214
Views
0
CrossRef citations to date
0
Altmetric
Review

Update on the effects of the sodium pump α1 subunit on human glioblastoma: from the laboratory to the clinic

, , , & ORCID Icon
Pages 753-763 | Received 12 Feb 2018, Accepted 13 Aug 2018, Published online: 30 Aug 2018

References

  • Lieberman F. Glioblastoma update: molecular biology, diagnosis, treatment, response assessment, and translational clinical trials. F1000Res. 2017;6:1892.
  • Seystahl K, Wick W, Weller M. Therapeutic options in recurrent glioblastoma-an update. Crit Rev Oncol Hematol. 2016;99:389–408.
  • Würth R, Barbieri F, Florio T. New molecules and old drugs as emerging approaches to selectively target human glioblastoma cancer stem cells. Biomed Res Int. 2014;2014:126586.
  • Cloughesy T. FDA accelerated approval benefits glioblastoma. Lancet Oncol. 2010;11:1120.
  • Rinne ML, Lee EQ, Nayak L, et al. Update on bevacizumab and other angiogenesis inhibitors for brain cancer. Expert Opin Emerg Drugs. 2013;18:137–153.
  • Ye Q, Li Z, Tian J, et al. Identification of a potential receptor that couples ion transport to protein kinase activity. J Biol Chem. 2011;286:6225–6232.
  • Mijatovic T, Roland I, Van Quaquebeke E, et al. The alpha1 subunit of the sodium pump could represent a novel target to combat nonsmall cell lung cancers. J Pathol. 2007;212:170–179.
  • Li Z, Zhang Z, Xie JX, et al. Na/K-ATPase mimetic pNaKtide peptide inhibits the growth of human cancer cell. J Biol Chem. 2011;286:32394–32403.
  • Khundmiri SJ, Salyer SA, Farmer B, et al. Structural determinants for the ouabain-stimulated increase in Na-K ATPase activity. Biochim Biophys Acta. 2014;1843:1089–1102.
  • Sottejeau Y, Belliard A, Duran MJ, et al. Critical role of the isoform-specific region in alpha1-Na+/K+-ATPase trafficking and protein kinase C-dependent regulation. Biochemistry. 2010;49:3602–3610.
  • Mijatovic T, Van Quaquebeke E, Delest B, et al. Cardiotonic steroids on the road to anti-cancer therapy. Biochim Biophys Acta. 2007;1776:32–57.
  • Mijatovic T, de Nève N, Gailly P, et al. Nucleolus and c-Myc: potential targets of cardenolide-mediated antitumor activity. Mol Cancer Ther. 2008;7:1285–1296.
  • Lefranc F, Kiss R. The sodium pump α1 subunit as a potential target to combat apoptosis-resistant glioblastomas. Neoplasia. 2008;10:198–206.
  • Winnicka K, Bielawski K, Bielawska A, et al. Antiproliferative activity of derivatives of ouabain, digoxin and proscillaridin a in human MCF-7 and MDA-MB-231 breast cancer cells. Biol Pharm Bull. 2008;31:1131–1140.
  • Lefranc F, Mijatovic T, Kondo Y, et al. Targeting the alpha 1 subunit of the sodium pump to combat glioblastoma cells. Neurosurgery. 2008;62:211–221.
  • Lan YL, Wang X, Lou JC, et al. Bufalin inhibits glioblastoma growth by promoting proteasomal degradation of the Na+/K+-ATPase α1 subunit. Biomed Pharmacother. 2018;103:204–215.
  • Com E, Clavreul A, Lagarrigue M, et al. Quantitative proteomic Isotope-Coded Protein Label (ICPL) analysis reveals alteration of several functional processes in the glioblastoma. J Proteomics. 2012;75:3898–3913.
  • Lan YL, Wang X, Lou JC, et al. Marinobufagenin inhibits glioma growth through sodium pump α1 subunit and ERK signaling-mediated mitochondrial apoptotic pathway. Cancer Med. 2018;7:2034–2047.
