348
Views
15
CrossRef citations to date
0
Altmetric
Review

Preventing acute kidney injury during transplantation: the application of novel oxygen carriers

ORCID Icon, , , , , , , , , , , , & ORCID Icon show all
Pages 643-657 | Received 15 Feb 2019, Accepted 02 Jun 2019, Published online: 11 Jun 2019

References

  • Rosengard BR, Feng S, Alfrey EJ, et al. Report of the Crystal City meeting to maximize the use of organs recovered from the cadaver donor. Am J Transplant Off J Am Soc Transplant Am Soc. 2002;2:701–711.
  • Meier-Kriesche H-U, Schold JD, Srinivas TR, et al. Lack of improvement in renal allograft survival despite a marked decrease in acute rejection rates over the most recent era. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg. 2004;4:378–383.
  • Mannon RB. Delayed graft function: the AKI of kidney transplantation. Nephron. 2018;140:94–98.
  • Ferenbach DA, Bonventre JV. Acute kidney injury and chronic kidney disease: from the laboratory to the clinic. Nephrol Ther. 2016;12(Suppl 1):S41–48.
  • Saat TC, van Den Akker EK, IJzermans JNM, et al. Improving the outcome of kidney transplantation by ameliorating renal ischemia reperfusion injury: lost in translation?. J Transl Med. 2016;14. DOI:10.1186/s12967-016-0767-2.
  • Opelz G, Döhler B. Multicenter analysis of kidney preservation. Transplantation. 2007;83:247–253.
  • O’Callaghan JM, Knight SR, Morgan RD, et al. Preservation solutions for static cold storage of kidney allografts: a systematic review and meta-analysis. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg. 2012;12:896–906.
  • Debout A, Foucher Y, Trébern-Launay K, et al. Each additional hour of cold ischemia time significantly increases the risk of graft failure and mortality following renal transplantation. Kidney Int. 2015;87:343–349.
  • Evans RG, Gardiner BS, Smith DW, et al. Intrarenal oxygenation: unique challenges and the biophysical basis of homeostasis. Am J Physiol Renal Physiol. 2008;295:F1259–1270.
  • Ow CPC, Ngo JP, Ullah MM, et al. Renal hypoxia in kidney disease: cause or consequence? Acta Physiol Oxf Eng. 2018;222:e12999.
  • Bon D, Chatauret N, Giraud S, et al. New strategies to optimize kidney recovery and preservation in transplantation. Nat Rev Nephrol. 2012;8:339–347.
  • Ivanovic Z. Stem cell evolutionary paradigm and cell engineering. Transfus Clin Biol J Soc Francaise Transfus Sang. 2017;24:251–255.
  • Chouchani ET, Pell VR, Gaude E, et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature. 2014;515:431–435.
  • Wong H-S, Dighe PA, Mezera V, et al. Production of superoxide and hydrogen peroxide from specific mitochondrial sites under different bioenergetic conditions. J Biol Chem. 2017;292:16804–16809.
  • van Golen RF, Reiniers MJ, Vrisekoop N, et al. The mechanisms and physiological relevance of glycocalyx degradation in hepatic ischemia/reperfusion injury. Antioxid Redox Signal. 2014;21:1098–1118.
  • Zandarashvili L, Iwahara J. Temperature dependence of internal motions of protein side-chain NH3(+) groups: insight into energy barriers for transient breakage of hydrogen bonds. Biochemistry. 2015;54:538–545.
  • Dias CL, Ala-Nissila T, Wong-Ekkabut J, et al. The hydrophobic effect and its role in cold denaturation. Cryobiology. 2010;60:91–99.
  • de Meyer F, Smit B. Effect of cholesterol on the structure of a phospholipid bilayer. Proc Natl Acad Sci U S A. 2009;106:3654–3658.
  • Fyfe PK, McAuley KE, Roszak AW, et al. Probing the interface between membrane proteins and membrane lipids by X-ray crystallography. Trends Biochem Sci. 2001;26:106–112.
  • Neely JR, Grotyohann LW. Role of glycolytic products in damage to ischemic myocardium. Dissociation of adenosine triphosphate levels and recovery of function of reperfused ischemic hearts. Circ Res. 1984;55:816–824.
