491
Views
17
CrossRef citations to date
0
Altmetric
Review

Investigational drugs for the treatment of Zika virus infection: a preclinical and clinical update

& ORCID Icon
Pages 951-962 | Received 19 Sep 2018, Accepted 12 Nov 2018, Published online: 28 Nov 2018

References

  • Koppolu V, Shantha Raju T. Zika virus outbreak: a review of neurological complications, diagnosis, and treatment options. J Neurovirol. 2018;24(3):255–272.
  • Devillers J. Repurposing drugs for use against Zika virus infection. SAR QSAR Environ Res. 2018;29(2):103–115.
  • Cheng F, Murray JL, Rubin DH. Drug repurposing: new treatments for Zika virus infection? Trends Mol Med. 2016;22(11):919–921.
  • Adcock RS, Chu YK, Golden JE, et al. Evaluation of anti-Zika virus activities of broad-spectrum antivirals and NIH clinical collection compounds using a cell-based, high-throughput screen assay. Antiviral Res. 2017;138:47–56.
  • Barrows NJ, Campos RK, Powell ST, et al. A screen of FDA-approved drugs for inhibitors of Zika virus infection. Cell Host Microbe. 2016;20(2):259–270.
  • Xu M, Lee EM, Wen Z, et al. Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen. Nat Med. 2016;22(10):1101–1107.
  • Pascoalino BS, Courtemanche G, Cordeiro MT, et al. Zika antiviral chemotherapy: identification of drugs and promising starting points for drug discovery from an FDA-approved library. F1000Res. 2016;5:2523.
  • Zhou T, Tan L, Cederquist GY, et al. High-content screening in hPSC-neural progenitors identifies drug candidates that inhibit Zika virus infection in fetal-like organoids and adult brain. Cell Stem Cell. 2017;21(2):274–83.e5.
  • Balasubramanian A, Teramoto T, Kulkarni AA, et al. Antiviral activities of selected antimalarials against dengue virus type 2 and Zika virus. Antiviral Res. 2017;137:141–150.
  • Delvecchio R, Higa LM, Pezzuto P, et al. Chloroquine, an endocytosis blocking agent, inhibits Zika virus infection in different cell models. Viruses. 2016;8(12):E322.
  • Shiryaev SA, Mesci P, Pinto A, et al. Repurposing of the anti-malaria drug chloroquine for Zika virus treatment and prophylaxis. Sci Rep. 2017;7(1):15771.
  • Li C, Zhu X, Ji X, et al. Chloroquine, a FDA-approved drug, prevents Zika Virus infection and its associated congenital microcephaly in mice. EBioMedicine. 2017;24:189–194.
  • Cao B, Parnell LA, Diamond MS, et al. Inhibition of autophagy limits vertical transmission of Zika virus in pregnant mice. J Exp Med. 2017;214(8):2303–2313.
  • Han Y, Mesplede T, Xu H, et al. The antimalarial drug amodiaquine possesses anti-ZIKA virus activities. J Med Virol. 2018;90(5):796–802.
  • Bullard-Feibelman KM, Govero J, Zhu Z, et al. The FDA-approved drug sofosbuvir inhibits Zika virus infection. Antiviral Res. 2017;137:134–140.
  • Mumtaz N, Jimmerson LC, Bushman LR, et al. Cell-line dependent antiviral activity of sofosbuvir against Zika virus. Antiviral Res. 2017;146:161–163.
  • Li Z, Brecher M, Deng YQ, et al. Existing drugs as broad-spectrum and potent inhibitors for Zika virus by targeting NS2B-NS3 interaction. Cell Res. 2017;27(8):1046–1064.
  • Rausch K, Hackett BA, Weinbren NL, et al. Screening bioactives reveals nanchangmycin as a broad spectrum antiviral active against Zika virus. Cell Rep. 2017;18(3):804–815.
  • Shiryaev SA, Farhy C, Pinto A, et al. Characterization of the Zika virus two-component NS2B-NS3 protease and structure-assisted identification of allosteric small-molecule antagonists. Antiviral Res. 2017;143:218–229.
  • Cairns DM, Boorgu D, Levin M, et al. Niclosamide rescues microcephaly in a humanized in vivo model of Zika infection using human induced neural stem cells. Biol Open. 2018;7:1.
  • Yuan S, Chan JF, den-Haan H, et al. Structure-based discovery of clinically approved drugs as Zika virus NS2B-NS3 protease inhibitors that potently inhibit Zika virus infection in vitro and in vivo. Antiviral Res. 2017;145:33–43.
  • Sinigaglia A, Riccetti S, Trevisan M, et al. In silico approaches to Zika virus drug discovery. Expert Opin Drug Discov. 2018;13(9):825–835.