  • Eisele G, Weller M. Targeting apoptosis pathways in glioblastoma. Cancer Lett. 2013;332:335–345.
  • Lin BH, Tsai MH, Lii CK, et al. IP3 and calcium signaling involved in the reorganization of the actin cytoskeleton and cell rounding induced by cigarette smoke extract in human endothelial cells. Environ Toxicol. 2016;31:1293–1306.
  • Panayiotidis MI, Bortner CD, Cidlowski JA. On the mechanism of ionic regulation of apoptosis: would the Na+/K+-ATPase please stand up? Acta Physiol (Oxf). 2006;187:205–215.
  • Xie Z, Cai T. Na+-K+–ATPase–mediated signal transduction: from protein interaction to cellular function. Mol Interv. 2003;3:157–168.
  • Lefranc F, Brotchi J, Kiss R. Possible future issues in the treatment of glioblastomas: special emphasis on cell migration and the resistance of migrating glioblastoma cells to apoptosis. J Clin Oncol. 2005;23:2411–2422.
  • Lefranc F, Facchini V, Kiss R. Proautophagic drugs: a novel means to combat apoptosis-resistant cancers, with a special emphasis on glioblastomas. Oncologist. 2007;12:1395–1403.
  • Navarro A, Anand-Apte B, Parat MO. A role for caveolae in cell migration. FASEB J. 2004;18:1801–1811.
  • Tanowitz HB, Machado FS, Avantaggiati ML, et al. An expanded role for caveolin-1 in brain tumors. Cell Cycle. 2013;12:1485–1486.
  • Guruswamy S, Rao CV. Synergistic effects of lovastatin and celecoxib on caveolin-1 and its down-stream signaling molecules: implications for colon cancer prevention. Int J Oncol. 2009;35:1037–1043.
  • Banerjee M, Duan Q, Xie Z. SH2 ligand-like effects of second cytosolic domain of Na/K-ATPase α1 subunit on src kinase. PLoS One. 2015;10:e0142119.
  • Penniyaynen VA, Kipenko AV, Lopatina EV, et al. Effect of ouabain on growth of skin explants in organotypic culture. Bull Exp Biol Med. 2013;154:419–420.
  • Xianyu M, Petrushanko IY, Klimanova EA, et al. Glutathionylation of the alpha-subunit of Na, K-ATPase from rat heart by oxidized glutathione inhibits the enzyme. Biochemistry (Mosc). 2014;79:158–164.
  • Wansapura AN, Lasko VM, Lingrel JB, et al. Mice expressing ouabain-sensitive alpha1-Na, K-ATPase have increased susceptibility to pressure overload-induced cardiac hypertrophy. Am J Physiol Heart Circ Physiol. 2011;300:H347–H355.
  • Loreaux EL, Kaul B, Lorenz JN, et al. Ouabain-sensitive alpha1 Na, K-ATPase enhances natriuretic reponse to salin load. J Am Soc Nephrol. 2008;19:1947–1954.
  • Magpusao AN, Omolloh G, Johnson J, et al. Cardiac glycoside activities link Na+/K+-ATPase ion-transport to breast cancer cell migration via correlative SAR. ACS Chem Biol. 2015;10:561–569.
  • Barwe SP, Anilkumar G, Moon SY, et al. Novel role for Na,K-ATPase in phosphatidylinositol 3-kinase signaling and suppression of cell motility. Mol Biol Cell. 2005;16:1082–1094.
  • Stettner MR, Wang W, Nabors LB, et al. Lyn kinase activity is the predominant cellular SRC kinase activity in glioblastoma tumor cells. Cancer Res. 2005;65:5535–5543.
  • Elkabets M, Pazarentzos E, Juric D, et al. AXL mediates resistance to PI3Kα inhibition by activating the EGFR/PKC/mTOR axis in head and neck and esophageal squamous cell carcinomas. Cancer Cell. 2015;27:533–546.
