243
Views
1
CrossRef citations to date
0
Altmetric
Review

Investigational drug therapies in phase I and phase II clinical trials for alcohol use disorders

ORCID Icon & ORCID Icon
Pages 677-690 | Received 18 Apr 2018, Accepted 16 Jul 2018, Published online: 27 Jul 2018

References

  • Koob GF, Moal Le M. Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology. 2001;24(2):97-129.
  • Grant BF, Goldstein RB, Saha TD, et al. Epidemiology of dsm-5 alcohol use disorder: results from the national epidemiologic survey on alcohol and related conditions iii. JAMA Psychiatry. 2015;72(8):757–766.
  • World Health Organization (WHO). Management of Substance Abuse Unit. Global status report on alcohol and health, 2014.
  • Mokdad AH, Marks JS, Stroup DF, et al. Actual causes of death in the United States, 2000. JAMA. 2004;291(10):1238–1245.
  • Substance Abuse and Mental Health Services Administration (SAMHSA): National survey on drug use and health (nsduh) 2015 (nsduh-2015-ds0001). [cited 2018, Mar 12]. Available from: http://www.Datafiles.Samhsa.Gov/study-dataset/national-survey-drug-use-and-health-2015-nsduh-2015-ds0001-nid16894. (2015).
  • Lyon J. More treatments on deck for alcohol use disorder. JAMA. 2017;317(22):2267–2269.
  • Edlund MJ, Booth BM, Han X. Who seeks care where? Utilization of mental health and substance use disorder treatment in two national samples of individuals with alcohol use disorders. J Stud Alcohol Drug. 2012;73(4):635–646.
  • Vallari RC, Pietruszko R. Human aldehyde dehydrogenase: mechanism of inhibition of disulfiram. Science. 1982;216(4546):637–639.
  • Niciu MJ, Arias AJ. Targeted opioid receptor antagonists in the treatment of alcohol use disorders. CNS Drugs. 2013;27(10):777–787.
  • Anton RF. Naltrexone for the management of alcohol dependence. N Eng J Med. 2008;359(7):715–721.
  • Al Qatari M, Khan S, Harris B, et al. Acamprosate is neuroprotective against glutamate‐induced excitotoxicity when enhanced by ethanol withdrawal in neocortical cultures of fetal rat brain. Alcohol Clin Exp Res. 2001;25(9):1276–1283.
  • Spanagel R, Vengeliene V, Jandeleit B, et al. Acamprosate produces its anti-relapse effects via calcium. Neuropsychopharmacology. 2014;39(4):783.
  • Jupp B, Lawrence AJ. New horizons for therapeutics in drug and alcohol abuse. Pharmacol Ther. 2010;125(1):138–168.
  • Gilpin NW, Koob GF. Neurobiology of alcohol dependence: focus on motivational mechanisms. Alcohol Res Health. 2008;31(3):185.
  • Funk D, Coen K, Tamadon S, et al. Effects of prazosin and doxazosin on yohimbine-induced reinstatement of alcohol seeking in rats. Psychopharmacology. 2016;233(11):2197–2207.
  • Rasmussen DD, Kincaid CL, Froehlich JC. Prazosin prevents increased anxiety behavior that occurs in response to stress during alcohol deprivations. Alcohol Alcohol. 2017;52(1):5–11.
  • Madras BK, Xie Z, Lin Z, et al. Modafinil occupies dopamine and norepinephrine transporters in vivo and modulates the transporters and trace amine activity in vitro. J Pharmacol Exp Ther. 2006;319(2):561–569.
  • Mitchell HA, Bogenpohl JW, Liles LC, et al. Behavioral responses of dopamine β-hydroxylase knockout mice to modafinil suggest a dual noradrenergic–dopaminergic mechanism of action. Pharmacol Biochem Behav. 2008;91(2):217–222.
  • Andersen ML, Kessler E, Murnane KS, et al. Dopamine transporter-related effects of modafinil in rhesus monkeys. Psychopharmacology. 2010;210(3):439–448.
