756
Views
13
CrossRef citations to date
0
Altmetric
Review

Investigative drugs for the treatment of cutaneous T-cell lymphomas (CTCL): an update

, &
Pages 799-809 | Received 14 Jun 2019, Accepted 08 Aug 2019, Published online: 18 Aug 2019

  • Willemze R, Cerroni L, Kempf W, et al. The 2018 update of the WHO-EORTC classification for primary cutaneous lymphomas. Blood. 2019 Jan 11. PubMed PMID: 30635287. DOI:10.1182/blood-2018-11-881268.
  • Girardi M, Heald PW, Wilson LD. The pathogenesis of mycosis fungoides. N Engl J Med. 2004 May 6;350(19):1978–1988. PubMed PMID: 15128898. .
  • Campbell JJ, Clark RA, Watanabe R, et al. Sezary syndrome and mycosis fungoides arise from distinct T-cell subsets: a biologic rationale for their distinct clinical behaviors. Blood. 2010 Aug 5;116(5):767–771. PubMed PMID: 20484084; PubMed Central PMCID: PMCPMC2918332.
  • Mangold AR, Thompson AK, Davis MD, et al. Early clinical manifestations of Sezary syndrome: A multicenter retrospective cohort study. J Am Acad Dermatol. 2017 Oct;77(4):719–727. PubMed PMID: 28709694.
  • Willemze R, Jaffe ES, Burg G, et al. WHO-EORTC classification for cutaneous lymphomas. Blood. 2005 May 15;105(10):3768–3785. 10.1182/blood-2004-09-3502. PubMed PMID: 15692063.
  • Bruggen MC, Kerl K, Haralambieva E, et al. Aggressive rare T-cell lymphomas with manifestation in the skin: a monocentric cross-sectional case study. Acta Derm Venereol. 2018 Oct 10;98(9):835–841. PubMed PMID: 29693696.
  • Guenova E, Schanz S, Hoetzenecker W, et al. Systemic corticosteroids for subcutaneous panniculitis-like T-cell lymphoma. Br J Dermatol. 2014 Oct;171(4):891–894. PubMed PMID: 24725144.
  • Jawed SI, Myskowski PL, Horwitz S, et al. Primary cutaneous T-cell lymphoma (mycosis fungoides and Sezary syndrome): part I. Diagnosis: clinical and histopathologic features and new molecular and biologic markers. J Am Acad Dermatol. 2014 Feb;70(2):205 e1–16; quiz 221–2. PubMed PMID: 24438969.
  • Guenova E, Watanabe R, Teague JE, et al. TH2 cytokines from malignant cells suppress TH1 responses and enforce a global TH2 bias in leukemic cutaneous T-cell lymphoma. Clin Cancer Res. 2013 Jul 15;19(14):3755–3763. PubMed PMID: 23785046; PubMed Central PMCID: PMCPMC3715586.
  • Lessin SR, Vowels BR, Rook AH. Th2 cytokine profile in cutaneous T-cell lymphoma. J Invest Dermatol. 1995 Dec;105(6):855–856. PubMed PMID: 7490483.
  • Dummer R, Heald PW, Nestle FO, et al. Sezary syndrome T-cell clones display T-helper 2 cytokines and express the accessory factor-1 (interferon-gamma receptor beta-chain). Blood. 1996 Aug 15;88(4):1383–1389. PubMed PMID: 8695857.
  • Krejsgaard T, Lindahl LM, Mongan NP, et al. Malignant inflammation in cutaneous T-cell lymphoma-a hostile takeover. Semin Immunopathol. 2017 Apr;39(3):269–282. PubMed PMID: 27717961; PubMed Central PMCID: PMCPMC5368200.
  • Talpur R, Singh L, Daulat S, et al. Long-term outcomes of 1,263 patients with mycosis fungoides and Sezary syndrome from 1982 to 2009. Clin Cancer Res. 2012 Sep 15;18(18):5051–5060. CCR-12-0604. PubMed PMID: 22850569; PubMed Central PMCID: PMCPMC3857608.
  • Scarisbrick JJ, Quaglino P, Prince HM, et al. The PROCLIPI international registry of early-stage mycosis fungoides identifies substantial diagnostic delay in most patients. Br J Dermatol. 2018 Sep 29. PubMed PMID: 30267549. DOI:10.1111/bjd.17258.