  • Qin M, Zhang J, Xu C, et al. Knockdown of NIK and IKKβ-Binding Protein (NIBP) reduces colorectal cancer metastasis through down-regulation of the canonical NF-κΒ signaling pathway and suppression of MAPK signaling mediated through ERK and JNK. PLoS One. 2017;12:e0170595.
  • Roy N, Chakraborty S, Paul Chowdhury B, et al. Regulation of PKC mediated signaling by calcium during visceral leishmaniasis. PLoS One. 2014;9:e110843.
  • Chai W, Zhang J, Zhu Z, et al. Pyocyanin from Pseudomonas induces IL-8 production through the PKC and NF-κB pathways in U937 cells. Mol Med Rep. 2013;8:1404–1410.
  • Li Z, Cai T, Tian J, et al. NaKtide, a Na/K-ATPase-derived peptide src inhibitor, antagonizes ouabain-activated signal transduction in cultured cells. J Biol Chem. 2009;284:21066–21076.
  • Tian J, Cai T, Yuan Z, et al. Binding of Src to Na+/K+-ATPase forms a functional signaling complex. Mol Biol Cell. 2006;17:317–326.
  • Chaves AL, de Lima PO, Soares JM, et al. Effects of digoxin and Na, K-ATPase immunoexpression on human oral squamous carcinomas. Anticancer Res. 2014;34:5397–5403.
  • Liu L, Ivanov AV, Gable ME, et al. Comparative properties of caveolar and noncaveolar preparations of kidney Na+/K+-ATPase. Biochemistry. 2011;50:8664–8673.
  • Gable ME, Abdallah SL, Najjar SM, et al. Digitalis-induced cell signaling by the sodium pump: on the relation of Src to Na+/K+-ATPase. Biochem Biophys Res Commun. 2014;446:1151–1154.
  • Clifford RJ, Kaplan JH. Human breast tumor cells are more resistant to cardiac glycoside toxicity than non-tumorigenic breast cells. PLoS One. 2013;8:e84306.
  • Weigand KM, Swarts HG, Fedosova NU, et al. Na,K-ATPase activity modulates Src activation: a role for ATP/ADP ratio. Biochim Biophys Acta. 2012;1818:1269–1273.
  • Li S, Couet J, Lisanti MP. Src tyrosine kinases, G α subunits, and H-Ras share a common membrane-anchored scaffolding protein, caveolin: caveolin binding negatively regulates the auto-activation of Src tyrosine kinases. J Biol Chem. 1996;271:29182–29190.
  • Wojtal KA, De Vries E, Hoekstra D, et al. Efficient trafficking of MDR1/P-glycoprotein to apical canalicular plasma membranes in HepG2 cells requires PKA-RIIalpha anchoring and glucosylceramide. Mol Biol Cell. 2006;17:3638–3650.
  • Yosef E, Katz A, Peleg Y, et al. Do src kinase and caveolin interact directly with Na,K-ATPase? J Biol Chem. 2016;291:11736–11750.
  • Lingrel JB, Argüello JM, Van Huysse J, et al. Cation and cardiac glycoside binding sites of the Na, K-ATPase. Ann N Y Acad Sci. 1997;834:194–206.
  • Akimova OA, Tverskoi AM, Smolyaninova LV, et al. Critical role of the α1-Na(+), K(+)-ATPase subunit in insensitivity of rodent cells to cytotoxic action of ouabain. Apoptosis. 2015;20:1200–1210.
  • Szakács G, Paterson JK, Ludwig JA, et al. Targeting multidrug resistance in cancer. Nat Rev Drug Discov. 2006;5:219–234.
  • Hoffmann EK, Lambert IH. Ion channels and transporters in the development of drug resistance in cancer cells. Philos Trans R Soc Lond B Biol Sci. 2014;369:20130109.
  • Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer. 2002;2:48–58.
  • Harazono Y, Kho DH, Balan V, et al. Extracellular galectin-3 programs multidrug resistance through Na+/K+-ATPase and P-glycoprotein signaling. Oncotarget. 2015;6:19592–19604.
  • Beier D, Schulz JB, Beier CP. Chemoresistance of glioblastoma cancer stem cells–much more complex than expected. Mol Cancer. 2011;10:128.