  • Macknight AD, Leaf A. Regulation of cellular volume. Physiol Rev. 1977;57:510–573.
  • Fleury C, Mignotte B, Vayssiere JL. Mitochondrial reactive oxygen species in cell death signaling. Biochimie. 2002;84:131–141.
  • Eltzschig HK, Eckle T. Ischemia and reperfusion–from mechanism to translation. Nat Med. 2012;17:1391–1401.
  • Giraud S, Steichen C, Couturier P, et al. Influence of hypoxic preservation temperature on endothelial cells and kidney integrity. n.d.
  • Le Pape S, Pasini-Chabot O, Couturier P, et al. Decoding cold ischaemia time impact on kidney graft: the kinetics of the unfolded protein response pathways. Artif Cells Nanomed Biotechnol. 2018;1–13. DOI:10.1080/21691401.2018.1518908.
  • Thuillier R, Hauet T. Impact of hypothermia and oxygen deprivation on the cytoskeleton in organ preservation models. BioMed Res Int. 2018;2018:8926724.
  • Jochmans I, Nicholson ML, Hosgood SA. Kidney perfusion: some like it hot others prefer to keep it cool. Curr Opin Organ Transplant. 2017;22:260–266.
  • Cicco G, Panzera PC, Catalano G, et al. Microcirculation and reperfusion injury in organ transplantation. Adv Exp Med Biol. 2005;566:363–373.
  • Eirin A, Zhu X-Y, Urbieta-Caceres VH, et al. Persistent kidney dysfunction in swine renal artery stenosis correlates with outer cortical microvascular remodeling. Am J Physiol Renal Physiol. 2011;300:F1394–1401.
  • Maïga S, Allain G, Hauet T, et al. Renal auto-transplantation promotes cortical microvascular network remodeling in a preclinical porcine model. PloS One. 2017;12:e0181067..
  • Basile DP, Donohoe D, Roethe K, et al. Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function. Am J Physiol Renal Physiol. 2001;281:F887–899.
  • Kapitsinou PP, Haase VH. Molecular mechanisms of ischemic preconditioning in the kidney. Am J Physiol Renal Physiol. 2015;309:F821–834.
  • Rosenberger C, Pratschke J, Rudolph B, et al. Immunohistochemical detection of hypoxia-inducible factor-1α in human renal allograft biopsies. J Am Soc Nephrol. 2007;18:343–351.
  • Basile DP, Bonventre JV, Mehta R, et al. Progression after AKI: understanding maladaptive repair processes to predict and identify therapeutic treatments. J Am Soc Nephrol JASN. 2016;27:687–697.
  • Bernhardt WM, Gottmann U, Doyon F, et al. Donor treatment with a PHD-inhibitor activating HIFs prevents graft injury and prolongs survival in an allogenic kidney transplant model. Proc Natl Acad Sci U S A. 2009;106:21276–21281.
  • Rankin EB, Nam J-M, Giaccia AJ. Hypoxia: signaling the Metastatic Cascade. Trends Cancer. 2016;2:295–304.
  • Rossard L, Favreau F, Demars J, et al. Evaluation of early regenerative processes in a preclinical pig model of acute kidney injury. Curr Mol Med. 2012;12:502–505.
  • Delpech PO, Thuillier R, Le Pape S, et al. Effects of warm ischaemia combined with cold preservation on the hypoxia-inducible factor 1α pathway in an experimental renal autotransplantation model. Br J Surg. 2014;101:1739–1750.
  • Rossard L, Favreau F, Giraud S, et al. Role of warm ischemia on innate and adaptive responses in a preclinical renal auto-transplanted porcine model. J Transl Med. 2013;11:129.
  • Hamar M, Selzner M. Ex-vivo machine perfusion for kidney preservation. Curr Opin Organ Transplant. 2018;23:369–374.
  • Moers C, Smits JM, Maathuis MH, et al. Machine perfusion or cold storage in deceased-donor kidney transplantation. N Engl J Med. 2009;360:7–19.
  • Jochmans I, Moers C, Smits JM, et al. Machine perfusion versus cold storage for the preservation of kidneys donated after cardiac death: a multicenter, randomized, controlled trial. Ann Surg. 2011;252:756–764.