  • Scarisbrick JJ, Prince HM, Vermeer MH, et al. Cutaneous lymphoma international consortium study of outcome in advanced stages of mycosis fungoides and sezary syndrome: effect of specific prognostic markers on survival and development of a prognostic model. J Clin Oncol. 2015 Nov 10;33(32):3766–3773. PubMed PMID: 26438120; PubMed Central PMCID: PMCPMC4979132.
  • Trautinger F, Eder J, Assaf C, et al. European organisation for research and treatment of cancer consensus recommendations for the treatment of mycosis fungoides/Sezary syndrome - Update 2017. Eur J Cancer. 2017 May;77:57–74. PubMed PMID: 28365528.
  • DeSimone JA, Sodha P, Ignatova D, et al. Recent advances in primary cutaneous T-cell lymphoma. Curr Opin Oncol. 2015 Mar;27(2):128–133. PubMed PMID: 25594623.
  • Quaglino P, Maule M, Prince HM, et al. Global patterns of care in advanced stage mycosis fungoides/Sezary syndrome: a multicenter retrospective follow-up study from the cutaneous lymphoma international consortium. Ann Oncol. 2019 Mar 1;30(3):494. PubMed PMID: 29947731.
  • Mempel M, Kalali BN, Ollert M, et al. Toll-like receptors in dermatology. Dermatol Clin. 2007 Oct;25(4):531–40, viii. PubMed PMID: 17903612.
  • Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. A human homologue of the drosophila toll protein signals activation of adaptive immunity. Nature. 1997 Jul 24;388(6640):394–397. PubMed PMID: 9237759. .
  • Gorden KB, Gorski KS, Gibson SJ, et al. Synthetic TLR agonists reveal functional differences between human TLR7 and TLR8. J Immunol. 2005 Feb 1;174(3):1259–1268. PubMed PMID: 15661881.
  • Urosevic M, Dummer R, Conrad C, et al. Disease-independent skin recruitment and activation of plasmacytoid predendritic cells following imiquimod treatment. J Natl Cancer Inst. 2005 Aug 3;97(15):1143–1153. PubMed PMID: 16077073.
  • Ganguly D, Chamilos G, Lande R, et al. Self-RNA-antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8. J Exp Med. 2009 Aug 31;206(9):1983–1994. PubMed PMID: 19703986; PubMed Central PMCID: PMCPMC2737167.
  • Dummer R, Urosevic M, Kempf W, et al. Imiquimod induces complete clearance of a PUVA-resistant plaque in mycosis fungoides. Dermatology. 2003;207(1):116–118. PubMed PMID: 12835571 .
  • Shalabi D, Bistline A, Alpdogan O, et al. Immune evasion and current immunotherapy strategies in mycosis fungoides (MF) and Sezary syndrome (SS). Chin Clin Oncol. 2019 Feb;8(1):11. PubMed PMID: 30691274.
  • Rook AH, Gelfand JM, Wysocka M, et al. Topical resiquimod can induce disease regression and enhance T-cell effector functions in cutaneous T-cell lymphoma. Blood. 2015 Sep 17;126(12):1452–1461. PubMed PMID: 26228486; PubMed Central PMCID: PMCPMC4573868.
  • Gul N, van Egmond M. Antibody-dependent phagocytosis of tumor cells by macrophages: a potent effector mechanism of monoclonal antibody therapy of cancer. Cancer Res. 2015 Dec 1;75(23):5008–5013. PubMed PMID: 26573795. .
  • Sliwkowski MX, Mellman I. Antibody therapeutics in cancer. Science. 2013 Sep 13;341(6151):1192–1198. PubMed PMID: 24031011. .
  • Rogers LM, Veeramani S, Weiner GJ. Complement in monoclonal antibody therapy of cancer. Immunol Res. 2014 Aug;59(1–3):203–210. PubMed PMID: 24906530; PubMed Central PMCID: PMCPMC4381956. .
  • Lin S, Gregory RI. MicroRNA biogenesis pathways in cancer. Nat Rev Cancer. 2015 Jun;15(6):321–333. PubMed PMID: 25998712; PubMed Central PMCID: PMCPMC4859809. .
  • Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005 Jan 14;120(1):15–20. PubMed PMID: 15652477. .
  • Tili E, Michaille JJ, Wernicke D, et al. Mutator activity induced by microRNA-155 (miR-155) links inflammation and cancer. Proc Natl Acad Sci U S A. 2011 Mar 22;108(12):4908–4913. PubMed PMID: 21383199; PubMed Central PMCID: PMCPMC3064319.
  • O’Connell RM, Rao DS, Chaudhuri AA, et al. Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J Exp Med. 2008 Mar 17;205(3):585–594. PubMed PMID: 18299402; PubMed Central PMCID: PMCPMC2275382.
  • El-Khazragy N, Noshi MA, Abdel-Malak C, et al. miRNA-155 and miRNA-181a as prognostic biomarkers for pediatric acute lymphoblastic leukemia. J Cell Biochem. 2019 Apr;120(4):6315–6321. PubMed PMID: 30362157.
  • Kluiver J, Poppema S, de Jong D, et al. BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J Pathol. 2005 Oct;207(2):243–249. PubMed PMID: 16041695.
  • Ralfkiaer U, Lindahl LM, Litman T, et al. MicroRNA expression in early mycosis fungoides is distinctly different from atopic dermatitis and advanced cutaneous T-cell lymphoma. Anticancer Res. 2014 Dec;34(12):7207–7217. PubMed PMID: 25503151.
  • Fava P, Bergallo M, Astrua C, et al. miR-155 expression in primary cutaneous T-Cell Lymphomas (CTCL). J Eur Acad Dermatol Venereol. 2017 Jan;31(1):e27–e29. PubMed PMID: 26935979.
  • Seto AG, Beatty X, Lynch JM, et al. Cobomarsen, an oligonucleotide inhibitor of miR-155, co-ordinately regulates multiple survival pathways to reduce cellular proliferation and survival in cutaneous T-cell lymphoma. Br J Haematol. 2018 Nov;183(3):428–444. PubMed PMID: 30125933. .
  • Matlung HL, Szilagyi K, Barclay NA, et al. The CD47-SIRPalpha signaling axis as an innate immune checkpoint in cancer. Immunol Rev. 2017 Mar;276(1):145–164. PubMed PMID: 28258703.
  • Chao MP, Alizadeh AA, Tang C, et al. Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. Cell. 2010 Sep 3;142(5):699–713. PubMed PMID: 20813259; PubMed Central PMCID: PMCPMC2943345.
  • Willingham SB, Volkmer JP, Gentles AJ, et al. The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc Natl Acad Sci U S A. 2012 Apr 24;109(17):6662–6667. PubMed PMID: 22451913; PubMed Central PMCID: PMCPMC3340046.
  • Querfeld C, Thompson J, Taylor M, et al. A single direct intratumoral injection of TTI-621 (SIRPαFc) induces antitumor activity in patients with relapsed/refractory mycosis fungoides and sézary syndrome: preliminary findings employing an immune checkpoint inhibitor blocking the CD47 “Do Not Eat” signal. Blood. 2017;130(Suppl 1):4076.
  • Chan AT, Kollnberger SD, Wedderburn LR, et al. Expansion and enhanced survival of natural killer cells expressing the killer immunoglobulin-like receptor KIR3DL2 in spondylarthritis. Arthritis Rheum. 2005 Nov;52(11):3586–3595. PubMed PMID: 16255049.
  • Poszepczynska-Guigne E, Schiavon V, D’Incan M, et al. CD158k/KIR3DL2 is a new phenotypic marker of Sezary cells: relevance for the diagnosis and follow-up of Sezary syndrome. J Invest Dermatol. 2004 Mar;122(3):820–823. PubMed PMID: 15086570.
  • Battistella M, Leboeuf C, Ram-Wolff C, et al. KIR3DL2 expression in cutaneous T-cell lymphomas: expanding the spectrum for KIR3DL2 targeting. Blood. 2017 Dec 28;130(26):2900–2902. PubMed PMID: 29089310.
  • Hurabielle C, Thonnart N, Ram-Wolff C, et al. Usefulness of KIR3DL2 to diagnose, follow-up, and manage the treatment of patients with sezary syndrome. Clin Cancer Res. 2017 Jul 15;23(14):3619–3627. 10.1158/1078-0432.CCR-16-3185. PubMed PMID: 28119365.
