335
Views
0
CrossRef citations to date
0
Altmetric
Review

Investigational drugs for alcohol use disorders: a review of preclinical data

ORCID Icon & ORCID Icon
Pages 459-474 | Received 06 Feb 2018, Accepted 01 May 2018, Published online: 10 May 2018

References

  • Association AP. Diagnostic and statistical manual of mental disorders. Washington, DC: American Psychiatric Pub; 2013. DSM-5®.
  • Rehm J, Anderson P, Barry J, et al. Prevalence of and potential influencing factors for alcohol dependence in Europe. Eur Addict Res. 2015;21(1):6–18.
  • Organization WH, Unit WHOMoSA. Global status report on alcohol and health, 2014: World Health Organization, 2014.
  • Agabio R, Colombo G. GABAB receptor ligands for the treatment of alcohol use disorder: preclinical and clinical evidence. Front Neurosci. 2014;8:140.
  • Suh JJ, Pettinati HM, Kampman KM, et al. The status of disulfiram: a half of a century later. J Clin Psychopharmacol. 2006;26:290–302.
  • Olive MF, Koenig HN, Nannini MA, et al. Stimulation of endorphin neurotransmission in the nucleus accumbens by ethanol, cocaine, and amphetamine. J Neurosci. 2001;21(23):RC184–RC84.
  • Jarjour S, Bai L, Gianoulakis C. Effect of acute ethanol administration on the release of opioid peptides from the midbrain including the ventral tegmental area. Alcohol Clin Exp Res. 2009;33(6):1033–1043.
  • Lam MP, Marinelli PW, Bai L, et al. Effects of acute ethanol on opioid peptide release in the central amygdala: an in vivo microdialysis study. Psychopharmacology (Berl). 2008;201(2):261–271.
  • Swift RM, Whelihan W, Kuznetsov O, et al. Naltrexone-induced alterations in human ethanol intoxication. Am J Psychiatry. 1994;151:1463–1467.
  • Kiefer F, Mann K. Acamprosate: how, where, and for whom does it work? Mechanism of action, treatment targets, and individualized therapy. Curr Pharm Des. 2010;16(19):2098–2102.
  • Spanagel R, Vengeliene V, Jandeleit B, et al. Acamprosate produces its anti-relapse effects via calcium. Neuropsychopharmacol. 2013;39:783.
  • Franck J, Jayaram-Lindström N. Pharmacotherapy for alcohol dependence: status of current treatments. Curr Op Neurobiol. 2013;23(4):692–699.
  • McBride WJ, Li T-K. Animal models of alcoholism: neurobiology of high alcohol-drinking behavior in rodents. Crit Rev Neurobiol. 1998;12:4.
  • Bell RL, Sable HJK, Colombo G, et al. Animal models for medications development targeting alcohol abuse using selectively bred rat lines: neurobiological and pharmacological validity. Pharmacol Biochem Behav. 2012;103(1):119–155.
  • Becker HC, Lopez MF. Increased ethanol drinking after repeated chronic ethanol exposure and withdrawal experience in C57BL/6 mice. Alcohol Clin Exp Res. 2004;28(12):1829–1838.
  • Meinhardt MW, Sommer WH. Postdependent state in rats as a model for medication development in alcoholism. Addict Biol. 2015;20(1):1–21.
  • Wise RA. Voluntary ethanol intake in rats following exposure to ethanol on various schedules. Psychopharmacologia. 1973;29(3):203–210.
  • Blednov YA, Ozburn AR, Walker D, et al. Hybrid mice as genetic models of high alcohol consumption. Behav Genet. 2010;40(1):93–110.
  • Simms JA, Steensland P, Medina B, et al. Intermittent access to 20% ethanol induces high ethanol consumption in long–evans and wistar rats. Alcohol Clin Exp Res. 2008;32(10):1816–1823.
  • Rhodes JS, Best K, Belknap JK, et al. Evaluation of a simple model of ethanol drinking to intoxication in C57BL/6J mice. Physiol Behav. 2005;84(1):53–63.