  • Pattnaik A, Palermo N, Sahoo BR, et al. Discovery of a non-nucleoside RNA polymerase inhibitor for blocking Zika virus replication through in silico screening. Antiviral Res. 2018;151:78–86.
  • Chen L, Liu Y, Wang S, et al. Antiviral activity of peptide inhibitors derived from the protein E stem against Japanese encephalitis and Zika viruses. Antiviral Res. 2017;141:140–149.
  • Yu Y, Deng Y-Q, Zou P, et al. A peptide-based viral inactivator inhibits Zika virus infection in pregnant mice and fetuses. Nat Commun. 2017;8:15672.
  • Ramharack P, Soliman MES. Zika virus NS5 protein potential inhibitors: an enhanced in silico approach in drug discovery. J Biomol Struct Dyn. 2018;36(5):1118–1133.
  • Xie X, Zou J, Shan C, et al. Small molecules and antibodies for Zika therapy. J Infect Dis. 2017;216(suppl_10):S945–s50.
  • Munjal A, Khandia R, Dhama K, et al. Advances in developing therapies to combat Zika virus: current knowledge and future perspectives. Front Microbiol. 2017;8:1469.
  • Wilder-Smith A, Vannice K, Durbin A, et al. Zika vaccines and therapeutics: landscape analysis and challenges ahead. BMC Med. 2018;16(1):84.
  • Mottin M, Borba J, Braga RC, et al. The A-Z of Zika drug discovery. Drug Discov Today. 2018;23:1833–1847.
  • Wang Q, Yan J, Gao GF. Monoclonal antibodies against Zika virus: therapeutics and their implications for vaccine design. J Virol. 2017;91:20.
  • Barrett ADT. Current status of Zika vaccine development: Zika vaccines advance into clinical evaluation. NPJ Vaccines. 2018;3:24.
  • Da Silva S, Oliveira Silva Martins D, Acg J. A review of the ongoing research on Zika virus treatment. Viruses. 2018;10:5.
  • Saiz JC, Martin-Acebes MA. The race to find antivirals for Zika virus. Antimicrob Agents Chemother. 2017;61:6.
  • Madrid PB, Chopra S, Manger ID, et al. A systematic screen of FDA-approved drugs for inhibitors of biological threat agents. PLoS One. 2013;8(4):e60579.
  • Devillers J. Repurposing drugs for use against Zika virus infection. SAR QSAR Environ Res. 2018;29(2):103–115.
  • Ferreira AC, Zaverucha-do-Valle C, Reis PA, et al. Sofosbuvir protects Zika virus-infected mice from mortality, preventing short- and long-term sequelae. Sci Rep. 2017;7(1):9409.
  • Sacramento CQ, de Melo GR, de Freitas CS, et al. The clinically approved antiviral drug sofosbuvir inhibits Zika virus replication. Sci Rep. 2017;7:40920.
  • Yang S, Xu M, Lee EM, et al. Emetine inhibits Zika and Ebola virus infections through two molecular mechanisms: inhibiting viral replication and decreasing viral entry. Cell Discov. 2018;4:31.
  • Seley-Radtke KL, Yates MK. The evolution of nucleoside analogue antivirals: a review for chemists and non-chemists. Part 1: early structural modifications to the nucleoside scaffold. Antiviral Res. 2018;154:66–86.
  • Eyer L, Nencka R, Huvarova I, et al. Nucleoside inhibitors of Zika virus. J Infect Dis. 2016;214(5):707–711.
  • Julander JG, Siddharthan V, Evans J, et al. Efficacy of the broad-spectrum antiviral compound BCX4430 against Zika virus in cell culture and in a mouse model. Antiviral Res. 2017;137:14–22.
  • Zmurko J, Marques RE, Schols D, et al. The viral polymerase inhibitor 7-deaza-2ʹ-C-methyladenosine is a potent inhibitor of in vitro Zika virus replication and delays disease progression in a robust mouse infection model. PLoS Negl Trop Dis. 2016;10(5):e0004695.
  • Deng YQ, Zhang NN, Li CF, et al. Adenosine analog NITD008 is a potent inhibitor of Zika virus. Open Forum Infect Dis. 2016;3(4):ofw175.
  • Mesci P, Macia A, Moore SM, et al. Blocking Zika virus vertical transmission. Sci Rep. 2018;8(1):1218.
  • Lanko K, Eggermont K, Patel A, et al. Replication of the Zika virus in different iPSC-derived neuronal cells and implications to assess efficacy of antivirals. Antiviral Res. 2017;145:82–86.