  • Marie-Cardine A, Viaud N, Thonnart N, et al. IPH4102, a humanized KIR3DL2 antibody with potent activity against cutaneous T-cell lymphoma. Cancer Res. 2014 Nov 1;74(21):6060–6070. PubMed PMID: 25361998.
  • Bagot M, Porcu P, Ram-Wolff C, et al. Phase I study of IPH4102, anti-KIR3DL2 mab, in relapsed/refractory cutaneous T-cell lymphomas (CTCL): dose-escalation safety, biomarker and clinical activity results. Blood. 2017;35(S2):48–49.
  • Bagot M, Porcu P, Marie-Cardine A, et al. IPH4102, a first-in-class anti-KIR3DL2 monoclonal antibody, in patients with relapsed or refractory cutaneous T-cell lymphoma: an international, first-in-human, open-label, phase 1 trial. Lancet Oncol. 2019 Jun 25. PubMed PMID: 31253572. DOI:10.1016/S1470-2045(19)30320-1
  • Taniguchi T, Minami Y. The IL-2/IL-2 receptor system: a current overview. Cell. 1993 Apr 9;73(1):5–8. PubMed PMID: 8462103.
  • vanderSpek JC, Mindell JA, Finkelstein A, et al. Structure/function analysis of the transmembrane domain of DAB389-interleukin-2, an interleukin-2 receptor-targeted fusion toxin. The amphipathic helical region of the transmembrane domain is essential for the efficient delivery of the catalytic domain to the cytosol of target cells. J Biol Chem. 1993 Jun 5;268(16):12077–12082. PubMed PMID: 8505330.
  • Prince HM, Duvic M, Martin A, et al. Phase III placebo-controlled trial of denileukin diftitox for patients with cutaneous T-cell lymphoma. J Clin Oncol. 2010 Apr 10;28(11):1870–1877. PubMed PMID: 20212249.
  • Ohmachi K, Ando K, Ogura M, et al. E7777 in Japanese patients with relapsed/refractory peripheral and cutaneous T-cell lymphoma: A phase I study. Cancer Sci. 2018 Mar;109(3):794–802. PubMed PMID: 29363235; PubMed Central PMCID: PMCPMC5834772.
  • Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, et al. The emerging mechanisms of isoform-specific PI3K signalling. Nat Rev Mol Cell Biol. 2010 May;11(5):329–341. PubMed PMID: 20379207.
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011 Mar 4;144(5):646–674. PubMed PMID: 21376230. .
  • Kaneda MM, Messer KS, Ralainirina N, et al. PI3Kgamma is a molecular switch that controls immune suppression. Nature. 2016 Nov 17;539(7629):437–442. PubMed PMID: 27642729; PubMed Central PMCID: PMCPMC5479689.
  • Duvelisib (COPIKTRA, Verastem, Inc.) for adult patients with relapsed or refractory chronic lymphocytic leukemia (CLL) or small lymphocytic lymphoma (SLL) 2018 [cited 2019]. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/duvelisib-copiktra-verastem-inc-adult-patients-relapsed-or-refractory-chronic-lymphocytic-leukemia
  • Horwitz SM, Koch R, Porcu P, et al. Activity of the PI3K-delta,gamma inhibitor duvelisib in a phase 1 trial and preclinical models of T-cell lymphoma. Blood. 2018 Feb 22;131(8):888–898. PubMed PMID: 29233821; PubMed Central PMCID: PMCPMC5824337.
  • Ginaldi L, De Martinis M, Matutes E, et al. Levels of expression of CD52 in normal and leukemic B and T cells: correlation with in vivo therapeutic responses to Campath-1H. Leuk Res. 1998 Feb;22(2):185–191. PubMed PMID: 9593475.
  • Frampton JE, Wagstaff AJ. Alemtuzumab. Drugs. 2003;63(12):1229–43; discussion 1245–6. PubMed PMID: 12790693. .
  • Lundin J, Hagberg H, Repp R, et al. Phase 2 study of alemtuzumab (anti-CD52 monoclonal antibody) in patients with advanced mycosis fungoides/Sezary syndrome. Blood. 2003 Jun 1;101(11):4267–4272. PubMed PMID: 12543862.