  • Volkow ND, Fowler JS, Logan J, et al. Effects of modafinil on dopamine and dopamine transporters in the male human brain: clinical implications. JAMA. 2009;301(11):1148–1154.
  • Minzenberg MJ, Carter CS. Modafinil: a review of neurochemical actions and effects on cognition. Neuropsychopharmacology. 2008;33(7):1477.
  • Ishizuka T, Murotani T, Yamatodani A. Modanifil activates the histaminergic system through the orexinergic neurons. Neurosci Lett. 2010;483(3):193–196.
  • Wong YN, King SP, Simcoe D, et al. Open‐label, single‐dose pharmacokinetic study of modafinil tablets: influence of age and gender in normal subjects. J Clin Pharmacol. 1999;39(3):281–288.
  • Kampman KM, Lynch KG, Pettinati HM, et al. A double blind, placebo controlled trial of modafinil for the treatment of cocaine dependence without co-morbid alcohol dependence. Drug Alcohol Depend. 2015;155:105–110.
  • Kim JH, Lawrence AJ. Drugs currently in phase ii clinical trials for cocaine addiction. Expert Opin Investig Drugs. 2014;23(8):1105–1122.
  • Morley KC, Cornish JL, Faingold A, et al. Pharmacotherapeutic agents in the treatment of methamphetamine dependence. Expert Opin Investig Drugs. 2017;26(5):563–578.
  • Schmaal L, Joos L, Koeleman M, et al. Effects of modafinil on neural correlates of response inhibition in alcohol-dependent patients. Biol Psychiatry. 2013;73(3):211–218.
  • Schmaal L, Goudriaan AE, Joos L, et al. Modafinil modulates resting-state functional network connectivity and cognitive control in alcohol-dependent patients. Biol Psychiatry. 2013;73(8):789–795.
  • Schmaal L, Goudriaan A, Joos L, et al. Neural substrates of impulsive decision making modulated by modafinil in alcohol-dependent patients. Psychol Med. 2014;44(13):2787–2798.
  • Joos L, Goudriaan AE, Schmaal L, et al. Effect of modafinil on impulsivity and relapse in alcohol dependent patients: a randomized, placebo-controlled trial. Eur Neuropsychopharmacol. 2013;23(8):948–955.
  • Kate N, Grover S, Ghormode D. Dependence on supratherapeutic doses of modafinil: A case report. Prim care companion CNS disord. 2012;(14): 5.
  • Krishnan R, Chary KV. A rare case modafinil dependence. J Pharmacol Pharmacother. 2015;6(1):49.
  • Mann N, Bitsios P. Modafinil treatment of amphetamine abuse in adult adhd. J Psychopharmacol. 2009;23(4):468–471.
  • Carboni E, Acquas E, Frau R, et al. Differential inhibitory effects of a 5-ht3 antagonist on drug-induced stimulation of dopamine release. Eur J Pharmacol. 1989;164(3):515–519.
  • Roila F, Del Favero A. Ondansetron clinical pharmacokinetics. Clin Pharmacokinet. 1995;29(2):95–109.
  • Tomkins DM, Le AD, Sellers EM. Effect of the 5-ht3 antagonist ondansetron on voluntary ethanol intake in rats and mice maintained on a limited access procedure. Psychopharmacology. 1995;117(4):479–485.
  • Costall B, Jones B, Kelly M, et al. Ondansetron inhibits a behavioural consequence of withdrawing from drugs of abuse. Pharm Biochem Behav. 1990;36(2):339–344.
  • Lê AD, Funk D, Harding S, et al. Effects of dexfenfluramine and 5-ht3 receptor antagonists on stress-induced reinstatement of alcohol seeking in rats. Psychopharmacology. 2006;186(1):82–92.
  • Koulu M, Lappalainen J, Hietala J, et al. Effects of chronic administration of ondansetron (gr38032f), a selective 5-ht 3 receptor antagonist, on monoamine metabolism in mesolimbic and nigrostriatal dopaminergic neurons and on striatal d2-receptor binding. Psychopharmacology. 1990;101(2):168–171.