  • Chatauret N, Coudroy R, Delpech PO, et al. Mechanistic analysis of nonoxygenated hypothermic machine perfusion’s protection on warm ischemic kidney uncovers greater eNOS phosphorylation and vasodilation. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg. 2014;14:2500–2514..
  • Yong C, Hosgood SA, Nicholson ML. Ex-vivo normothermic perfusion in renal transplantation: past, present and future. Curr Opin Organ Transplant. 2016;21:301–307.
  • Treckmann J, Moers C, Smits JM, et al. Machine perfusion in clinical trials: “machine vs. solution effects.”. Transpl Int Off J Eur Soc Organ Transplant. 2012;25:e69–70.
  • Valero R, Cabrer C, Oppenheimer F, et al. Normothermic recirculation reduces primary graft dysfunction of kidneys obtained from non-heart-beating donors. Transpl Int. 2000;13:303–310.
  • Barrou B, Billault C, Nicolas-Robin A. The use of extracorporeal membranous oxygenation in donors after cardiac death. Curr Opin Organ Transplant. 2013;18:148–153.
  • Demiselle J, Augusto J-F, Videcoq M, et al. Transplantation of kidneys from uncontrolled donation after circulatory determination of death: comparison with brain death donors with or without extended criteria and impact of normothermic regional perfusion. Transpl Int Off J Eur Soc Organ Transplant. 2016;29:432–442.
  • Hosgood SA, Nicholson HFL, Nicholson ML. Oxygenated Kidney Preservation Techniques. Transplantation. 2012;93:455–459.
  • Ross H, Escott ML. Gaseous oxygen perfusion of the renal vessels as an adjunct in kidney preservation. Transplantation. 1979;28:362–364.
  • Snell ME, Hopkinson WI. Studies on the preservation of kidneys under hyperbaric oxygen after significant warm ischemia. Transplant Proc. 1974;6:275–277.
  • Treckmann JW, Paul A, Saad S, et al. Primary organ function of warm ischaemically damaged porcine kidneys after retrograde oxygen persufflation. Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc - Eur Ren Assoc. 2006;21:1803–1808.
  • Minor T, Paul A, Efferz P, et al. Kidney transplantation after oxygenated machine perfusion preservation with Custodiol-N solution. Transpl Int Off J Eur Soc Organ Transplant. 2015;28:1102–1108.
  • Quin RO, Calman KC, Hopkinson I, et al. Hyperbaric hypothermic perfusion preservation of ischaemic kidneys. Proc Eur Dial Transplant Assoc Eur Dial Transpl Assoc. 1973;10:479–486.
  • Brasile L, DelVecchio P, Amyot K, et al. Organ preservation without extreme hypothermia using an Oxygen supplemented perfusate. Artif Cells Blood Substitutes Immobilization Biotechnol. 1994;22:1463–1468.
  • Treckmann J, Nagelschmidt M, Minor T, et al. Function and quality of kidneys after cold storage, machine perfusion, or retrograde oxygen persufflation: results from a porcine autotransplantation model. Cryobiology. 2009;59:19–23.
  • Gallinat A, Paul A, Efferz P, et al. Role of oxygenation in hypothermic machine perfusion of kidneys from heart beating donors. Transplantation. 2012;94:809–813.
  • Giraud S, Favreau F, Chatauret N, et al. Contribution of large pig for renal ischemia-reperfusion and transplantation studies: the preclinical model. J Biomed Biotechnol. 2011;2011:532127.
  • Thuillier R, Allain G, Celhay O, et al. Benefits of active oxygenation during hypothermic machine perfusion of kidneys in a preclinical model of deceased after cardiac death donors. J Surg Res. 2013;184:1174–1181.
  • O’Callaghan JM, Pall KT, Pengel LHM. Consortium for Organ preservation in Europe (COPE). Supplemental oxygen during hypothermic kidney preservation: A systematic review. Transplant Rev Orlando Fla. 2017;31:172–179. .
  • Kron P, Schlegel A, de Rougemont O, et al. Short, cool, and well oxygenated - HOPE for kidney transplantation in a rodent model. Ann Surg. 2016;264:815–822.