  • Finn DA, Belknap JK, Cronise K, et al. A procedure to produce high alcohol intake in mice. Psychopharmacol (Berl). 2005;178(4):471–480.
  • Crabbe JC, Metten P, Rhodes JS, et al. A line of mice selected for high blood ethanol concentrations shows drinking in the dark to intoxication. Biol Psychiatry. 2009;65(8):662–670.
  • Tabakoff B, Hoffman PL. Animal models in alcohol research. Alcohol Res Health. 2000;24(2):77–84.
  • Gilpin NW, Koob GF. Neurobiology of alcohol dependence: focus on motivational mechanisms. Alcohol Res Health. 2008;31(3):185.
  • Van der Kooy D, O’Shaughnessy M, Mucha RF, et al. Motivational properties of ethanol in naive rats as studied by place conditioning. Pharmacol Biochem Behav. 1983;19(3):441–445.
  • Shaham Y, Shalev U, Lu L, et al. The reinstatement model of drug relapse: history, methodology and major findings. Psychopharmacol. 2003;168(1–2):3–20.
  • Bienkowski P, Kostowski W, Koros E. The role of drug-paired stimuli in extinction and reinstatement of ethanol-seeking behaviour in the rat. Eur J Pharmacol. 1999;374(3):315–319.
  • Epstein DH, Preston KL, Stewart J, et al. Toward a model of drug relapse: an assessment of the validity of the reinstatement procedure. Psychopharmacol. 2006;189(1):1–16.
  • Sinclair J, Senter R. Increased preference for ethanol in rats following alcohol deprivation. Psychonomic Sci. 1967;8(1):11–12.
  • Spanagel R, Hölter SM. Pharmacological validation of a new animal model of alcoholism. J Neural Transm. 2000;107(6):669–680.
  • Akbar M, Egli M, Cho Y-E, et al. Medications for alcohol use disorders: an overview. Pharmacol Ther. 2017
  • Mason BJ. Emerging pharmacotherapies for alcohol use disorder. Neuropharmacol. 2017;122:244–253.
  • Goodwani S, Saternos H, Alasmari F, et al. Metabotropic and ionotropic glutamate receptors as potential targets for the treatment of alcohol use disorder. Neurosci Biobehav Rev. 2017;77:14–31.
  • Agabio R, Leite-Morris KA, Addolorato G, et al. Targeting the GABAB receptor for the treatment of alcohol use disorder. In: GABAB Receptor. Cham, Switzerland: Springer; 2016. p.287–307.
  • Pomrenze MB, Fetterly TL, Winder DG, et al. The corticotropin releasing factor receptor 1 in alcohol use disorder: still a valid drug target? Alcohol Clin Exp Res. 2017;41(12):1986–1999.
  • Yardley MM, Ray LA. Medications development for the treatment of alcohol use disorder: insights into the predictive value of animal and human laboratory models. Addict Biol. 2017;22(3):581–615.
  • Tunstall BJ, Carmack SA, Koob GF, et al. Dysregulation of brain stress systems mediates compulsive alcohol drinking. Curr Opin Behav Sc. 2017;13:85–90.
  • Koob GF, Mason BJ. Existing and future drugs for the treatment of the dark side of addiction. Ann Rev Pharmacol Toxicol. 2016;56(1):299–322.
  • Olney JJ, Navarro M, Thiele TE. Targeting central melanocortin receptors: a promising novel approach for treating alcohol abuse disorders. Front Neurosci. 2014;8:128.
  • Thorsell A, Mathé AA. Neuropeptide Y in alcohol addiction and affective disorders. Front Endocrinol. 2017;8:178.
  • Quadros IMH, Macedo GC, Domingues LP, et al. An update on crf mechanisms underlying alcohol use disorders and dependence. Front Endocrinol. 2016;7:134.
  • Walker LC, Ch’ng SS, Lawrence AJ. Role of lateral hypothalamic orexin (hypocretin) neurons in alcohol use and abuse: recent advances. Curr Pharmacol Rep. 2016;2(6):241–252.