  • Xie Y, Ogah CA, Jiang X, et al. Nucleoside inhibitors of hepatitis C virus NS5B polymerase: a systematic review. Curr Drug Targets. 2016;17(13):1560–1576.
  • Lim SP, Noble CG, Shi PY. The dengue virus NS5 protein as a target for drug discovery. Antiviral Res. 2015;119:57–67.
  • Chopra D, Bhandari B. Sofosbuvir: really meets the unmet needs for hepatis C treatment? Infect Disord Drug Targets. 2018;18:1–17.
  • Onorati M, Li Z, Liu F, et al. Zika virus disrupts phospho-TBK1 localization and mitosis in human neuroepithelial stem cells and radial glia. Cell Rep. 2016;16(10):2576–2592.
  • Xu HT, Hassounah SA, Colby-Germinario SP, et al. Purification of Zika virus RNA-dependent RNA polymerase and its use to identify small-molecule Zika inhibitors. J Antimicrob Chemother. 2017;72(3):727–734.
  • Retallack H, Di Lullo E, Arias C, et al. Zika virus cell tropism in the developing human brain and inhibition by azithromycin. Proc Natl Acad Sci U S A. 2016;113(50):14408–14413.
  • He J, Qi WB, Wang L, et al. Amaryllidaceae alkaloids inhibit nuclear-to-cytoplasmic export of ribonucleoprotein (RNP) complex of highly pathogenic avian influenza virus H5N1. Influenza Other Respir Viruses. 2013;7(6):922–931.
  • Kang C, Keller TH, Luo D. Zika virus protease: an antiviral drug target. Trends Microbiol. 2017;25(10):797–808.
  • Borges MC, Castro LA, Fonseca BA. Chloroquine use improves dengue-related symptoms. Mem Inst Oswaldo Cruz. 2013;108(5):596–599.
  • Malone RW, Homan J, Callahan MV, et al. Zika virus: medical countermeasure development challenges. PLoS Negl Trop Dis. 2016;10(3):e0004530.
  • Parhizgar AR, Tahghighi A. Introducing new antimalarial analogues of chloroquine and amodiaquine: a narrative review. Iran J Med Sci. 2017;42(2):115–128.
  • Barbosa-Lima G, Moraes AM, Araujo AD, et al. 2,8-bis(trifluoromethyl)quinoline analogs show improved anti-Zika virus activity, compared to mefloquine. Eur J Med Chem. 2017;127:334–340.
  • Mushtaque M, Shahjahan. Reemergence of chloroquine (CQ) analogs as multi-targeting antimalarial agents: a review. Eur J Med Chem. 2015;90:280–295.
  • Musiol R. An overview of quinoline as a privileged scaffold in cancer drug discovery. Expert Opin Drug Discov. 2017;12(6):583–597.
  • de la Guardia C, Stephens DE, Dang HT, et al. Antiviral activity of novel quinoline derivatives against dengue virus serotype 2. Molecules. 2018;23:3.
  • Albulescu IC, Kovacikova K, Tas A, et al. Suramin inhibits Zika virus replication by interfering with virus attachment and release of infectious particles. Antiviral Res. 2017;143:230–236.
  • Zhang F, Hammack C, Ogden SC, et al. Molecular signatures associated with ZIKV exposure in human cortical neural progenitors. Nucleic Acids Res. 2016;44(18):8610–8620.
  • Li C, Deng YQ, Wang S, et al. 25-hydroxycholesterol protects host against Zika virus infection and its associated microcephaly in a mouse model. Immunity. 2017;46(3):446–456.
  • Wen Z, Song H, Ming GL. How does Zika virus cause microcephaly? Genes Dev. 2017;31(9):849–861.
  • McDonald JG, Russell DW. Editorial: 25-hydroxycholesterol: a new life in immunology. J Leukoc Biol. 2010;88(6):1071–1072.
  • de Oliveira Souza I N, Ps F, Jv F, et al. Acute and chronic neurological consequences of early-life Zika virus infection in mice. Sci Transl Med. 2018;10:444.
  • Valadao AL, Aguiar RS, de Arruda LB. Interplay between inflammation and cellular stress triggered by Flaviviridae viruses. Front Microbiol. 2016;7:1233.
  • Simanjuntak Y, Liang JJ, Chen SY, et al. Ebselen alleviates testicular pathology in mice with Zika virus infection and prevents its sexual transmission. PLoS Pathog. 2018;14(2):e1006854.
  • Martinez JP, Sasse F, Bronstrup M, et al. Antiviral drug discovery: broad-spectrum drugs from nature. Nat Prod Rep. 2015;32(1):29–48.