  • van Rijn R, Karimian N, Matton APM, et al. Dual hypothermic oxygenated machine perfusion in liver transplants donated after circulatory death. Br J Surg. 2017;104:907–917.
  • Ravaioli M, De Pace V, Comai G, et al. Successful dual kidney transplantation after hypothermic oxygenated perfusion of discarded human kidneys. Am J Case Rep. 2017;18:1009–1013.
  • Darius T, Gianello P, Vergauwen M, et al. The effect on early renal function of various dynamic preservation strategies in a preclinical pig ischemia-reperfusion autotransplant model. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg. 2019;19:752–762.
  • Watson CJE, Kosmoliaptsis V, Randle LV, et al. Normothermic perfusion in the assessment and preservation of declined livers before transplantation: hyperoxia and vasoplegia-important lessons from the first 12 cases. Transplantation. 2017;101:1084–1098.
  • Jochmans I, Akhtar MZ, Nasralla D, et al. Past, present, and future of dynamic kidney and liver preservation and resuscitation. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg. 2016;16:2545–2555.
  • Kaths JM, Paul A, Robinson LA, et al. Ex vivo machine perfusion for renal graft preservation. Transplant Rev Orlando Fla. 2018;32:1–9.
  • von Horn C, Baba HA, Hannaert P, et al. Controlled oxygenated rewarming up to normothermia for pretransplant reconditioning of liver grafts. Clin Transplant. 2017;31. DOI:10.1111/ctr.13101.
  • Gilbo N, Monbaliu D. Temperature and oxygenation during organ preservation: friends or foes? Curr Opin Organ Transplant. 2017;22:290–299.
  • Minor T, Sutschet K, Witzke O, et al. Prediction of renal function upon reperfusion by ex situ controlled oxygenated rewarming. Eur J Clin Invest. 2016;46:1024–1030.
  • Hosgood SA, Barlow AD, Yates PJ, et al. A pilot study assessing the feasibility of a short period of normothermic preservation in an experimental model of non heart beating donor kidneys. J Surg Res. 2010;171:283–290.
  • Hosgood SA, Nicholson ML. The first clinical case of intermediate ex vivo normothermic perfusion in renal transplantation. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg. 2014;14:1690–1692.
  • Czigany Z, Bleilevens C, Beckers C, et al. Limb remote ischemic conditioning of the recipient protects the liver in a rat model of arterialized orthotopic liver transplantation. PloS One. 2018;13:e0195507.
  • Matsumoto S, Kuroda Y. Perfluorocarbon for organ preservation before transplantation. Transplantation. 2002;74:1804–1809.
  • Kakehata J, Yamaguchi T, Togashi H, et al. Therapeutic potentials of an artificial oxygen-carrier, liposome-encapsulated hemoglobin, for ischemia/reperfusion-induced cerebral dysfunction in rats. J Pharmacol Sci. 2010;114:189–197.
  • Spahn DR, Kocian R. Artificial O2 carriers: status in 2005. Curr Pharm Des. 2005;11:4099–4114.
  • Regner KR, Nilakantan V, Ryan RP, et al. Protective effect of Lifor solution in experimental renal ischemia-reperfusion injury. J Surg Res. 2010;164:e291–7.
  • Amberson WR, Mulder AG, Steggerda FR, et al. Mammalian life without red blood corpuscles. Science. 1933;78:106–107.
  • Amberson WR, Jennings JJ, Rhode CM. Clinical experience with hemoglobin-saline solutions. J Appl Physiol. 1949;1:469–489.
  • Riess JG. Oxygen carriers (“blood substitutes”)–raison d’etre, chemistry, and some physiology. Chem Rev. 2001;101:2797–2920.
  • Lok C. Blood product from cattle wins approval for use in humans. Nature. 2001;410:855.
  • Looker D, Abbott-Brown D, Cozart P, et al. A human recombinant haemoglobin designed for use as a blood substitute. Nature. 1992;356:258–260.
  • Batra S, Keipert PE, Bradley JD, et al. Use of a PFC-based oxygen carrier to lower the transfusion trigger in a canine model of hemodilution and surgical blood loss. Adv Exp Med Biol. 1997;411:377–381.