  • Johnson B, Campling G, Griffiths P, et al. Attenuation of some alcohol-induced mood changes and the desire to drink by 5-ht 3 receptor blockade: a preliminary study in healthy male volunteers. Psychopharmacology. 1993;112(1):142–144.
  • Swift RM, Davidson D, Whelihan W, et al. Ondansetron alters human alcohol intoxication. Biol Psychiatry. 1996;40(6):514–521.
  • Sellers EM, Toneatto T, Romach MK, et al. Clinical efficacy of the 5‐ht3 antagonist ondansetron in alcohol abuse and dependence. Alcohol Clin Exp Res. 1994;18(4):879–885.
  • George DT, Rawlings R, Eckardt MJ, et al. Buspirone treatment of alcoholism: age of onset, and cerebrospinal fluid 5‐hydroxyindolacetic acid and homovanillic acid concentrations, but not medication treatment, predict return to drinking. Alcohol Clin Exp Res. 1999;23(2):272–278.
  • Johnson BA, Roache JD, Javors MA, et al. Ondansetron for reduction of drinking among biologically predisposed alcoholic patients: a randomized controlled trial. JAMA. 2000;284(8):963–971.
  • Kenna GA, Zywiak WH, McGeary JE, et al. A within‐group design of nontreatment seeking 5‐httlpr genotyped alcohol‐dependent subjects receiving ondansetron and sertraline. Alcohol Clin Exp Res. 2009;33(2):315–323.
  • Johnson BA, Ait-Daoud N, Seneviratne C, et al. Pharmacogenetic approach at the serotonin transporter gene as a method of reducing the severity of alcohol drinking. Am J Psychiatry. 2011;168(3):265–275.
  • Johnson BA, Seneviratne C, Wang X-Q, et al. Determination of genotype combinations that can predict the outcome of the treatment of alcohol dependence using the 5-ht3 antagonist ondansetron. Am J Psychiatry. 2013;170(9):1020–1031.
  • Rao P, Bell RL, Engleman EA, et al. Targeting glutamate uptake to treat alcohol use disorders. Front Neurosci. 2015;9:144.
  • White PF. Ketamine-its pharmacology and therapeutic uses. Anesthesiology. 1982;56:119–136.
  • Clements J, Nimmo W, Grant I. Bioavailability, pharmacokinetics, and analgesic activity of ketamine in humans. J Pharm Sci. 1982;71(5):539–542.
  • Sabino V, Narayan AR, Zeric T, et al. Mtor activation is required for the anti-alcohol effect of ketamine, but not memantine, in alcohol-preferring rats. Behav Brain Res. 2013;247:9–16.
  • Rezvani AH, Levin ED, Cauley M, et al. Ketamine differentially attenuates alcohol intake in male versus female alcohol preferring (p) rats. J Drug Alcohol Res. 2017;6:1–6.
  • Wright KN, Kabbaj M. Sex differences in sub-anesthetic ketamine’s antidepressant effects and abuse liability. Current Opin Behav Sci. 2018;23:36–41.
  • Ezquerra-Romano II, Lawn W, Krupitsky E, et al. Ketamine for the treatment of addiction: evidence and potential mechanisms. Neuropharmacology. 2018;S0028–3908(18).
  • Krupitsky E, Grinenko A. Ketamine psychedelic therapy (kpt): a review of the results of ten years of research. J Psychoactive Drugs. 1997;29(2):165–183.
  • McAndrew A, Lawn W, Stevens T, et al. A proof-of-concept investigation into ketamine as a pharmacological treatment for alcohol dependence: study protocol for a randomised controlled trial. Trials. 2017;18(1):159.
  • Jansen KL, Darracot-Cankovic R. The nonmedical use of ketamlne, part two: a review of problent use and dependence. J Psychoactive Drugs. 2001;33(2):151–158.