  • Salmaggi A, Boiardi A, Gelati M, et al. Glioblastoma-derived tumorospheres identify a population of tumor stem-like cells with angiogenic potential and enhanced multidrug resistance phenotype. Glia. 2006;54:850–860.
  • Schaich M, Kestel L, Pfirrmann M, et al. A MDR1 (ABCB1) gene single nucleotide polymorphism predicts outcome of temozolomide treatment in glioblastoma patients. Ann Oncol. 2009;20:175–181.
  • Nakai E, Park K, Yawata T, et al. Enhanced MDR1 expression and chemoresistance of cancer stem cells derived from glioblastoma. Cancer Invest. 2009;27:901–908.
  • Balik V, Mirossay P, Bohus P, et al. Flow cytometry analysis of neural differentiation markers expression in human glioblastomas may predict their response to chemotherapy. Cell Mol Neurobiol. 2009;29:845–858.
  • Xiao AY, Wang XQ, Yang A, et al. Slight impairment of Na+, K + -ATPase synergistically aggravates ceramide- and beta-amyloid-induced apoptosis in cortical neurons. Brain Res. 2002;955:253–259.
  • Chen D, Song M, Mohamad O, et al. Inhibition of Na+/K+-ATPase induces hybrid cell death and enhanced sensitivity to chemotherapy in human glioblastoma cells. BMC Cancer. 2014;14:716.
  • Zhou J, Scholes J, Hsieh JT. Signal transduction targets in androgen-independent prostate cancer. Cancer Metastasis Rev. 2001;20:351–362.
  • Kimura K, Markowski M, Bowen C, et al. Androgen blocks apoptosis of hormone-dependent prostate cancer cells. Cancer Res. 2001;61:5611–5618.
  • Rennebeck G, Martelli M, Kyprianou N. Anoikis and survival connections in the tumor microenvironment: is there a role in prostate cancer metastasis? Cancer Res. 2005;65:11230–11235.
  • Mawji IA, Simpson CD, Hurren R, et al. Critical role for Fas-associated death domain-like interleukin-1-converting enzyme-like inhibitory protein in anoikis resistance and distant tumor formation. J Natl Cancer Inst. 2007;99:811–822.
  • Berezovskaya O, Schimmer AD, Glinskii AB, et al. Increased expression of apoptosis inhibitor protein XIAP contributes to anoikis resistance of circulating human prostate cancer metastasis precursor cells. Cancer Res. 2005;65:2378–2386.
  • Douma S, Van Laar T, Zevenhoven J, et al. Suppression of anoikis and induction of metastasis by the neurotrophic receptor TrkB. Nature. 2004;430:1034–1039.
  • Simpson CD, Mawji IA, Anyiwe K, et al. Inhibition of the sodium potassium adenosine triphosphatase pump sensitizes cancer cells to anoikis and prevents distant tumor formation. Cancer Res. 2009;69:2739–2747.
  • Stenkvist B, Bengtsson E, Dahlqvist B, et al. Cardiac glycosides and breast cancer, revisited. N Engl J Med. 1982;306:484.
  • Alevizopoulos K, Calogeropoulou T, Lang F, et al. Na+/K+ ATPase inhibitors in cancer. Curr Drug Targets. 2014;15:988–1000.
  • Haux J, Klepp O, Spigset O, et al. Digitoxin medication and cancer; case control and internal dose-response studies. BMC Cancer. 2001;1:11.
  • Mijatovic T, Op De Beeck A, Van Quaquebeke E, et al. The cardenolide UNBS1450 is able to deactivate nuclear factor kappaB mediated cytoprotective effects in human non-small cell lung cancer cells. Mol Cancer Ther. 2006;5:391–399.
  • Van Quaquebeke E, Simon G, André A, et al. Identification of a novel cardenolide (2″-oxovoruscharin) from Calotropis procera and the hemisynthesis of novel derivatives displaying potent in vitro antitumor activities and high in vivo tolerance: structure-activity relationship analyses. J Med Chem. 2005;48:849–856.