  • Everse J, Hsia N. The toxicities of native and modified hemoglobins. Free Radic Biol Med. 1997;22:1075–1099.
  • D’Agnillo F, Chang TM. Polyhemoglobin-superoxide dismutase-catalase as a blood substitute with antioxidant properties. Nat Biotechnol. 1998;16:667–671.
  • Doherty DH, Doyle MP, Curry SR, et al. Rate of reaction with nitric oxide determines the hypertensive effect of cell-free hemoglobin. Nat Biotechnol. 1998;16:672–676.
  • Jahr JS, Nesargi SB, Lewis K, et al. Blood substitutes and oxygen therapeutics: an overview and current status. Am J Ther. 2002;9:437–443.
  • Sage M, Nadeau M, Forand-Choinière C, et al. Assessing the impacts of total liquid ventilation on left ventricular diastolic function in a model of neonatal respiratory distress syndrome. PloS One. 2018;13:e0191885.
  • Nadeau M, Sage M, Kohlhauer M, et al. optimal control of inspired perfluorocarbon temperature for ultrafast hypothermia induction by total liquid ventilation in an adult patient model. IEEE Trans Biomed Eng. 2017;64:2760–2770.
  • Jahr JS, Guinn NR, Lowery DR, et al. Blood substitutes and oxygen therapeutics: a review. Anesth Analg. 2019. DOI:10.1213/ANE.0000000000003957
  • Jahr JS, Mackenzie C, Pearce LB, et al. HBOC-201 as an alternative to blood transfusion: efficacy and safety evaluation in a multicenter phase III trial in elective orthopedic surgery. J Trauma. 2008;64:1484–1497.
  • Vogel T, Brockmann JG, Coussios C, et al. The role of normothermic extracorporeal perfusion in minimizing ischemia reperfusion injury. Transplant Rev Orlando Fla. 2012;26:156–162.
  • Fontes P, Lopez R, van der Plaats A, et al. Liver preservation with machine perfusion and a newly developed cell-free oxygen carrier solution under subnormothermic conditions. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg. 2015;15:381–394.
  • Laing RW, Bhogal RH, Wallace L, et al. The use of an acellular oxygen carrier in a human liver model of normothermic machine perfusion. Transplantation. 2017;101:2746–2756.
  • Matton APM, Burlage LC, van Rijn R, et al. Normothermic machine perfusion of donor livers without the need for human blood products. Liver Transplant Off Publ Am Assoc Study Liver Dis Int Liver Transplant Soc. 2018;24:528–538.
  • Sakai H, Horinouchi H, Tomiyama K, et al. Hemoglobin-vesicles as oxygen carriers: influence on phagocytic activity and histopathological changes in reticuloendothelial system. Am J Pathol. 2001;159:1079–1088.
  • Sakai H, Tomiyama KI, Sou K, et al. Poly(ethylene glycol)-conjugation and deoxygenation enable long-term preservation of hemoglobin-vesicles as oxygen carriers in a liquid state. Bioconjug Chem. 2000;11:425–432.
  • Izumi Y, Sakai H, Hamada K, et al. Physiologic responses to exchange transfusion with hemoglobin vesicles as an artificial oxygen carrier in anesthetized rats: changes in mean arterial pressure and renal cortical tissue oxygen tension. Crit Care Med. 1996;24:1869–1873.
  • Shonaka T, Matsuno N, Obara H, et al. Application of perfusate with human-derived oxygen carrier solution under subnormothermic machine perfusion for donation after cardiac death liver grafts in pigs. Transplant Proc. 2018;50:2821–2825.
  • Zal F, Toulmond A, Lallier F Utilisation comme substitut sanguin d’une hemoglobine extracellulaire de poids moleculaire eleve. WO2001092320A2, 2001.
  • Zal F, Green BN, Lallier FH, et al. Quaternary structure of the extracellular haemoglobin of the lugworm Arenicola marina: a multi-angle-laser-light-scattering and electrospray-ionisation-mass-spectrometry analysis. Eur J Biochem. 1997;243:85–92.
  • Lamy JN, Green BN, Toulmond A, et al. Giant hexagonal bilayer hemoglobins. Chem Rev. 1996;96:3113–3124.