  • Stewart JR, Desai N, Rizvi S, et al. Alemtuzumab is an effective third-line treatment versus single-agent gemcitabine or pralatrexate for refractory Sezary syndrome: a systematic review. Eur J Dermatol. 2018 Dec 1;28(6):764–774. PubMed PMID: 30591425.
  • Smith CA, Gruss HJ, Davis T, et al. CD30 antigen, a marker for Hodgkin’s lymphoma, is a receptor whose ligand defines an emerging family of cytokines with homology to TNF. Cell. 1993 Jul 2;73(7):1349–1360. PubMed PMID: 8391931.
  • Schwab U, Stein H, Gerdes J, et al. Production of a monoclonal antibody specific for Hodgkin and sternberg-reed cells of Hodgkin’s disease and a subset of normal lymphoid cells. Nature. 1982 Sep 2;299(5878):65–67. PubMed PMID: 7110326.
  • Stein H, Mason DY, Gerdes J, et al. The expression of the Hodgkin’s disease associated antigen Ki-1 in reactive and neoplastic lymphoid tissue: evidence that Reed-Sternberg cells and histiocytic malignancies are derived from activated lymphoid cells. Blood. 1985 Oct;66(4):848–858. PubMed PMID: 3876124.
  • Duvic M, Reddy SA, Pinter-Brown L, et al. A phase II study of SGN-30 in cutaneous anaplastic large cell lymphoma and related lymphoproliferative disorders. Clin Cancer Res off J Am Assoc Cancer Res. 2009 Oct 1;15(19):6217–6224. PubMed PMID: 19789316.
  • Kim YH, Tavallaee M, Sundram U, et al. Phase II investigator-initiated study of brentuximab vedotin in mycosis fungoides and sezary syndrome with variable CD30 expression level: a multi-institution collaborative project. J Clin Oncol. 2015 Nov 10;33(32):3750–3758. PubMed PMID: 26195720; PubMed Central PMCID: PMCPMC5089160. Author contributions are found at the end of this article: www.jco.org.
  • Prince HM, YH K, Horwitz SM, et al. Brentuximab vedotin or physician’s choice in CD30-positive cutaneous T-cell lymphoma (ALCANZA): an international, open-label, randomised, phase 3, multicentre trial. Lancet. 2017 Aug 5;390(10094):555–566. PubMed PMID: 28600132.
  • FDA. 2017. Accessed 15 May, 2019. Available from: https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm584543.htm.
  • EMA. 2017. Acessed 15 May, 2019. Available from: http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/002455/smops/Positive/human_smop_001229.jsp&mid=WC0b01ac058001d127.
  • Wang L, Ni X, Covington KR, et al. Genomic profiling of Sezary syndrome identifies alterations of key T cell signaling and differentiation genes. Nat Genet. 2015 Dec;47(12):1426–1434. PubMed PMID: 26551670; PubMed Central PMCID: PMCPMC4829974.
  • Andrew DP, Ruffing N, Kim CH, et al. C-C chemokine receptor 4 expression defines a major subset of circulating nonintestinal memory T cells of both Th1 and Th2 potential. J Immunol. 2001 Jan 1;166(1):103–111. PubMed PMID: 11123282.
  • Kakinuma T, Sugaya M, Nakamura K, et al. Thymus and activation-regulated chemokine (TARC/CCL17) in mycosis fungoides: serum TARC levels reflect the disease activity of mycosis fungoides. J Am Acad Dermatol. 2003 Jan;48(1):23–30. PubMed PMID: 12522366.
  • Duvic M, Pinter-Brown LC, Foss FM, et al. Phase 1/2 study of mogamulizumab, a defucosylated anti-CCR4 antibody, in previously treated patients with cutaneous T-cell lymphoma. Blood. 2015 Mar 19;125(12):1883–1889. PubMed PMID: 25605368; PubMed Central PMCID: PMCPMC4375715.
  • Kim YH, Bagot M, Pinter-Brown L, et al. Mogamulizumab versus vorinostat in previously treated cutaneous T-cell lymphoma (MAVORIC): an international, open-label, randomised, controlled phase 3 trial. Lancet Oncol. 2018 Sep;19(9):1192–1204. PubMed PMID: 30100375.