  • Oliveira AF, Teixeira RR, Oliveira AS, et al. Potential antivirals: natural products targeting replication enzymes of dengue and chikungunya viruses. Molecules. 2017;22:3.
  • Abdelmohsen UR, Balasubramanian S, Oelschlaeger TA, et al. Potential of marine natural products against drug-resistant fungal, viral, and parasitic infections. Lancet Infect Dis. 2017;17(2):e30–e41.
  • Wong G, He S, Siragam V, et al. Antiviral activity of quercetin-3-beta-O-D-glucoside against Zika virus infection. Virol Sin. 2017;32(6):545–547.
  • Mounce BC, Cesaro T, Carrau L, et al. Curcumin inhibits Zika and chikungunya virus infection by inhibiting cell binding. Antiviral Res. 2017;142:148–157.
  • Gaudry A, Bos S, Viranaicken W, et al. The flavonoid isoquercitrin precludes initiation of Zika virus infection in human cells. Int J Mol Sci. 2018;19:4.
  • Carneiro BM, Batista MN, Braga ACS, et al. The green tea molecule EGCG inhibits Zika virus entry. Virology. 2016;496:215–218.
  • Elgner F, Sabino C, Basic M, et al. Inhibition of Zika virus replication by silvestrol. Viruses. 2018;10:4.
  • Gomes B, Augusto MT, Felicio MR, et al. Designing improved active peptides for therapeutic approaches against infectious diseases. Biotechnol Adv. 2018;36(2):415–429.
  • Boto A, Jm PDLL, Cc G. The road from host-defense peptides to a new generation of antimicrobial drugs. Molecules. 2018;23:2.
  • Chew MF, Poh KS, Poh CL. Peptides as therapeutic agents for dengue virus. Int J Med Sci. 2017;14(13):1342–1359.
  • He M, Zhang H, Li Y, et al. Cathelicidin-derived antimicrobial peptides inhibit Zika virus through direct inactivation and interferon pathway. Front Immunol. 2018;9:722.
  • Julander JG, Siddharthan V. Small-animal models of Zika virus. J Infect Dis. 2017;216(suppl_10):S919–s27.
  • Wang B, Thurmond S, Hai R, et al. Structure and function of Zika virus NS5 protein: perspectives for drug design. Cell Mol Life Sci. 2018;75(10):1723–1736.
  • Shi Y, Dai L, Song H, et al. Structures of Zika virus E & NS1: relations with virus infection and host immune responses. Adv Exp Med Biol. 2018;1062:77–87.
  • Lin HH, Yip BS, Huang LM, et al. Zika virus structural biology and progress in vaccine development. Biotechnol Adv. 2018;36(1):47–53.
  • Oliveira ERA, Mohana-Borges R, de Alencastro RB, et al. The flavivirus capsid protein: structure, function and perspectives towards drug design. Virus Res. 2017;227:115–123.
  • Garcia LL, Padilla L, Castano JC. Inhibitors compounds of the flavivirus replication process. Virol J. 2017;14(1):95.
  • Li Y, Zhang Z, Phoo WW, et al. Structural insights into the inhibition of Zika virus NS2B-NS3 protease by a small-molecule inhibitor. Structure. 2018;26(4):555–64.e3.
  • Li L, Wang J, Jia Z, et al. Structural view of the helicase reveals that Zika virus uses a conserved mechanism for unwinding RNA. Acta Crystallogr F Struct Biol Commun. 2018;74(Pt 4):205–213.
  • Hercik K, Brynda J, Nencka R, et al. Structural basis of Zika virus methyltransferase inhibition by sinefungin. Arch Virol. 2017;162(7):2091–2096.
  • Coutard B, Barral K, Lichiere J, et al. Zika virus methyltransferase: structure and functions for drug design perspectives. J Virol. 2017;91:5.
  • Lee I, Bos S, Li G, et al. Probing molecular insights into Zika virus(-)host interactions. Viruses. 2018;10:5.
  • Esteves E, Rosa N, Correia MJ, et al. New targets for zika virus determined by human-viral interactomic: a bioinformatics approach. Biomed Res Int. 2017;2017:1734151.
  • Boldescu V, Behnam MAM, Vasilakis N, et al. Broad-spectrum agents for flaviviral infections: dengue, Zika and beyond. Nat Rev Drug Discov. 2017;16(8):565–586.
  • Muller JA, Harms M, Kruger F, et al. Semen inhibits Zika virus infection of cells and tissues from the anogenital region. Nat Commun. 2018;9(1):2207.
  • Prantner D, Perkins DJ, Vogel SN. AMP-activated kinase (AMPK) promotes innate immunity and antiviral defense through modulation of stimulator of interferon genes (STING) signaling. J Biol Chem. 2017;292(1):292–304.
