1,128
Views
3
CrossRef citations to date
0
Altmetric
Review

CD19-targeted immunotherapies for treatment of patients with non-Hodgkin B-cell lymphomas

ORCID Icon &
Pages 601-611 | Received 03 Apr 2018, Accepted 20 Jun 2018, Published online: 05 Jul 2018

References

  • Howlader N, Noone A, Krapcho M, et al. SEER cancer statistics review, 1975-2014. Bethesda, MD: National Cancer Institute. https://seer.cancer.gov/csr/1975_2014/ based on November 2016 SEER data submission, posted to the SEER web site, April 2017. [Internet]. [cited 2018 Mar 21]. Available from https://seer.cancer.gov/csr/1975_2014/
  • Teras LR, DeSantis CE, Cerhan JR, et al. 2016 US lymphoid malignancy statistics by World Health Organization subtypes. CA Cancer J Clin. 2016;66:443–459.
  • Schulz H, Bohlius JF, Trelle S, et al. Immunochemotherapy with rituximab and overall survival in patients with indolent or mantle cell lymphoma: a systematic review and meta-analysis. JNCI J Natl Cancer Inst. 2007;99:706–714.
  • Vidal L, Gafter-Gvili A, Leibovici L, et al. Rituximab maintenance for the treatment of patients with follicular lymphoma: systematic review and meta-analysis of randomized trials. JNCI J Natl Cancer Inst. 2009;101:248–255.
  • Zhou X, Ma T, Zhang Y, et al. Rituximab maintenance therapy for patients with diffuse large B cell lymphoma: a meta-analysis. Pagano JS, editor. PLoS One. 2017;12:e0174648.
  • Sato S, Steeber DA, Jansen PJ, et al. CD19 expression levels regulate B lymphocyte development: human CD19 restores normal function in mice lacking endogenous CD19. J Immunol. 1997;158:4662–4669.
  • Sato S, Ono N, Steeber DA, et al. CD19 regulates B lymphocyte signaling thresholds critical for the development of B-1 lineage cells and autoimmunity. J Immunol. 1996;157:4371–4378.
  • Del Nagro CJ, Otero DC, Anzelon AN, et al. CD19 function in central and peripheral B cell development. Immunol Res. 2005;31:119–132.
  • Poe JC, Minard-Colin V, Kountikov EI, et al. A c-Myc and surface CD19 signaling amplification loop promotes B cell lymphoma development and progression in mice. J Immunol. 2012;189:2318–2325.
  • Salles G, González Barca E, Jurczak W, et al. L-MIND: MOR208 combined with lenalidomide (len) in patients with relapsed or refractory diffuse large B cell lymphoma (R-R DLBCL) - A single-arm phase II study. Hematol Oncol. 2017;35:51–52.
  • Stone J, Wallace Z, Perugino C, et al. Final results of an open label phase 2 study of a reversible B cell inhibitor, Xmab®5871, in IgG4-related disease. 2017 Am. Coll. Rheumatol. Annu. Meet. 2017. p. 4L.
  • Forero-Torres A, Hamadani M, Fanale MA, et al. Safety profile and clinical response to MEDI-551, a humanized monoclonal Anti-CD19, in a phase 1/2 study in adults with relapsed or refractory advanced B cell malignancies. Blood. 2013;122:1810.
  • Ogura M, Ando K, Uike N, et al. A multicenter phase i study of the humanized anti-CD19 monoclonal antibody, MEDI-551, in patients with relapsed or refractory B cell lymphoma and multiple myeloma. Blood. 2014;124:1756.
  • Herbst R, Wang Y, Gallagher S, et al. B cell depletion in vitro and in vivo with an afucosylated anti-CD19 antibody. J Pharmacol Exp Ther. 2010;335:213–222.
  • Ward E, Mittereder N, Kuta E, et al. A glycoengineered anti-CD19 antibody with potent antibody-dependent cellular cytotoxicity activity in vitro and lymphoma growth inhibition in vivo. Br J Haematol. 2011;155:426–437.
  • Safety/efficacy of MEDI-551 in combination with immunomodulating therapies in subjects with aggressive B cell lymphomas. Study Results - ClinicalTrials.gov. Available from: https://clinicaltrials.gov/ct2/show/results/NCT02271945.
  • A Phase 2, multicenter, open-label study of MEDI-551 in adults with relapsed or refractory chronic lymphocytic leukemia (CLL). Study Results - ClinicalTrials.gov. [Internet]. Available from: https://clinicaltrials.gov/ct2/show/results/NCT01466153?term=NCT01466153&rank=1.