  • Mathieu V, Pirker C, Martin De Lassalle E, et al. The sodium pump alpha1 sub-unit: a disease progression-related target for metastatic melanoma treatment. J Cell Mol Med. 2009;13:3960–3972.
  • Mijatovic T, Mathieu V, Gaussin JF, et al. Cardenolide-induced lysosomal membrane permeabilization demonstrates therapeutic benefits in experimental human non-small cell lung cancers. Neoplasia. 2006;8:402–412.
  • Juncker T, Cerella C, Teiten MH, et al. UNBS1450, a steroid cardiac glycoside inducing apoptotic cell death in human leukemia cells. Biochem Pharmacol. 2011;81:13–23.
  • Mijatovic T, Kiss R. Cardiotonic steroids-mediated Na+/K+-ATPase targeting could circumvent various chemoresistance pathways. Planta Med. 2013;79:189–198.
  • Xiao Y, Meng C, Lin J, et al. Ouabain targets the Na+/K+-ATPase α3 isoform to inhibit cancer cell proliferation and induce apoptosis. Oncol Lett. 2017;14:6678–6684.
  • Yatime L, Laursen M, Morth JP, et al. Structural insights into the high affinity binding of cardiotonic steroids to the Na+,K+-ATPase. J Struct Biol. 2011;174:296–306.
  • Ogawa H, Shinoda T, Cornelius F, et al. Crystal structure of the sodium-potassium pump (Na+,K+-ATPase) with bound potassium and ouabain. Proc Natl Acad Sci U S A. 2009;106:13742–13747.
  • Katz A, Lifshitz Y, Bab-Dinitz E, et al. Selectivity of digitalis glycosides for isoforms of human Na,K-ATPase. J Biol Chem. 2010;285:19582–19592.
  • Newman RA, Yang P, Pawlus AD, et al. Cardiac glycosides as novel cancer therapeutic agents. Mol Interv. 2008;8:36–49.
  • de Munari S, Cerri A, Gobbini M, et al. Structure-based design and synthesis of novel potent Na+,K+ -ATPase inhibitors derived from a 5alpha,14alpha-androstane scaffold as positive inotropic compounds. J Med Chem. 2003;46:3644–3654.
  • Gobbini M, Armaroli S, Banfi L, et al. Novel analogues of istaroxime, a potent inhibitor of Na+,K+-ATPase: synthesis and structure-activity relationship. J Med Chem. 2008;51:4601–4608.
  • Gobbini M, Armaroli S, Banfi L, et al. Novel analogues of Istaroxime, a potent inhibitor of Na(+),K(+)-ATPase: synthesis, structure-activity relationship and 3D-quantitative structure-activity relationship of derivatives at position 6 on the androstane scaffold. Bioorg Med Chem. 2010;18:4275–4299.
  • Micheletti R, Mattera GG, Rocchetti M, et al. Pharmacological profile of the novel inotropic agent (E,Z)-3-((2-aminoethoxy)imino)androstane-6,17-dione hydrochloride (PST2744). J Pharmacol Exp Ther. 2002;303:592–600.
  • Cove DH, Barker GA. Digoxin and hormone receptors. Lancet. 1979;2:204.
  • Khan H, Metra M, Blair JE, et al. Istaroxime, a first in class new chemical entity exhibiting SERCA-2 activation and Na-K-ATPase inhibition: a new promising treatment for acute heart failure syndromes? Heart Fail Rev. 2009;14:277–287.
  • Liu T, Wu C, Weng G, et al. Bufalin inhibits cellular proliferation and cancer stem cell-like phenotypes via upregulation of MiR-203 in glioma. Cell Physiol Biochem. 2017;44:671–681.
  • Wang D, Bi Z. Bufalin inhibited the growth of human osteosarcoma MG-63 cells via down-regulation of Bcl-2/Bax and triggering of the mitochondrial pathway. Tumour Biol. 2014;35:4885–4890.