  • Schoggins JW. Recent advances in antiviral interferon-stimulated gene biology. F1000Res. 2018;7:309.
  • Crosse KM, Monson EA, Beard MR, et al. Interferon-stimulated genes as enhancers of antiviral innate immune signaling. J Innate Immun. 2018;10(2):85–93.
  • Van der Hoek KH, Eyre NS, Shue B, et al. Viperin is an important host restriction factor in control of Zika virus infection. Sci Rep. 2017;7(1):4475.
  • Gizzi AS, Grove TL, Arnold JJ, et al. A naturally occurring antiviral ribonucleotide encoded by the human genome. Nature. 2018;558(7711):610–614.
  • Estoppey D, Lee CM, Janoschke M, et al. The natural product cavinafungin selectively interferes with Zika and dengue virus replication by inhibition of the host signal peptidase. Cell Rep. 2017;19(3):451–460.
  • Kuivanen S, Bespalov MM, Nandania J, et al. Obatoclax, saliphenylhalamide and gemcitabine inhibit Zika virus infection in vitro and differentially affect cellular signaling, transcription and metabolism. Antiviral Res. 2017;139:117–128.
  • Pryke KM, Abraham J, Sali TM, et al. A novel agonist of the TRIF pathway induces a cellular state refractory to replication of zika, chikungunya, and dengue viruses. MBio. 2017;8:3.
  • Schor S, Einav S. Repurposing of kinase inhibitors as broad-spectrum antiviral drugs. DNA Cell Biol. 2018;37(2):63–69.
  • Jin G, Wong ST. Toward better drug repositioning: prioritizing and integrating existing methods into efficient pipelines. Drug Discov Today. 2014;19(5):637–644.
  • Yang HT, Ju JH, Wong YT, et al. Literature-based discovery of new candidates for drug repurposing. Brief Bioinform. 2017;18(3):488–497.
  • Giulietti M, Righetti A, Cianfruglia L, et al. To accelerate the Zika beat: candidate design for RNA interference-based therapy. Virus Res. 2018;255:133–140.
  • Meng XY, Luo Y, Anwar MN, et al. Long non-coding RNAs: emerging and versatile regulators in host-virus interactions. Front Immunol. 2017;8:1663.
  • Hu B, Huo Y, Yang L, et al. ZIKV infection effects changes in gene splicing, isoform composition and lncRNA expression in human neural progenitor cells. Virol J. 2017;14(1):217.
  • Akiyama BM, Laurence HM, Massey AR, et al. Zika virus produces noncoding RNAs using a multi-pseudoknot structure that confounds a cellular exonuclease. Science. 2016;354(6316):1148–1152.
  • Goertz GP, Abbo SR, Fros JJ, et al. Functional RNA during Zika virus infection. Virus Res. 2017;254:41–53..
  • Drury RE, O’Connor D, Pollard AJ. The clinical application of microRNAs in infectious disease. Front Immunol. 2017;8:1182.
  • Bruzzoni-Giovanelli H, Alezra V, Wolff N, et al. Interfering peptides targeting protein-protein interactions: the next generation of drugs? Drug Discov Today. 2018;23(2):272–285.
  • Kazmirchuk T, Dick K, Burnside DJ, et al. Designing anti-Zika virus peptides derived from predicted human-Zika virus protein-protein interactions. Comput Biol Chem. 2017;71:180–187.
  • Hermann T. Small molecules targeting viral RNA. Wiley Interdiscip Rev RNA. 2016;7(6):726–743.
  • Connelly CM, Moon MH, Schneekloth JS Jr. The emerging role of RNA as a therapeutic target for small molecules. Cell Chem Biol. 2016;23(9):1077–1090.
  • Sperandio S, Barat C, Cabrita MA, et al. TOE1 is an inhibitor of HIV-1 replication with cell-penetrating capability. Proc Natl Acad Sci U S A. 2015;112(26):E3392–401.
  • Warfield KL, Warren TK, Qiu X, et al. Assessment of the potential for host-targeted iminosugars UV-4 and UV-5 activity against filovirus infections in vitro and in vivo. Antiviral Res. 2017;138:22–31.
  • Watanabe M, Buth JE, Vishlaghi N, et al. Self-organized cerebral organoids with human-specific features predict effective drugs to combat Zika virus infection. Cell Rep. 2017;21(2):517–532.
  • Osuna CE, Whitney JB. Nonhuman primate models of Zika virus infection, immunity, and therapeutic development. J Infect Dis. 2017;216(suppl_10):S928–s34.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.