  • Murphy NP. The nociceptin/orphanin FQ system as a target for treating alcoholism. CNS Neurol Disord Drug Targets. 2010;9(1):87–93.
  • Becker HC. Influence of stress associated with chronic alcohol exposure on drinking. Neuropharmacol. 2017;122:115–126.
  • Cowley MA, Smith RG, Diano S, et al. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron. 2003;37(4):649–661.
  • Ferrini F, Salio C, Lossi L, et al. Ghrelin in central neurons. Current Neuropharmacol. 2009;7(1):37–49.
  • Cabral A, López Soto EJ, Epelbaum J, et al. Is ghrelin synthesized in the central nervous system? Int J Mol Sci. 2017;18(3):638.
  • Kojima M, Hosoda H, Kangawa K. Purification and distribution of ghrelin: the natural endogenous ligand for the growth hormone secretagogue receptor. Horm Res. 2001; 56Suppl 1:93–97.
  • Egecioglu E, Skibicka KP, Hansson C, et al. Hedonic and incentive signals for body weight control. Rev Endocr Metab Disord. 2011;12(3):141–151.
  • Jerlhag E, Egecioglu E, Landgren S, et al. Requirement of central ghrelin signaling for alcohol reward. Proc Natl Acad Sci U S A. 2009;106(27):11318–11323.
  • Landgren S, Simms JA, Hyytia P, et al. Ghrelin receptor (GHS-R1A) antagonism suppresses both operant alcohol self-administration and high alcohol consumption in rats. Addict Biol. 2012;17(1):86–94.
  • Suchankova P, Engel JA, Jerlhag E. Sub-chronic ghrelin receptor blockade attenuates alcohol- and amphetamine-induced locomotor stimulation in mice. Alcohol Alcohol. 2016;51(2):121–127.
  • Bahi A, Tolle V, Fehrentz JA, et al. Ghrelin knockout mice show decreased voluntary alcohol consumption and reduced ethanol-induced conditioned place preference. Peptides. 2013;43:48–55.
  • Suchankova P, Steensland P, Fredriksson I, et al. Ghrelin receptor (GHS-R1A) antagonism suppresses both alcohol consumption and the alcohol deprivation effect in rats following long-term voluntary alcohol consumption. PLoS One. 2013;8(8):e71284.
  • Gomez JL, Ryabinin AE. The effects of ghrelin antagonists [D-Lys(3)]-GHRP-6 or JMV2959 on ethanol, water, and food intake in C57BL/6J mice. Alcohol Clin Exp Res. 2014;38(9):2436–2444.
  • Gomez JL, Cunningham CL, Finn DA, et al. Differential effects of ghrelin antagonists on alcohol drinking and reinforcement in mouse and rat models of alcohol dependence. Neuropharmacol. 2015;97:182–193.
  • Stevenson J, Buirkle J, Buckley L, et al. GHS-R1A antagonism reduces alcohol but not sucrose preference in prairie voles. Physiol Behav. 2015;147:23–29.
  • Stevenson J, Francomacaro L, Bohidar A, et al. Ghrelin receptor (GHS-R1A) antagonism alters preference for ethanol and sucrose in a concentration-dependent manner in prairie voles. Physiol Behav. 2016;155:231–236.
  • Kaur S, Ryabinin AE. Ghrelin receptor antagonism decreases alcohol consumption and activation of perioculomotor urocortin-containing neurons. Alcohol Clin Exp Res. 2010;34(9):1525–1534.
  • Insel TR. Oxytocin—a neuropeptide for affiliation: evidence from behavioral, receptor autoradiographic, and comparative studies. Psychoneuroendocrinol. 1992;17(1):3–35.
  • Bowen MT, Neumann ID. Rebalancing the addicted brain: oxytocin interference with the neural substrates of addiction. Trends Neurosci. 2017;40(12):691–708.
  • Szabo G, Kovacs GL, Telegdy G. Effects of neurohypophyseal peptide hormones on alcohol dependence and withdrawal. Alcohol Alcohol. 1987;22(1):71–74.