  • FDA approves mogamulizumab-kpkc for mycosis fungoides or Sézary syndrome. 2018. Acessed 15 May, 2019. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-mogamulizumab-kpkc-mycosis-fungoides-or-sezary-syndrome.
  • Freeman GJ, Long AJ, Iwai Y, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 2000 Oct 2;192(7):1027–1034. PubMed PMID: 11015443; PubMed Central PMCID: PMCPMC2193311.
  • Riley JL. PD-1 signaling in primary T cells. Immunol Rev. 2009 May;229(1):114–125. PubMed PMID: 19426218; PubMed Central PMCID: PMCPMC3424066. .
  • Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature. 2017 Jan 18;541(7637):321–330. PubMed PMID: 28102259. .
  • Hodi FS, Chiarion-Sileni V, Gonzalez R, et al. Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067): 4-year outcomes of a multicentre, randomised, phase 3 trial. Lancet Oncol. 2018 Nov;19(11):1480–1492. PubMed PMID: 30361170.
  • Querfeld C, Leung S, Myskowski PL, et al. Primary T cells from cutaneous T-cell lymphoma skin explants display an exhausted immune checkpoint profile. Cancer Immunol Res. 2018 Aug;6(8):900–909. PubMed PMID: 29895574; PubMed Central PMCID: PMCPMC6074045.
  • Wartewig T, Kurgyis Z, Keppler S, et al. PD-1 is a haploinsufficient suppressor of T cell lymphomagenesis. Nature. 2017 Dec 7;552(7683):121–125. PubMed PMID: 29143824; PubMed Central PMCID: PMCPMC5821214.
  • Barta SK, Zain J, MacFarlane AWT, et al. Phase II study of the PD-1 inhibitor pembrolizumab for the treatment of relapsed or refractory mature T-cell lymphoma. Clin Lymphoma Myeloma Leuk. 2019 Apr 3. PubMed PMID: 31029646. DOI:10.1016/j.clml.2019.03.022.
  • Lesokhin AM, Ansell SM, Armand P, et al. Nivolumab in patients with relapsed or refractory hematologic malignancy: preliminary results of a phase Ib study. J Clin Oncol. 2016 Aug 10;34(23):2698–2704. PubMed PMID: 27269947; PubMed Central PMCID: PMCPMC5019749. . Author contributions are found at the end of this article: www.jco.org.
  • Khodadoust M, Rook AH, Porcu P, et al. Pembrolizumab for treatment of relapsed/refractory mycosis fungoides and sezary syndrome: clinical efficacy in a citn multicenter phase 2 study. Blood. 2016;128(22):181.
  • Pelner L, Fowler GA, Nauts HC. Effects of concurrent infections and their toxins on the course of leukemia. Acta Med Scand Suppl. 1958;338:1–47. PubMed PMID: 13605619.
  • Kelly E, Russell SJ. History of oncolytic viruses: genesis to genetic engineering. Mol Ther. 2007 Apr;15(4):651–659. PubMed PMID: 17299401. .
  • Heinzerling L, Kunzi V, Oberholzer PA, et al. Oncolytic measles virus in cutaneous T-cell lymphomas mounts antitumor immune responses in vivo and targets interferon-resistant tumor cells. Blood. 2005 Oct 1;106(7):2287–2294. 10.1182/blood-2004-11-4558. PubMed PMID: 15961518.
  • Kaplan EH, Rosen ST, Norris DB, et al. Phase II study of recombinant human interferon gamma for treatment of cutaneous T-cell lymphoma. J Natl Cancer Inst. 1990 Feb 7;82(3):208–212. PubMed PMID: 2104937.
  • Dummer R, Hassel JC, Fellenberg F, et al. Adenovirus-mediated intralesional interferon-γ gene transfer induces tumor regressions in cutaneous lymphomas. J Blood. 2004;104(6):1631–1638.
  • Dummer R, Eichmuller S, Gellrich S, et al. Phase II clinical trial of intratumoral application of TG1042 (adenovirus-interferon-gamma) in patients with advanced cutaneous T-cell lymphomas and multilesional cutaneous B-cell lymphomas. Mol Ther. 2010 Jun;18(6):1244–1247. PubMed PMID: 20372104; PubMed Central PMCID: PMCPMC2889748.