  • Liu Y, Lin D, Wu B, et al. Ketamine abuse potential and use disorder. Brain Res Bull. 2016;126:68–73.
  • Mason BJ, Quello S, Shadan F. Gabapentin for the treatment of alcohol use disorder. Expert Opin Investig Drugs. 2018;27(1):113–124.
  • Gajraj NM. Pregabalin: its pharmacology and use in pain management. Anesth Analg. 2007;105(6):1805–1815.
  • Bockbrader HN, Wesche D, Miller R, et al. A comparison of the pharmacokinetics and pharmacodynamics of pregabalin and gabapentin. Clin Pharmacokinet. 2010;49(10):661–669.
  • Stopponi S, Somaini L, Cippitelli A, et al. Pregabalin reduces alcohol drinking and relapse to alcohol seeking in the rat. Psychopharmacology. 2012;220(1):87–96.
  • Di Nicola M, Martinotti G, Tedeschi D, et al. Pregabalin in outpatient detoxification of subjects with mild‐to‐moderate alcohol withdrawal syndrome. Hum Psychopharmacol Clin Exp. 2010;25(3):268–275.
  • Martinotti G, Di Nicola M, Frustaci A, et al. Pregabalin, tiapride and lorazepam in alcohol withdrawal syndrome: a multi‐centre, randomized, single‐blind comparison trial. Addiction. 2010;105(2):288–299.
  • Förg A, Hein J, Volkmar K, et al. Efficacy and safety of pregabalin in the treatment of alcohol withdrawal syndrome: a randomized placebo-controlled trial. Alcohol Alcohol. 2012;47(2):149–155.
  • Martinotti G, Di Nicola M, Tedeschi D, et al. Efficacy and safety of pregabalin in alcohol dependence. Adv Ther. 2008;25(6):608–618.
  • Martinotti G, Di Nicola M, Tedeschi D, et al. Pregabalin versus naltrexone in alcohol dependence: a randomised, double-blind, comparison trial. J Psychopharmacol. 2010;24(9):1367–1374.
  • Krupitsky E, Rybakova K, Skurat E, et al. A double blind placebo controlled randomised clinical trial of pregabalin for alcohol dependence. Eur Neuropsychopharmacol. 2017;27:S1050.
  • Schjerning O, Rosenzweig M, Pottegård A, et al. Abuse potential of pregabalin. CNS Drugs. 2016;30(1):9–25.
  • Baird CR, Fox P, Colvin LA. Gabapentinoid abuse in order to potentiate the effect of methadone: a survey among substance misusers. E Addict Res. 2014;20(3):115–118.
  • Schifano F, D’Offizi S, Piccione M, et al. Is there a recreational misuse potential for pregabalin? Analysis of anecdotal online reports in comparison with related gabapentin and clonazepam data. Psychother Psychosomat. 2011;80(2):118–122.
  • Lee MR, Tapocik JD, Ghareeb M, et al. The novel ghrelin receptor inverse agonist pf-5190457 administered with alcohol: preclinical safety experiments and a phase 1b human laboratory study. Epub ahead of print. Mol Psychiatry. 2018. doi:10.1038/s41380-018-0064-y.
  • World Health Organization (WHO): Cannabidiol (cbd), pre-review report. (2017) expert committee on drug dependence, thirty-ninth meeting. [cited 2018, Mar 12]. Available from : http://www.Who.Int/medicines/access/controlled-substances/5.2_cbd.Pdf
  • Soyka M, Koller G, Schmidt P, et al. Cannabinoid receptor 1 blocker rimonabant (sr 141716) for treatment of alcohol dependence: results from a placebo-controlled, double-blind trial. J Clin Psychopharmacol. 2008;28(3):317–324.
  • George DT, Herion DW, Jones CL, et al. Rimonabant (sr141716) has no effect on alcohol self-administration or endocrine measures in nontreatment-seeking heavy alcohol drinkers. Psychopharmacology. 2010;208(1):37.
