+aztreonam&rank=19#outcome3
  • Barker AF, O’Donnell AE, Flume P, et al. Aztreonam for inhalation solution in patients with non-cystic fibrosis bronchiectasis (AIR-BX1 and AIR-BX2): two randomised double-blind, placebo-controlled phase 3 trials. Lancet Respir Med. 2014;2(9):738–749
  • Sciences G. Safety and effectiveness of AZLI (an inhaled antibiotic) in adults with non-cystic fibrosis bronchiectasis (AIR-BX2). In: ClinicalTrials.gov[Internet]. Bethesda(MD): National Library of Medicine (US). 2000. cited 2017 04 28. NLM Identifier NCT01314716. Available from. https://clinicaltrials.gov/ct2/show/results/NCT01314716?sect=X9870156&term=inhaled+aztreonam&rank=20#outcome3
  • Fouka E, Lamprianidou E, Arvanitidis K, et al. Low-dose clarithromycin therapy modulates Th17 Response in non-cystic fibrosis bronchiectasis patients. Lung. 2014;192(6):849–855.
  • Lourdesamy Anthony AI, Muthukumaru U. Efficacy of azithromycin in the treatment of bronchiectasis. Respirology. 2014;19(8):1178–1182.
  • Togami K, Chono S, Morimoto K. Aerosol-based efficient delivery of clarithromycin, a macrolide antimicrobial agent, to lung epithelial lining fluid and alveolar macrophages for treatment of respiratory infections. J Aerosol Med Pulm Drug Deliv. 2012;25(2):110–115.
  • Togami K, Chono S, Seki T, et al. Aerosol-based efficient delivery of telithromycin, a ketolide antimicrobial agent, to lung epithelial lining fluid and alveolar macrophages for treatment of respiratory infections. Drug Dev Ind Pharm. 2010;36(7):861–866.
  • Antoniu S. Novel inhaled combined antibiotic formulations in the treatment of Pseudomonas aeruginosa airways infections in cystic fibrosis. Expert Rev Anti Infect Ther. 2015;13(7):897–905.
  • Trapnell BC, McColley SA, Kissner DG, et al. Fosfomycin/tobramycin for inhalation in patients with cystic fibrosis with Pseudomonas airway infection. Am J Respir Crit Care Med. 2012;185(2):171–178.
  • Montgomery AB, Rhomberg PR, Abuan T, et al. Potentiation effects of amikacin and fosfomycin against selected amikacin-non-susceptible Gram-negative respiratory tract pathogens. Antimicrob Agents Chemother. 2014.
  • Kollef MH, Ricard J-D, Roux D, et al. A randomized trial of the amikacin fosfomycin inhalation system for the adjunctive therapy of Gram-negative ventilator-associated pneumonia: IASIS Trial. Chest. Antimicrob Agents Chemother. 2014;58(7):3714–3719.
  • Bilton D, Tino G, Barker AF, et al. Inhaled mannitol for non-cystic fibrosis bronchiectasis: a randomised, controlled trial. Thorax. 2014;69(12):1073–1079.
  • Nicolson CHH, Stirling RG, Borg BM, et al. The long term effect of inhaled hypertonic saline 6% in non-cystic fibrosis bronchiectasis. Respir Med. 2012;106(5):661–667.
  • Antoniu SA. GM-CSF pathway correction in pulmonary alveolar proteinosis. Expert Opin Biol Ther. 2010;10(9):1357–1365.
  • Tarnow I NM, Vinge M, Nielsen KA, et al. Single-centre, single ascending dose and multiple ascending dose study of the safety, tolerability, pharmacokinetics, and pharmacodynamics of molgramostim (rhgm-Csf) administered by inhalation to healthy adult subjects. Am J Respir Crit Care Med. 2016;193:A1856.
  • Walsh S, Metter EJ, Ferrucci L, et al. Activin-type II receptor B (ACVR2B) and follistatin haplotype associations with muscle mass and strength in humans. J Appl Physiol. 2007;102(6):2142.
  • Aykul S, Martinez-Hackert E. Transforming growth factor-β family ligands can function as antagonists by competing for type II receptor binding. J Biol Chem. 2016;291(20):10792–10804.
  • Lim R, Muljadi R, Koulaeva E, et al. Activin A contributes to the development of hyperoxia-induced lung injury in neonatal mice. Pediatr Res. 2015;77(6):749–756.
  • Kita BM Hc, O’Hehir RE, Hedger M, et al. PB01: a recombinant human follistatin protein for the treatment of neutrophilic lung diseases. Am J Respir Crit Care Med. 2016;193:A1413.
  • Chalmers JD, Moffitt KL, Suarez-Cuartin G, et al. Neutrophil elastase activity is associated with exacerbations and lung function decline in bronchiectasis. Am J Respir Crit Care Med. 2017;195(10):1384–1393.
  • Carnini C, Miglietta D, Puviani V, et al. CHI25243, a novel potent inhaled inhibitor of neutrophil elastase for the treatment of bronchiectasis and other chronic inflammatory lung disease. Pneumologie. 2016;70(10):A31.
  • Griese M, Scheuch G. Delivery of Alpha-1 antitrypsin to airways. Ann Am Thorac Soc. 2016;13 Suppl 4:S346–351.
  • Huang JX, Blaskovich MAT, Pelingon R, et al. Mucin binding reduces colistin antimicrobial activity. Antimicrob Agents Chemother. 2015;59(10):5925–5931.
  • Malott RJ, Wu C-H, Lee TD, et al. Fosmidomycin decreases membrane hopanoids and potentiates the effects of colistin on burkholderia multivorans clinical isolates. Antimicrob Agents Chemother. 2014;58(9):5211–5219.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.