  • A phase 2, multicenter, randomized, open-label study of MEDI-551 in adults with relapsed or refractory diffuse large B cell lymphoma (DLBCL). Study Results - ClinicalTrials.gov. Available from: https://clinicaltrials.gov/ct2/show/results/NCT01453205?term=MEDI-551&rank=9.
  • Horton HM, Bernett MJ, Pong E, et al. Potent in vitro and in vivo activity of an Fc-engineered anti-CD19 monoclonal antibody against lymphoma and leukemia. Cancer Res. 2008;68:8049–8057.
  • Jurczak W, Zinzani PL, Gaidano G, et al. Single-Agent MOR208 in Relapsed or Refractory (R-R) Non-Hodgkin’s Lymphoma (NHL): results from Diffuse Large B cell Lymphoma (DLBCL) and Indolent NHL Subgroups of a Phase IIa Study. Blood. 2016;128:623.
  • Woyach JA, Awan F, Flinn IW, et al. A phase 1 trial of the Fc-engineered CD19 antibody XmAb5574 (MOR00208) demonstrates safety and preliminary efficacy in relapsed CLL. Blood [Internet]. 2014 [cited 2017 Oct 25];124:3553–3560. Available from http://www.ncbi.nlm.nih.gov/pubmed/25301708
  • Salles G, Duell J, González-Barca E, et al. Single-arm phase II study of MOR208 combined with lenalidomide in patients with relapsed or refractory diffuse large B cell lymphoma: L-Mind. Blood. 2017;130:4123.
  • Fathi AT, Borate U, DeAngelo DJ, et al. A phase 1 study of denintuzumab mafodotin (SGN-CD19A) in adults with relapsed or refractory B-lineage acute leukemia (B-ALL) and highly aggressive lymphoma. Blood. 2015;126:1328.
  • Moskowitz CH, Fanale MA, Shah BD, et al. A phase 1 study of denintuzumab mafodotin (SGN-CD19A) in relapsed/refactory B-lineage non-hodgkin lymphoma. Blood. 2015;126:182.
  • Eaton JS, Miller PE, Mannis MJ, et al. Ocular adverse events associated with antibody–drug conjugates in human clinical trials. J Ocul Pharmacol Ther. 2015;31:589–604.
  • Blanc V, Bousseau A, Caron A, et al. SAR3419: an anti-CD19-maytansinoid immunoconjugate for the treatment of B cell malignancies. Clin Cancer Res. 2011;17:6448–6458.
  • Younes A, Kim S, Romaguera J, et al. Phase I multidose-escalation study of the anti-CD19 maytansinoid immunoconjugate SAR3419 administered by intravenous infusion every 3 weeks to patients with relapsed/refractory B cell lymphoma. J Clin Oncol. 2012;30:2776–2782.
  • Ribrag V, Dupuis J, Tilly H, et al. A dose-escalation study of SAR3419, an anti-CD19 antibody maytansinoid conjugate, administered by intravenous infusion once weekly in patients with relapsed/refractory B cell non-Hodgkin lymphoma. Clin Cancer Res. 2014;20:213–220.
  • Trneny M, Verhoef G, Dyer MJS, et al. Starlyte phase II study of coltuximab ravtansine (CoR, SAR3419) single agent: clinical activity and safety in patients (pts) with relapsed/refractory (R/R) diffuse large B cell lymphoma (DLBCL; NCT01472887). J Clin Oncol. 2014;35:8506.
  • Coiffier B, Thieblemont C, De Guibert S, et al. A phase II, single‐arm, multicentre study of coltuximab ravtansine (SAR3419) and rituximab in patients with relapsed or refractory diffuse large B‐cell lymphoma. Br J Haematol. 2016;173:722–730.
  • Zammarchi F, Corbett S, Havenith K, et al. Characterization of the mechanism of action, pharmacodynamics and preclinical safety of ADCT-402, a pyrrolobenzodiazepine (PBD) dimer-containing antibody-drug conjugate (ADC) targeting CD19-expressing hematological malignancies. Cancer Res. 2017;77:51.
  • Kahl BS, Hamadani M, Caimi PF, et al. Encouraging early results from the first in-human clinical trial of ADCT-402 (Loncastuximab Tesirine), a novel pyrrolobenzodiazepine-based antibody drug conjugate, in relapsed/refractory B cell lineage non-hodgkin lymphoma. Blood. 2017;130:187.