  • Bowen MT, Neumann ID. The multidimensional therapeutic potential of targeting the brain oxytocin system for the treatment of substance use disorders. Curr Top Behav Neurosci. 2017. epub ahead of print. DOI:10.1007/7854_2017_17.
  • Szabó G, Kovács GL, Székeli S, et al. The effects of neurohypophyseal hormones on tolerance to the hypothermic effect of ethanol. Alcohol. 1985;2(4):567–574.
  • Szabo G, Kovacs G, Telegdy G. Intraventricular administration of neurohypophyseal hormones interferes with the development of tolerance to ethanol. Acta Physiol Hung. 1989;73(1):97–103.
  • Lee MR, Weerts EM. Oxytocin for the treatment of drug and alcohol use disorders. Behav Pharmacol. 2016;27(8):640–648.
  • Sarnyai Z, Kovács GL. Role of oxytocin in the neuroadaptation to drugs of abuse. Psychoneuroendocrinology. 1994;19(1):85–117.
  • McGregor IS, Bowen MT. Breaking the loop: oxytocin as a potential treatment for drug addiction. Horm Behav. 2012;61(3):331–339.
  • Peters S, Slattery DA, Flor PJ, et al. Differential effects of baclofen and oxytocin on the increased ethanol consumption following chronic psychosocial stress in mice. Addict Biol. 2013;18(1):66–77.
  • King CE, Griffin WC, Luderman LN, et al. Oxytocin reduces ethanol self‐administration in mice. Alcohol Clin Exp Res. 2017;41(5):955–964.
  • King C, McGinty J, Becker H. Effects of oxytocin on stress-induced reinstatement of alcohol-seeking in mice with and without a history of stress. Alcohol. 2017;60:231–232.
  • Peters ST, Bowen MT, Bohrer K, et al. Oxytocin inhibits ethanol consumption and ethanol‐induced dopamine release in the nucleus accumbens. Addict Biol. 2017;22(3):702–711.
  • Hansson AC, Koopmann A, Uhrig S, et al. Oxytocin reduces alcohol cue-reactivity in alcohol-dependent rats and humans. Neuropsychopharmacology. 2017. Epub ahead of print. DOI:10.1038/npp.2017.257.
  • MacFadyen K, Loveless R, DeLucca B, et al. Peripheral oxytocin administration reduces ethanol consumption in rats. Pharmacol Biochem Behav. 2016;140:27–32.
  • Stevenson J, Wenner S, Freestone D, et al. Oxytocin reduces alcohol consumption in prairie voles. Physiol Behav. 2017;179:411–421.
  • Lee M, Scheidweiler K, Diao X, et al. Oxytocin by intranasal and intravenous routes reaches the cerebrospinal fluid in rhesus macaques: determination using a novel oxytocin assay. Mol Psychiatry. 2018;23(1):115.
  • Marchesi C, Chiodera P, Brusamonti E, et al. Abnormal plasma oxytocin and beta-endorphin levels in alcoholics after short and long term abstinence. Prog Neuro-Psychopharmacol Biol Psychiatry. 1997;21(5):797–807.
  • Sivukhina E, Jirikowski G, Bernstein H, et al. Expression of corticosteroid-binding protein in the human hypothalamus, co-localization with oxytocin and vasopressin. Horm Metabol Res. 2006;38(04):253–259.
  • Pedersen CA, Smedley KL, Leserman J, et al. Intranasal oxytocin blocks alcohol withdrawal in human subjects. Alcohol Clin Exp Res. 2013;37(3):484–489.
  • Mitchell JM, Arcuni PA, Weinstein D, et al. Intranasal oxytocin selectively modulates social perception, craving, and approach behavior in subjects with alcohol use disorder. J Addict Med. 2016;10(3):182–189.
  • Gajbhiye SV, Tripathi RK, Salve B, et al. Evaluation of effect of minocycline on rewarding potential and alcohol relapse in place preference model in mice. Neurosci Lett. 2017;649:28–33.