  • Rousselot M, Delpy E, Drieu La Rochelle C, et al. Arenicola marina extracellular hemoglobin: a new promising blood substitute. Biotechnol J. 2006;1:333–345..
  • Tsai AG, Intaglietta M, Sakai H, et al. Microcirculation and NO-CO studies of a natural extracellular hemoglobin developed for an oxygen therapeutic carrier. Curr Drug Discov Technol. 2012;9:166–172.
  • Le Gall T, Polard V, Rousselot M, et al. In vivo biodistribution and oxygenation potential of a new generation of oxygen carrier. J Biotechnol. 2014;187:1–9.
  • Mallet V, Dutheil D, Polard V, et al. Dose-ranging study of the performance of the natural oxygen transporter HEMO2 Life in organ preservation. Artif Organs. 2014;38:691–701.
  • Glorion M, Polard V, Favereau F, et al. Prevention of ischemia-reperfusion lung injury during static cold preservation by supplementation of standard preservation solution with HEMO2life® in pig lung transplantation model. Artif Cells Nanomed Biotechnol. 2017:1–8. DOI:10.1080/21691401.2017.1392315
  • Teh ES, Zal F, Polard V, et al. HEMO2life as a protective additive to Celsior solution for static storage of donor hearts prior to transplantation. Artif Cells Nanomed Biotechnol. 2017;45:717–722. .
  • Thuillier R, Dutheil D, Trieu MTN, et al. Supplementation with a new therapeutic oxygen carrier reduces chronic fibrosis and organ dysfunction in kidney static preservation. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg. 2011;11:1845–1860..
  • Lantieri L, Grimbert P, Ortonne N, et al. Facial transplantation: facing the limits, planning the future. Lancet Lond Engl. 2017;389:1293–1294.
  • Pan D, Rogers S, Misra S, et al. Erythromer (EM), a nanoscale bio-synthetic artificial red cell: proof of concept and in vivo efficacy results. Blood. 2016;128:1027.
  • Mot AC, Roman A, Lupan I, et al. Towards the development of hemerythrin-based blood substitutes. Protein J. 2010;29:387–393.
  • Bhattacharjee RN, Ruthirakanthan A, Sun Q, et al. Subnormothermic oxygenated perfusion optimally preserves donor kidneys ex vivo. Kidney Int Rep. 2019. DOI:10.1016/j.ekir.2019.05.013.
  • Gage F, Leeser DB, Porterfield NK, et al. Room temperature pulsatile perfusion of renal allografts with Lifor compared with hypothermic machine pump solution. Transplant Process. 2009;41:3571–3574.
  • Mouré A, Bacou E, Bosch S, et al. Extracellular hemoglobin combined with an O2 -generating material overcomes O2 limitation in the bioartificial pancreas. Biotechnol Bioeng. 2018. DOI:10.1002/bit.26913.
  • de Vries Y, Matton APM, Nijsten MWN, et al. Pretransplant sequential hypo- and normothermic machine perfusion of suboptimal livers donated after circulatory death using a hemoglobin-based oxygen carrier perfusion solution. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg. 2018. DOI:10.1111/ajt.15228.
  • Steichen C, Giraud S, Bon D, et al. Barriers and advances in kidney preservation. BioMed Res Int. 2018.
  • Liu J, Wei Q, Guo C, et al. Hypoxia, HIF, and associated signaling networks in chronic kidney disease. Int J Mol Sci. 2017;18. DOI:10.3390/ijms18050950.
  • Situmorang GR, Sheerin NS. Ischaemia reperfusion injury: mechanisms of progression to chronic graft dysfunction. Pediatr Nephrol (Berlin, Germany). 2018. DOI:10.1007/s00467-018-3940-4
  • Zuk A, Bonventre JV. Acute Kidney Injury. Annu Rev Med. 2016;67:293–307.
  • Groen H, Moers C, Smits JM, et al. Cost-effectiveness of hypothermic machine preservation versus static cold storage in renal transplantation. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg. 2012;12:1824–1830.
  • Kaminski J, Hannaert P, Kasil A, et al. Efficacy of the natural oxygen transporter hemo2life® in cold preservation in a preclinical porcine model of donation after cardiac death. Transpl Int Off J Eur Soc Organ Transplant. 2019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.