  • Szabo G, Kovacs GL, Telegdy G. Intraventricular administration of neurohypophyseal hormones interferes with the development of tolerance to ethanol. Acta Physiol Hung. 1989;73(1):97–103.
  • Bowen MT, Carson DS, Spiro A, et al. Adolescent oxytocin exposure causes persistent reductions in anxiety and alcohol consumption and enhances sociability in rats. PLoS One. 2011;6(11):e27237.
  • Peters S, Slattery DA, Flor PJ, et al. Differential effects of baclofen and oxytocin on the increased ethanol consumption following chronic psychosocial stress in mice. Addict Biol. 2013;18(1):66–77.
  • King CE, Griffin WC, Luderman LN, et al. Oxytocin reduces ethanol self-administration in mice. Alcohol Clin Exp Res. 2017;41(5):955–964.
  • MacFadyen K, Loveless R, DeLucca B, et al. Peripheral oxytocin administration reduces ethanol consumption in rats. Pharmacol Biochem Behav. 2016;140(Supplement C):27–32.
  • Peters ST, Bowen MT, Bohrer K, et al. Oxytocin inhibits ethanol consumption and ethanol-induced dopamine release in the nucleus accumbens. Addict Biol. 2017;22(3):702–711.
  • Manning M, Stoev S, Chini B, et al. Peptide and non-peptide agonists and antagonists for the vasopressin and oxytocin V 1a, V 1b, V 2 and OT receptors: research tools and potential therapeutic agents. Prog Brain Res. 2008;170:473–512.
  • Bahi A. The oxytocin receptor impairs ethanol reward in mice. Physiol Behav. 2015;139:321–327.
  • Stevenson JR, Wenner SM, Freestone DM, et al. Oxytocin reduces alcohol consumption in prairie voles. Physiol Behav. 2017;179:411–421.
  • Hansson AC, Koopmann A, Uhrig S, et al. Oxytocin reduces alcohol cue-reactivity in alcohol dependent rats and humans. Neuropsychopharmacol. 2018;43(6)1235–1246.
  • King C, McGinty J, Becker H. Effects of oxytocin on stress-induced reinstatement of alcohol-seeking in mice with and without a history of stress. Alcohol. 2017;60:231–232.
  • McEwen BB. Brain–fluid barriers: relevance for theoretical controversies regarding vasopressin and oxytocin memory research. Adv Pharmacol: Academic Press. 2004;50:531–592.
  • Neumann ID, Maloumby R, Beiderbeck DI, et al. Increased brain and plasma oxytocin after nasal and peripheral administration in rats and mice. Psychoneuroendocrinol. 2013;38(10):1985–1993.
  • Landgraf R, Neumann ID. Vasopressin and oxytocin release within the brain: a dynamic concept of multiple and variable modes of neuropeptide communication. Front Neuroendocrinol. 2004;25(3):150–176.
  • Bowen MT, Peters ST, Absalom N, et al. Oxytocin prevents ethanol actions at delta subunit-containing GABAA receptors and attenuates ethanol-induced motor impairment in rats. Proc Natl Acad Sci U S A. 2015;112(10):3104–3109.
  • Bowen MT, McGregor IS. Oxytocin and vasopressin modulate the social response to threat: a preclinical study. Int J Neuropsychopharmacol. 2014;17(10):1621–1633.
  • Schank JR. The neurokinin-1 receptor in addictive processes. J Pharmacol Exp Ther. 2014;351(1):2–8.
  • Schank JR, Pickens CL, Rowe KE, et al. Stress-induced reinstatement of alcohol-seeking in rats is selectively suppressed by the neurokinin 1 (NK1) antagonist L822429. Psychopharmacol. 2011;218(1):111–119.
  • Schank JR, King CE, Sun H, et al. The role of the neurokinin-1 receptor in stress-induced reinstatement of alcohol and cocaine seeking. Neuropsychopharmacol. 2014;39(5):1093–1101.