  • Yan S, Qu X, Xu L, et al. Bufalin enhances TRAIL-induced apoptosis by redistributing death receptors in lipid rafts in breast cancer cells. Anticancer Drugs. 2014;25:683–689.
  • Wang Y, Lonard DM, Yu Y, et al. Bufalin is a potent small molecule inhibitor of the steroid receptor coactivators SRC-3 and SRC-1. Cancer Res. 2014;74:1506–1517.
  • Shen S, Zhang Y, Wang Z, et al. Bufalin induces the interplay between apoptosis and autophagy in glioma cells through endoplasmic reticulum stress. Int J Biol Sci. 2014;10:212–224.
  • Meng Z, Yang P, Shen Y, et al. Pilot study of huachansu in patients with hepatocellular carcinoma, nonsmall-cell lung cancer, or pancreatic cancer. Cancer. 2009;115:5309–5318.
  • Osman MH, Farrag E, Selim M, et al. Cardiac glycosides use and the risk and mortality of cancer; systematic review and meta-analysis of observational studies. PLoS One. 2017;12:e0178611.
  • Platz EA, Yegnasubramanian S, Liu JO, et al. A novel two-stage, transdisciplinary study identifies digoxin as a possible drug for prostate cancer treatment. Cancer Discov. 2011;1:68–77.
  • Smith TW. Pharmacokinetics, bioavailability and serum levels of cardiac glycosides. J Am Coll Cardiol. 1985;5:43A–50A.
  • Eade E, Cooper R, Mitchell AR. Digoxin - time to take the gloves off? Int J Cardiol. 2013;164:365–367.
  • Pan L, Zhang Y, Zhao W, et al. The cardiac glycoside oleandrin induces apoptosis in human colon cancer cells via the mitochondrial pathway. Cancer Chemother Pharmacol. 2017;80:91–100.
  • Hong DS, Henary H, Falchook GS, et al. First-in-human study of pbi-05204, an oleander-derived inhibitor of akt, fgf-2, nf-κΒ and p70s6k, in patients with advanced solid tumors. Invest New Drugs. 2014;32:1204–1212.
  • Mekhail T, Kaur H, Ganapathi R, et al. Phase 1 trial of Anvirzel in patients with refractory solid tumors. Invest New Drugs. 2006;24:423–427.
  • Garcia DG, Amorim LM, de Castro Faria MV, et al. The anticancer drug perillyl alcohol is a Na/K-ATPase inhibitor. Mol Cell Biochem. 2010;345:29–34.
  • Garcia DG, de Castro-Faria-Neto HC, da Silva CI, et al. Na/K-ATPase as a target for anticancer drugs: studies with perillyl alcohol. Mol Cancer. 2015;14:105.
  • Cho HY, Wang W, Jhaveri N, et al. Perillyl alcohol for the treatment of temozolomide-resistant gliomas. Mol Cancer Ther. 2012;11:2462–2472.
  • Da Fonseca CO, Masini M, Futuro D, et al. Anaplastic oligodendroglioma responding favorably to intranasal delivery of perillyl alcohol: a case report and literature review. Surg Neurol. 2006;66:611–615.
  • Da Fonseca CO, Simão M, Lins IR, et al. Efficacy of monoterpene perillyl alcohol upon survival rate of patients with recurrent glioblastoma. J Cancer Res Clin Oncol. 2011;137:287–293.
  • DA Fonseca CO, Teixeira RM, Silva JC, et al. Long-term outcome in patients with recurrent malignant glioma treated with perillyl alcohol inhalation. Anticancer Res. 2013;33:5625–5631.
  • Da Fonseca CO, Khandelia H, Salazar MD, et al. Perillyl alcohol: dynamic interactions with the lipid bilayer and implications for long-term inhalational chemotherapy for gliomas. Surg Neurol Int. 2016;7:1.
  • Moreno Y, Banuls L, Katz A, et al. Hellebrin and its aglycone form hellebrigenin display similar in vitro growth inhibitory effects in cancer cells and binding profiles to the alpha subunits of the Na+/K+-ATPase. Mol Cancer. 2013;12:33.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.