  • Gajbhiye S, Tripathi R, Petare A, et al. Minocycline in alcohol withdrawal induced anxiety and alcohol relapse in rats. Curr Clin Phamacol. 2018. Epub ahead of print. DOI:10.2174/1574884713666180228110310.
  • McIver SR, Muccigrosso MM, Haydon PG. The effect of doxycycline on alcohol consumption and sensitivity: consideration for inducible transgenic mouse models. Exp Biol Med. 2012;237(10):1129–1133.
  • Karahanian E, Rivera-Meza M, Quintanilla ME, et al. Pparα agonists reduce alcohol drinking: do they act in the brain or in the liver? Alcohol and Alcoholism. 2015;50(6):717–718.
  • Barson JR, Karatayev O, Chang G-Q, et al. Positive relationship between dietary fat, ethanol intake, triglycerides, and hypothalamic peptides: counteraction by lipid-lowering drugs. Alcohol. 2009;43(6):433–441.
  • Page C, Spina D. Phosphodiesterase inhibitors in the treatment of inflammatory diseases. In: Phosphodiesterases as drug targets. Berlin, Heidelberg: Springer. 2011. Vol. 204, p. 391–414.
  • Hoffmann M, Kumar G, Schafer P, et al. Disposition, metabolism and mass balance of [(14)C]apremilast following oral administration. Xenobiotica. 2011;41(12):1063–1075.
  • Blednov YA, Benavidez JM, Black M, et al. Inhibition of phosphodiesterase 4 reduces ethanol intake and preference in c57bl/6j mice. Front Neurosci. 2014;8:129.
  • Hu W, Wen R, Huang Y, et al. Yclic amp-specific phosphodiesterase-4 pde4: a novel target for alcohol dependence. Alcohol Clin Exp Res. 2011;35:182A.
  • Wen RT, Zhang M, Qin WJ, et al. The phosphodiesterase‐4 (pde4) inhibitor rolipram decreases ethanol seeking and consumption in alcohol‐preferring fawn‐hooded rats. Alcohol Clin Exp Res. 2012;36(12):2157–2167.
  • Blednov YA, Da Costa AJ, Tarbox T, et al. Apremilast alters behavioral responses to ethanol in mice: I. reduced ethanol consumption and preference. Epub ahead of print. Alcohol Clin Exp Res. 2018. doi:10.1111/acer.13616.
  • Blednov YA, Da Costa AJ, Harris RA, et al. Apremilast alters behavioral responses to ethanol in mice: ii. Increased sedation, intoxication and reduced acute functional tolerance. Alcohol Clin Exp Res. 2018. Epub ahead of print. DOI:10.1111/acer.13615.
  • Giembycz M. Can the anti‐inflammatory potential of pde4 inhibitors be realized: guarded optimism or wishful thinking? Brit J Pharmacol. 2008;155(3):288–290.
  • Papp K, Kaufmann R, Thaçi D, et al. Efficacy and safety of apremilast in subjects with moderate to severe plaque psoriasis: results from a phase ii, multicenter, randomized, double‐blind, placebo‐controlled, parallel‐group, dose‐comparison study. J Eur Acad Dermatol Venereol. 2013;27(3):e376–383.
  • Cherry JA, Davis RL. Cyclic amp phosphodiesterases are localized in regions of the mouse brain associated with reinforcement, movement, and affect. J Comp Neurol. 1999;407(2):287–301.
  • Clarke T-K, Adams MJ, Davies G, et al. Genome-wide association study of alcohol consumption and genetic overlap with other health-related traits in uk biobank (n= 112 117). Mol Psychiatry. 2017;22(10):1376.
  • Mulligan MK, Ponomarev I, Hitzemann RJ, et al. Toward understanding the genetics of alcohol drinking through transcriptome meta-analysis. Proc Nat Acad Sci. 2006;103(16):6368–6373.
  • Palpacuer C, Laviolle B, Boussageon R, et al. Risks and benefits of nalmefene in the treatment of adult alcohol dependence: a systematic literature review and meta-analysis of published and unpublished double-blind randomized controlled trials. PLoS Med. 2015;12(12):e1001924.