  • O’Connor OA, Kahl BS, Hamadani M, et al. Elucidating exposure-response (safety and efficacy) of ADCT-402 (Loncastuximab Tesirine), a novel pyrrolobenzodiazepine-containing antibody drug conjugate, for recommended phase 2 dose determination in patients with relapsed or refractory non-hodgkin lymp. Blood. 2017;130:2543.
  • Ryan MC, Palanca-Wessels MC, Schimpf B, et al. Therapeutic potential of SGN-CD19B, a PBD-based anti-CD19 drug conjugate, for treatment of B cell malignancies. Blood. 2017;130:2018–2026.
  • Hechler T, Palfi A, Müller C, et al. CD19 - a potential target for Amanitin-based ADCs. Cancer Res. 2017;77:62.
  • Gaudio E, Tarantelli C, Arribas AJ, et al. A novel CD19 targeting antibody-drug conjugate, huB4-DGN462, shows promising in vitro and in vivo activity in CD19-positive lymphoma models. Cancer Res. 2017;77:2651.
  • Lö A, Kufer P, Lutterbü R, et al. A recombinant bispecific single-chain antibody, CD19 ϫ CD3, induces rapid and high lymphoma-directed cytotoxicity by unstimulated T lymphocytes. Blood. 2000;95:2098–2103.
  • Hoffmann P, Hofmeister R, Brischwein K, et al. Serial killing of tumor cells by cytotoxic T cells redirected with a CD19-/CD3-bispecific single-chain antibody construct. Int J Cancer. 2005;115:98–104.
  • Goebeler M-E, Knop S, Viardot A, et al. Bispecific T-cell engager (BiTE) antibody construct blinatumomab for the treatment of patients with relapsed/refractory non-hodgkin lymphoma: final results from a phase I study. J Clin Oncol. 2016;34:1104–1111.
  • Viardot A, Goebeler M-E, Hess G, et al. Phase 2 study of the bispecific T-cell engager (BiTE) antibody blinatumomab in relapsed/refractory diffuse large B cell lymphoma. Blood. 2016;127:1410–1416.
  • Liu L, Lam C-YK, Long V, et al. MGD011, A CD19 x CD3 dual-affinity retargeting bi-specific molecule incorporating extended circulating half-life for the treatment of B cell malignancies. Clin Cancer Res. 2017;23:1506–1518.
  • Lorenczewski G, Friedrich M, Kischel R, et al. Generation of a half-life extended anti-CD19 BiTE® antibody construct compatible with once-weekly dosing for treatment of CD19-positive malignancies. Blood. 2017;130:2815.
  • Izhak L, Cullen DE, Elgawly M, et al. Potent antitumor activity of duvortuxizumab, a CD19 x CD3 DART ® molecule, in lymphoma models. Cancer Res. 2017;77:3636.
  • MacroGenics Announces Termination of Duvortuxizumab Collaboration and License Agreement with Janssen (NASDAQ:MGNX). Available from: http://ir.macrogenics.com/releasedetail.cfm?releaseid=1038889.
  • Kochenderfer JN, Wilson WH, Janik JE, et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood. 2010;116:4099–4102.
  • Brudno JN, Kochenderfer JN. Chimeric antigen receptor T-cell therapies for lymphoma. Nat Rev Clin Oncol. 2017;15:31–46.
  • Kochenderfer JN, Dudley ME, Kassim SH, et al. Chemotherapy-refractory diffuse large B cell lymphoma and indolent B cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol. 2015;33:540–549.
  • Kochenderfer JN, Somerville RPT, Lu T, et al. Long-duration complete remissions of diffuse large B cell lymphoma after anti-CD19 chimeric antigen receptor T cell therapy. Mol Ther. 2017;25:2245–2253.
  • Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B lymphoma. N Engl J Med. 2017;377:2531–2544.
  • Locke FL, Neelapu SS, Bartlett NL, et al. Phase 1 results of ZUMA-1: a multicenter study of KTE-C19 anti-CD19 CAR T cell therapy in refractory aggressive lymphoma. Mol Ther. 2017;25:285–295.
  • Locke FL, Westin JR, Miklos DB, et al. Phase 1 results from ZUMA-6: axicabtagene ciloleucel (axi-cel; KTE-C19) in combination with atezolizumab for the treatment of patients with refractory diffuse large B cell lymphoma (DLBCL). Blood. 2017;130:2826.
  • Porter DL, Levine BL, Kalos M, et al. Chimeric antigen receptor–modified T cells in chronic lymphoid leukemia. N Engl J Med. 2011;365:725–733.
  • Maude SL, Frey N, Shaw PA, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371:1507–1517.