  • Ayanwuyi LO, Stopponi S, Ubaldi M, et al. Neurokinin 1 receptor blockade in the medial amygdala attenuates alcohol drinking in rats with innate anxiety but not in Wistar rats. Br J Pharmacol. 2015;172(21):5136–5146.
  • Schank JR, Tapocik JD, Barbier E, et al. Tacr1 gene variation and neurokinin 1 receptor expression is associated with antagonist efficacy in genetically selected alcohol-preferring rats. Biol Psychiatry. 2013;73(8):774–781.
  • Koob GF. Brain stress systems in the amygdala and addiction. Brain Res. 2009;1293:61–75.
  • Schank JR, Nelson BS, Damadzic R, et al. Neurokinin-1 receptor antagonism attenuates neuronal activity triggered by stress-induced reinstatement of alcohol seeking. Neuropharmacol. 2015;99:106–114.
  • Barson JR, Poon K, Ho HT, et al. Substance P in the anterior thalamic paraventricular nucleus: promotion of ethanol drinking in response to orexin from the hypothalamus. Addict Biol. 2017;22(1):58–69.
  • Turton M, O’shea D, Gunn I, et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature. 1996;379(6560):69–72.
  • Larsen PJ, Tang-Christensen M, Holst JJ, et al. Distribution of glucagon-like peptide-1 and other preproglucagon-derived peptides in the rat hypothalamus and brainstem. Neurosci. 1997;77(1):257–270.
  • Merchenthaler I, Lane M, Shughrue P. Distribution of pre‐pro‐glucagon and glucagon‐like peptide‐1 receptor messenger RNAs in the rat central nervous system. J Comp Neurol. 1999;403(2):261–280.
  • Lovshin JA, Drucker DJ. Incretin-based therapies for type 2 diabetes mellitus. Nat Rev Endocrinol. 2009;5(5):262–269.
  • Egecioglu E, Steensland P, Fredriksson I, et al. The glucagon-like peptide 1 analogue Exendin-4 attenuates alcohol mediated behaviors in rodents. Psychoneuroendocrinol. 2013;38(8):1259–1270.
  • Shirazi RH, Dickson SL, Skibicka KP. Gut peptide GLP-1 and its analogue, Exendin-4, decrease alcohol intake and reward. PLoS One. 2013;8(4):e61965.
  • Suchankova P, Yan J, Schwandt ML, et al. The glucagon-like peptide-1 receptor as a potential treatment target in alcohol use disorder: evidence from human genetic association studies and a mouse model of alcohol dependence. Transl Psychiatry. 2015;5:e583.
  • Vallof D, Maccioni P, Colombo G, et al. The glucagon-like peptide 1 receptor agonist liraglutide attenuates the reinforcing properties of alcohol in rodents. Addict Biol. 2016;21(2):422–437.
  • Sirohi S, Schurdak JD, Seeley RJ, et al. Central & peripheral glucagon-like peptide-1 receptor signaling differentially regulate addictive behaviors. Physiol Behav. 2016;161:140–144.
  • Mayfield J, Ferguson L, Harris RA. Neuroimmune signaling: a key component of alcohol abuse. Curr Op Neurobiol. 2013;23(4):513–520.
  • Alfonso-Loeches S, Pascual-Lucas M, Blanco AM, et al. Pivotal role of TLR4 receptors in alcohol-induced neuroinflammation and brain damage. J Neurosci. 2010;30(24):8285–8295.
  • Frank MG, Watkins LR, Maier SF. Stress- and glucocorticoid-induced priming of neuroinflammatory responses: potential mechanisms of stress-induced vulnerability to drugs of abuse. Brain Behav Immun. 2011;25(Suppl 1):S21–8.
  • Blednov YA, Benavidez JM, Black M, et al. Peroxisome proliferator-activated receptors α and γ are linked with alcohol consumption in mice and withdrawal and dependence in humans. Alcohol Clin Exp Res. 2015;39(1):136–145.
  • Ferguson LB, Most D, Blednov YA, et al. PPAR agonists regulate brain gene expression: relationship to their effects on ethanol consumption. Neuropharmacol. 2014;86:397–407.