  • Reynolds AR, Saunders MA, Honoree’W B, et al. Acute oral administration of the novel, competitive and selective glucocorticoid receptor antagonist org 34517 reduces the severity of ethanol withdrawal and related hypothalamic–pituitary–adrenal axis activation. Drug Alcohol Depend. 2015;154:100–104.
  • McGregor NR. Pueraria lobata (kudzu root) hangover remedies and acetaldehyde-associated neoplasm risk. Alcohol. 2007;41(7):469–478.
  • Penetar DM, Toto LH, Lee DY-W, et al. A single dose of kudzu extract reduces alcohol consumption in a binge drinking paradigm. Drug Alcohol Depend. 2015;153:194–200.
  • Howland RH. Mifepristone as a therapeutic agent in psychiatry. J Psychosoc Nurs Ment Health Serv. 2013;51(6):11–14.
  • Stephens MAC, Wand G. Stress and the hpa axis: role of glucocorticoids in alcohol dependence. Alcohol Res Curr Rev. 2012;34(4):468–483.
  • Sharrett‐Field L, Butler TR, Berry JN, et al. Mifepristone pretreatment reduces ethanol withdrawal severity in vivo. Alcohol Clin Exp Res. 2013;37(8):1417–1423.
  • Koenig HN, Olive MF. The glucocorticoid receptor antagonist mifepristone reduces ethanol intake in rats under limited access conditions. Psychoneuroendocrinology. 2004;29(8):999–1003.
  • Vendruscolo LF, Barbier E, Schlosburg JE, et al. Corticosteroid-dependent plasticity mediates compulsive alcohol drinking in rats. J Neurosci. 2012;32(22):7563–7571.
  • Vendruscolo LF, Estey D, Goodell V, et al. Glucocorticoid receptor antagonism decreases alcohol seeking in alcohol-dependent individuals. J Clin Invest. 2015;125(8):3193–3197.
  • Fahlke C, Hård E, Hansen S, et al. Consequence of long-term exposure to corticosterone or dexamethasone on ethanol consumption in the adrenalectomized rat, and the effect of type i and type ii corticosteroid receptor antagonists. Psychopharmacology. 1995;117(2):216–224.
  • Simms JA, Haass-Koffler CL, Bito-Onon J, et al. Mifepristone in the central nucleus of the amygdala reduces yohimbine stress-induced reinstatement of ethanol-seeking. Neuropsychopharmacology. 2012;37(4):906.
  • Repunte-Canonigo V, Shin W, Vendruscolo LF, et al. Identifying candidate drivers of alcohol dependence-induced excessive drinking by assembly and interrogation of brain-specific regulatory networks. Genome Biol. 2015;16(1):68.
  • Sinha R. How does stress increase risk of drug abuse and relapse? Psychopharmacology. 2001;158(4):343–359.
  • Kaitin KI, Milne CP. A dearth of new meds. Sci Am. 2011;305(1):16.
  • Arrowsmith J, Miller P. Trial watch: phase ii and phase iii attrition rates 2011–2012. Nat Rev Drug Discov. 2013;12(8):569.
  • Barajaz AM, Kliethermes CL. An assessment of the utilization of the preclinical rodent model literature in clinical trials of putative therapeutics for the treatment of alcohol use disorders. Drug Alcohol Depend. 2017;181:77–84.
  • Perry CJ, Lawrence AJ. Hurdles in basic science translation. Front Pharmacol. 2017;8:478.
  • Knapp CM, Mercado M, Markley TL, et al. Zonisamide decreases ethanol intake in rats and mice. Pharmacol Biochem Behav. 2007;87(1):65–72.
  • Fein G, Bachman L, Fisher S, et al. Cognitive impairments in abstinent alcoholics. West J Med. 1990;152(5):531.
  • Perry C, Lawrence A. Addiction, cognitive decline and therapy: seeking ways to escape a vicious cycle. Genes Brain Behav. 2017;16(1):205–218.