  • Porter DL, Hwang W-T, Frey NV, et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med. 2015;7:303ra139–303ra139.
  • Porter DL, Frey NV, Melenhorst JJ, et al. Randomized, phase II dose optimization study of chimeric antigen receptor (CAR) modified T cells directed against CD19 in patients (pts) with relapsed, refractory (R/R) CLL. J Clin Oncol. 2016;34:3009.
  • Schuster SJ, Svoboda J, Chong EA, et al. Chimeric antigen receptor T cells in refractory B cell lymphomas. N Engl J Med. 2017;377:2545–2554.
  • Schuster SJ, Bishop MR, Tam C, et al. Global pivotal phase 2 trial of the CD19-targeted therapy CTL019 in adult patients with relapsed or refractory (r/r) diffuse large B cell lymphoma (DLBCL)-an interim analysis. Hematol Oncol. 2017;35:27.
  • Schuster SJ, Bishop MR, Tam C, et al. Primary analysis of juliet: a global, pivotal, phase 2 trial of CTL019 in adult patients with relapsed or refractory diffuse large B cell lymphoma. Blood. 2017;130:577.
  • Turtle CJ, Hanafi L-A, Berger C, et al. Immunotherapy of non-Hodgkin’s lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor-modified T cells. Sci Transl Med. 2016;8:355ra116.
  • Sommermeyer D, Hudecek M, Kosasih PL, et al. Chimeric antigen receptor-modified T cells derived from defined CD8+ and CD4+ subsets confer superior antitumor reactivity in vivo. Leukemia. 2016;30:492–500.
  • Abramson J, Palomba ML, Gordon LI, et al. CR rates in relapsed/refractory (R/R) aggressive B-NHL treated with the CD19-directed CAR T-cell product JCAR017 (TRANSCEND NHL 001). Hematol Oncol. 2017;35:138.
  • Abramson J, Palomba ML, Gordon LI, et al. High durable CR rates in relapsed/refractory (R/R) aggressive B-NHL treated with the CD19-directed CAR T cell product JCAR017 (TRANSCEND NHL 001): defined composition allows for dose-finding and definition of pivotal cohort. Blood. 2017;130:581.
  • Kochenderfer JN, Dudley ME, Carpenter RO, et al. Donor-derived CD19-targeted T cells cause regression of malignancy persisting after allogeneic hematopoietic stem cell transplantation. Blood. 2013;122:4129–4139.
  • Brudno JN, Somerville RPT, Shi V, et al. Allogeneic T cells that express an anti-CD19 chimeric antigen receptor induce remissions of B cell malignancies that progress after allogeneic hematopoietic stem-cell transplantation without causing graft-versus-host disease. J Clin Oncol. 2016;34:1112–1121.
  • Cruz CRY, Micklethwaite KP, Savoldo B, et al. Infusion of donor-derived CD19-redirected virus-specific T cells for B cell malignancies relapsed after allogeneic stem cell transplant: a phase 1 study. Blood. 2013;122:2965–2973.
  • Till BG, Jensen MC, Wang J, et al. Adoptive immunotherapy for indolent non-Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells. Blood. 2008;112:2261–2271.
  • Jensen MC, Popplewell L, Cooper LJ, et al. Antitransgene rejection responses contribute to attenuated persistence of adoptively transferred CD20/CD19-specific chimeric antigen receptor redirected T cells in humans. Biol Blood Marrow Transplant. 2010;16:1245–1256.
  • Kebriaei P, Singh H, Huls MH, et al. Phase I trials using Sleeping Beauty to generate CD19-specific CAR T cells. J Clin Invest. 2016;126:3363–3376.
  • Galon J, Rossi J, Turcan S, et al. Characterization of anti-CD19 chimeric antigen receptor (CAR) T cell-mediated tumor microenvironment immune gene profile in a multicenter trial (ZUMA-1) with axicabtagene ciloleucel (axi-cel, KTE-C19). J Clin Oncol. 2017;25:3025.
  • Maude SL, Hucks D, Seif A, et al. The effect of pembrolizumab in combination with CD19-targeted chimeric antigen receptor (CAR) T cells in relapsed acute lymphoblastic leukemia (ALL). J Clin Oncol. 2017;35:103.
  • Li S, Siriwon N, Zhang X, et al. Enhanced cancer immunotherapy by chimeric antigen receptor-modified T cells engineered to secrete checkpoint inhibitors. Clin Cancer Res. 2017;23:6982–6992.