  • Crews FT, Qin L, Sheedy D, et al. High mobility group box 1/Toll-like receptor danger signaling increases brain neuroimmune activation in alcohol dependence. Biol Psychiatry. 2013;73(7):602–612.
  • Alfonso‐Loeches S, Pascual M, Gómez‐Pinedo U, et al. Toll‐like receptor 4 participates in the myelin disruptions associated with chronic alcohol abuse. Glia. 2012;60(6):948–964.
  • Liu J, Yang AR, Kelly T, et al. Binge alcohol drinking is associated with GABAA α2-regulated Toll-like receptor 4 (TLR4) expression in the central amygdala. Proc Natl Acad Sci U S A. 2011;108(11):4465–4470.
  • Tabakoff B, Saba L, Printz M, et al. Genetical genomic determinants of alcohol consumption in rats and humans. BMC Biol. 2009;7(1):70.
  • Asatryan L, Popova M, Perkins D, et al. Ivermectin antagonizes ethanol inhibition in purinergic P2X4 receptors. J Pharmacol Exp Ther. 2010;334(3):720–728.
  • Omura S. Ivermectin: 25 years and still going strong. Int J Antimicrob Agents. 2008;31(2):91–98.
  • Yardley MM, Wyatt L, Khoja S, et al. Ivermectin reduces alcohol intake and preference in mice. Neuropharmacol. 2012;63(2):190–201.
  • Kosten TA. Pharmacologically targeting the P2rx4 gene on maintenance and reinstatement of alcohol self-administration in rats. Pharmacol Biochem Behav. 2011;98(4):533–538.
  • Wyatt LR, Finn DA, Khoja S, et al. Contribution of P2X4 receptors to ethanol intake in male C57BL/6 mice. Neurochem Res. 2014;39(6):1127–1139.
  • Yardley MM, Neely M, Huynh N, et al. Multiday administration of ivermectin is effective in reducing alcohol intake in mice at doses shown to be safe in humans. Neuroreport. 2014;25(13):1018–1023.
  • Yardley MM, Huynh N, Rodgers KE, et al. Oral delivery of ivermectin using a fast dissolving oral film: implications for repurposing ivermectin as a pharmacotherapy for alcohol use disorder. Alcohol. 2015;49(6):553–559.
  • Franklin KM, Hauser SR, Lasek AW, et al. Involvement of purinergic P2X4 receptors in alcohol intake of high-alcohol-drinking (HAD) rats. Alcohol Clin Exp Res. 2015;39(10):2022–2031.
  • Huynh N, Arabian N, Naito A, et al. Preclinical development of moxidectin as a novel therapeutic for alcohol use disorder. Neuropharmacol. 2017;113(Part A):60–70.
  • Logrip ML. Phosphodiesterase regulation of alcohol drinking in rodents. Alcohol. 2015;49(8):795–802.
  • Baumer W, Hoppmann J, Rundfeldt C, et al. Highly selective phosphodiesterase 4 inhibitors for the treatment of allergic skin diseases and psoriasis. Inflamm Allergy Drug Targets. 2007;6(1):17–26.
  • Page C, Spina D. Phosphodiesterase inhibitors in the treatment of inflammatory diseases. In: Phosphodiesterases as Drug Targets. Berlin, Heidelberg: Springer; 2011. p.391–414.
  • Bell RL, Lopez MF, Cui C, et al. Ibudilast reduces alcohol drinking in multiple animal models of alcohol dependence. Addict Biol. 2015;20(1):38–42.
  • Franklin KM, Hauser SR, Lasek AW, et al. Reducing alcohol drinking of alcohol-preferring (P) and high-alcohol drinking (HAD1) rats by targeting phosphodiesterase-4 (PDE4). Psychopharmacol. 2015;232(13):2251–2262.
  • Wen R-T, Zhang M, Qing W-J, et al. The phosphodiesterase-4 (pde4) inhibitor rolipram decreases ethanol seeking and consumption in alcohol-preferring fawn-hooded rats. Alcohol Clin Exp Res. 2012;36(12):2157–2167.