  • Maurage P, Grynberg D, Noël X, et al. Dissociation between affective and cognitive empathy in alcoholism: a specific deficit for the emotional dimension. Alcohol Clin Exp Res. 2011;35(9):1662–1668.
  • Joos L, Goudriaan AE, Schmaal L, et al. Effect of modafinil on cognitive functions in alcohol dependent patients: a randomized, placebo-controlled trial. J Psychopharmacol. 2013;27(11):998–1006.
  • Fernando AB, Economidou D, Theobald DE, et al. Modulation of high impulsivity and attentional performance in rats by selective direct and indirect dopaminergic and noradrenergic receptor agonists. Psychopharmacology. 2012;219(2):341–352.
  • Bello NT. Clinical utility of guanfacine extended release in the treatment of adhd in children and adolescents. Patient Prefer Adherence. 2015;9:877.
  • Fredriksson I, Jayaram-Lindström N, Wirf M, et al. Evaluation of guanfacine as a potential medication for alcohol use disorder in long-term drinking rats: behavioral and electrophysiological findings. Neuropsychopharmacology. 2015;40(5):1130.
  • Jacquot C, Croft AP, Prendergast MA, et al. Effects of the glucocorticoid antagonist, mifepristone, on the consequences of withdrawal from long term alcohol consumption. Alcohol Clin Exp Res. 2008;32(12):2107–2116.
  • Donoghue K, Rose A, Coulton S, et al. Double-blind, 12 month follow-up, placebo-controlled trial of mifepristone on cognition in alcoholics: the mifcog trial protocol. BMC Psychiatry. 2016;16(1):40.
  • Knapp CM, Ciraulo DA, Sarid-Segal O, et al. Zonisamide, topiramate, and levetiracetam: efficacy and neuropsychological effects in alcohol use disorders. J Clin Psychopharmacol. 2015;35(1):34.
  • Hara Y, McKeehan N, Dacks P, et al. Evaluation of the neuroprotective potential of n-acetylcysteine for prevention and treatment of cognitive aging and dementia. Evaluation. 2017;4(3):201–206.
  • Jones JD, Comer SD, Kranzler HR. The pharmacogenetics of alcohol use disorder. Alcohol Clin Exp Res. 2015;39(3):391–402.
  • Oslin DW, Berrettini W, Kranzler HR, et al. A functional polymorphism of the μ-opioid receptor gene is associated with naltrexone response in alcohol-dependent patients. Neuropsychopharmacology. 2003;28(8):1546.
  • Karpyak V, Biernacka J, Geske J, et al. Genetic markers associated with abstinence length in alcohol-dependent subjects treated with acamprosate. Transl Psychiatry. 2014;4(10):e453.
  • Kiefer F, Witt S, Frank J, et al. Involvement of the atrial natriuretic peptide transcription factor gata4 in alcohol dependence, relapse risk and treatment response to acamprosate. Pharmacogenomics J. 2011;11(5):368.
  • Arias AJ, Armeli S, Gelernter J, et al. Effects of opioid receptor gene variation on targeted nalmefene treatment in heavy drinkers. Alcohol Clin Exp Res. 2008;32(7):1159–1166.
  • Kosaka H, Okamoto Y, Munesue T, et al. Oxytocin efficacy is modulated by dosage and oxytocin receptor genotype in young adults with high-functioning autism: A 24-week randomized clinical trial. Transl Psychiatry. 2016;6(8):e872.
  • Kranzler HR, Armeli S, Feinn R, et al. Grik1 genotype moderates topiramate’s effects on daily drinking level, expectations of alcohol’s positive effects and desire to drink. Int J Neuropsychopharmacol. 2014;17(10):1549–1556.
  • Kenna GA, Haass‐Koffler CL, Zywiak WH, et al. Role of the α1 blocker doxazosin in alcoholism: A proof‐of‐concept randomized controlled trial. Addict Biol. 2016;21(4):904–914.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.