  • Chong EA, Melenhorst JJ, Lacey SF, et al. PD-1 blockade modulates chimeric antigen receptor (CAR)-modified T cells: refueling the CAR. Blood. 2017;129:1039–1041.
  • Chong EA, Melenhorst JJ, Svoboda J, et al. Phase I/II study of pembrolizumab for progressive diffuse large B cell lymphoma after anti-cd19 directed chimeric antigen receptor modified T cell therapy. Blood. 2017;130:4121.
  • Ruella M, Kenderian SS, Shestova O, et al. Kinase inhibitor ibrutinib to prevent cytokine-release syndrome after anti-CD19 chimeric antigen receptor T cells (CART) for B cell neoplasms. Leukemia. 2016;31:246–248.
  • Fraietta JA, Beckwith KA, Patel PR, et al. Ibrutinib enhances chimeric antigen receptor T-cell engraftment and efficacy in leukemia. Blood. 2016;127:1117–1127.
  • Chmielewski M, Kopecky C, Hombach AA, et al. IL-12 release by engineered T cells expressing chimeric antigen receptors can effectively Muster an antigen-independent macrophage response on tumor cells that have shut down tumor antigen expression. Cancer Res. 2011;71:5697–5706.
  • Pegram HJ, Lee JC, Hayman EG, et al. Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning. Blood. 2012;119:4133–4141.
  • L V H, Singh H, Najjar AM, et al. Tethered IL-15 augments antitumor activity and promotes a stem-cell memory subset in tumor-specific T cells. Proc Natl Acad Sci USA. 2016;113:E7788–E7797.
  • Zhao Z, Condomines M, Van Der Stegen SJC, et al. Structural design of engineered costimulation determines tumor rejection kinetics and persistence of CAR T cells. Cancer Cell. 2015;28:415–428.
  • Hu B, Ren J, Luo Y, et al. Augmentation of antitumor immunity by human and mouse CAR T cells secreting IL-18. Cell Rep. 2017;20:3025–3033.
  • Zhang L, Morgan RA, Beane JD, et al. Tumor-infiltrating lymphocytes genetically engineered with an inducible gene encoding interleukin-12 for the immunotherapy of metastatic melanoma. Clin Cancer Res. 2015;21:2278–2288.
  • Topp MS, Gökbuget N, Zugmaier G, et al. Phase II trial of the anti-CD19 bispecific T cell-engager blinatumomab shows hematologic and molecular remissions in patients with relapsed or refractory B-precursor acute lymphoblastic leukemia. J Clin Oncol. 2014;32:4134–4140.
  • Lee DW, Kochenderfer JN, Stetler-Stevfenson M, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. 2015;385:517–528.
  • Aldoss I, Song J, Stiller T, et al. Correlates of resistance and relapse during blinatumomab therapy for relapsed/refractory acute lymphoblastic leukemia. Am J Hematol. 2017;92:858–865.
  • Yu H, Sotillo E, Harrington C, et al. Repeated loss of target surface antigen after immunotherapy in primary mediastinal large B cell lymphoma. Am J Hematol. 2017;92:E11–E13.
  • Sotillo E, Barrett DM, Black KL, et al. Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov. 2015;5:1283–1295.
  • Braig F, Brandt A, Goebeler M, et al. Resistance to anti-CD19/CD3 BiTE in acute lymphoblastic leukemia may be mediated by disrupted CD19 membrane trafficking. Blood. 2017;129:100–104.
  • Ingle GS, Chan P, Elliott JM, et al. High CD21 expression inhibits internalization of anti-CD19 antibodies and cytotoxicity of an anti-CD19-drug conjugate. Br J Haematol. 2008;140:46–58.
  • Lai X, Gu X, Tsao S-T, et al. Double CD19/CD22 chimeric antigen receptor-modified T cells for the treatment of stage IV relapsed and refractory follicular lymphoma. Blood. 2017;130:5154.
  • Zah E, Lin M-Y, Silva-Benedict A, et al. T cells expressing CD19/CD20 bispecific chimeric antigen receptors prevent antigen escape by malignant B cells. Cancer Immunol Res. 2016;4:498–508.
  • Ruella M, Barrett DM, Kenderian SS, et al. Dual CD19 and CD123 targeting prevents antigen-loss relapses after CD19-directed immunotherapies. J Clin Invest. 2016;126:3814–3826.
  • Zhang W, Wang Y, Guo Y, et al. Treatment of CD20-directed chimeric antigen receptor-modified T cells in patients with relapsed or refractory B cell non-Hodgkin lymphoma: an early phase IIa trial report. Signal Transduct Target Ther. 2016;1:16002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.