  • Hu W, Lu T, Chen A, et al. Inhibition of phosphodiesterase-4 decreases ethanol intake in mice. Psychopharmacol. 2011;218(2):331–339.
  • Blednov YA, Benavidez JM, Black M, et al. Inhibition of phosphodiesterase 4 reduces ethanol intake and preference in C57BL/6J mice. Front Neurosci. 2014;8:129.
  • Logrip ML, Vendruscolo LF, Schlosburg JE, et al. Phosphodiesterase 10A regulates alcohol and saccharin self-administration in rats. Neuropsychopharmacol. 2014;39(7):1722–1731.
  • Goldberg AD, Allis CD, Bernstein E. Epigenetics: a landscape takes shape. Cell. 2007;128(4):635–638.
  • Chen ZX, Riggs AD. DNA methylation and demethylation in mammals. J Biol Chem. 2011;286(21):18347–18353.
  • Riccio A. Dynamic epigenetic regulation in neurons: enzymes, stimuli and signaling pathways. Nat Neurosci. 2010;13(11):1330–1337.
  • Pandey SC, Ugale R, Zhang H, et al. Brain chromatin remodeling: a novel mechanism of alcoholism. J Neurosci. 2008;28(14):3729–3737.
  • Ponomarev I, Wang S, Zhang L, et al. Gene coexpression networks in human brain identify epigenetic modifications in alcohol dependence. J Neurosci. 2012;32(5):1884–1897.
  • Grozinger CM, Schreiber SL. Deacetylase enzymes: biological functions and the use of small-molecule inhibitors. Chem Biol. 2002;9(1):3–16.
  • Glaser KB. HDAC inhibitors: clinical update and mechanism-based potential. Biochem Pharmacol. 2007;74(5):659–671.
  • Warnault V, Darcq E, Levine A, et al. Chromatin remodeling — a novel strategy to control excessive alcohol drinking. Trans Psychiatry. 2013;3(2):e231.
  • Simon‐O’Brien E, Alaux‐Cantin S, Warnault V, et al. The histone deacetylase inhibitor sodium butyrate decreases excessive ethanol intake in dependent animals. Addict Biol. 2015;20(4):676–689.
  • Sakharkar AJ, Zhang H, Tang L, et al. Effects of histone deacetylase inhibitors on amygdaloid histone acetylation and neuropeptide Y expression: a role in anxiety-like and alcohol-drinking behaviours. Int J Neuropsychopharmacol. 2014;17(8):1207–1220.
  • You C, Zhang H, Sakharkar AJ, et al. Reversal of deficits in dendritic spines, BDNF and Arc expression in the amygdala during alcohol dependence by HDAC inhibitor treatment. Int J Neuropsychopharmacol. 2014;17(2):313–322.
  • Qiang M, Li JG, Denny AD, et al. Epigenetic mechanisms are involved in the regulation of ethanol consumption in mice. Int J Neuropsychopharmacol. 2015;18:2.
  • Jeanblanc J, Lemoine S, Jeanblanc V, et al. The Class I-Specific HDAC Inhibitor MS-275 Decreases Motivation to Consume Alcohol and Relapse in Heavy Drinking Rats. Int J Neuropsychopharmacol. 2015;18(9):pyv029–pyv29.
  • Al Ameri M, Al Mansouri S, Al Maamari A, et al. The histone deacetylase (HDAC) inhibitor valproic acid reduces ethanol consumption and ethanol-conditioned place preference in rats. Brain Res. 2014;1583Supplement C:122–131.
  • Castino MR, Cornish JL, Clemens KJ. Inhibition of histone deacetylases facilitates extinction and attenuates reinstatement of nicotine self-administration in rats. PLoS One. 2015;10(4):e0124796.
  • Malvaez M, Barrett RM, Wood MA, et al. Epigenetic mechanisms underlying extinction of memory and drug-seeking behavior. Mamm Genome. 2009;20(9–10):612–623.
  • Malvaez M, Sanchis-Segura C, Vo D, et al. Modulation of chromatin modification facilitates extinction of cocaine–induced conditioned place preference. Biol Psychiatry. 2010;67(1):36–43.
  • Wang Y, Lai J, Cui H, et al. Inhibition of histone deacetylase in the basolateral amygdala facilitates morphine context-associated memory formation in rats. J Mol Neurosci. 2015;55(1):269–278.
  • Kaminskas E, Farrell AT, Wang Y-C, et al. FDA drug approval summary: azacitidine (5-azacytidine, Vidaza™) for injectable suspension. Oncologist. 2005;10(3):176–182.
  • Qiao X, Yin F, Ji Y, et al. 5-Aza-2ʹ-deoxycytidine in the medial prefrontal cortex regulates alcohol-related behavior and Ntf3-TrkC expression in rats. PLoS One. 2017;12(6):e0179469.
  • Barbier E, Tapocik JD, Juergens N, et al. DNA methylation in the medial prefrontal cortex regulates alcohol-induced behavior and plasticity. J Neurosci. 2015;35(15):6153–6164.
  • Dyer RA, Butwick AJ, Carvalho B. Oxytocin for labour and caesarean delivery: implications for the anaesthesiologist. Curr Op Anesthesiol. 2011;24(3):255–261.
  • Rath W. Prevention of postpartum haemorrhage with the oxytocin analogue carbetocin. Eur J Obstet Gynecol Reprod Biol. 2009;147(1):15–20.
  • Rolan P, Hutchinson M, Johnson K. Ibudilast: a review of its pharmacology, efficacy and safety in respiratory and neurological disease. Expert Opin Pharmacother. 2009;10(17):2897–2904.
  • Halsall JA, Turner BM. Histone deacetylase inhibitors for cancer therapy: an evolutionarily ancient resistance response may explain their limited success. Bioessays. 2016;38(11):1102–1110.
  • Vernia P. Butyrate in the treatment of ulcerative colitis. Dig Liver Dis Suppl. 2007;1(1):27–30.
  • Cipriani A, Reid K, Young AH, et al. Valproic acid, valproate and divalproex in the maintenance treatment of bipolar disorder. Cochrane Database of Syst Rev. 2013;10:CD003196.
  • Blednov YA, Black M, Benavidez JM, et al. PPAR agonists: i. role of receptor subunits in alcohol consumption in male and female mice. Alcohol Clin Exp Res. 2016;40(3):553–562.
  • Blednov YA, Black M, Benavidez JM, et al. PPAR agonists: II. Fenofibrate and tesaglitazar alter behaviors related to voluntary alcohol consumption. Alcohol Clin Exp Res. 2016;40(3):563–571.
  • Stopponi S, Somaini L, Cippitelli A, et al. Activation of nuclear PPARgamma receptors by the antidiabetic agent pioglitazone suppresses alcohol drinking and relapse to alcohol seeking. Biol Psychiatry. 2011;69(7):642–649.
  • Karahanian E, Quintanilla ME, Fernandez K, et al. Fenofibrate–A lipid-lowering drug–reduces voluntary alcohol drinking in rats. Alcohol. 2014;48(7):665–670.
  • Fuller RK, Gordis E. Does disulfiram have a role in alcoholism treatment today? Addiction. 2004;99(1):21–24.
  • Litten RZ, Egli M, Heilig M, et al. Medications development to treat alcohol dependence: a vision for the next decade. Addict Biol. 2012;17(3):513–527.
  • Anton RF, Oroszi G, O’Malley S, et al. An evaluation of μ-opioid receptor (OPRM1) as a predictor of naltrexone response in the treatment of alcohol dependence: results from the Combined Pharmacotherapies and Behavioral Interventions for Alcohol Dependence (COMBINE) study. Arch Gen Psychiatry. 2008;65(2):135–144.
  • Johnson BA, Seneviratne C, Wang X-Q, et al. Determination of genotype combinations that can predict the outcome of the treatment of alcohol dependence using the 5-HT3 antagonist ondansetron. Am J Psychiatry. 2013;170(9):1020–1031.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.