  • Andtbacka RH, Kaufman HL, Collichio F, et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol. 2015 Sep 1;33(25):2780–2788. PubMed PMID: 26014293.
  • Rupoli S, Goteri G, Pulini S, et al. Long-term experience with low-dose interferon-alpha and PUVA in the management of early mycosis fungoides. Eur J Haematol. 2005 Aug;75(2):136–145. PubMed PMID: 16000130.
  • Anzengruber F, Ignatova D, Schlaepfer T, et al. Divergent LAG-3 versus BTLA, TIGIT, and FCRL3 expression in Sezary syndrome. Leuk Lymphoma. 2019 Aug;60(8):1899–1907. PubMed PMID: 30638415.
  • Ralfkiaer U, Hagedorn PH, Bangsgaard N, et al. Diagnostic microRNA profiling in cutaneous T-cell lymphoma (CTCL). Blood. 2011 Nov 24;118(22):5891–5900. PubMed PMID: 21865341; PubMed Central PMCID: PMCPMC3342856.
  • Zhang XH, Nam S, Wu J, et al. Multi-Kinase inhibitor with anti-p38gamma activity in cutaneous T-cell lymphoma. J Invest Dermatol. 2018 Nov;138(11):2377–2387. PubMed PMID: 29758280.
  • Gallardo F, Bertran J, Lopez-Arribillaga E, et al. Novel phosphorylated TAK1 species with functional impact on NF-kappaB and beta-catenin signaling in human Cutaneous T-cell lymphoma. Leukemia. 2018 Oct;32(10):2211–2223. PubMed PMID: 29511289; PubMed Central PMCID: PMCPMC6170395.
  • Kohnken R, McNeil B, Wen J, et al. Preclinical Targeting of MicroRNA-214 in Cutaneous T-Cell Lymphoma. J Invest Dermatol. 2019 Mar 12. PubMed PMID: 30876800. DOI:10.1016/j.jid.2019.01.033.
  • Froehlich TC, Muller-Decker K, Braun JD, et al. Combined inhibition of Bcl-2 and NFkappaB synergistically induces cell death and limits xenograft mouse tumor growth in CTCL. Blood. 2019 Jun 5. PubMed PMID: 31167801. DOI: 10.1182/blood.2019001545.
  • Jumbou O, N’Guyen JM, Tessier MH, et al. Long-term follow-up in 51 patients with mycosis fungoides and Sezary syndrome treated by interferon-alfa. Br J Dermatol. 1999 Mar;140(3):427–431. PubMed PMID: 10233261.
  • Duvic M, Talpur R, Wen S, et al. Phase II evaluation of gemcitabine monotherapy for cutaneous T-cell lymphoma. Clin Lymphoma Myeloma. 2006 Jul;7(1):51–58. PubMed PMID: 16879770.
  • Zinzani PL, Baliva G, Magagnoli M, et al. Gemcitabine treatment in pretreated cutaneous T-cell lymphoma: experience in 44 patients. J Clin Oncol. 2000 Jul;18(13):2603–2606. PubMed PMID: 10893292.
  • O’Connor OA, Pro B, Pinter-Brown L, et al. Pralatrexate in patients with relapsed or refractory peripheral T-cell lymphoma: results from the pivotal PROPEL study. J Clin Oncol. 2011 Mar 20;29(9):1182–1189. PubMed PMID: 21245435; PubMed Central PMCID: PMCPMC3083873.
  • Foss F, Horwitz SM, Coiffier B, et al. Pralatrexate is an effective treatment for relapsed or refractory transformed mycosis fungoides: a subgroup efficacy analysis from the PROPEL study. Clin Lymphoma Myeloma Leuk. 2012 Aug;12(4):238–243. PubMed PMID: 22542448.
  • Zackheim HS, Kashani-Sabet M, McMillan A. Low-dose methotrexate to treat mycosis fungoides: a retrospective study in 69 patients. J Am Acad Dermatol. 2003 Nov;49(5):873–878. PubMed PMID: 14576667. .
  • Duvic M, Hymes K, Heald P, et al. Bexarotene is effective and safe for treatment of refractory advanced-stage cutaneous T-cell lymphoma: multinational phase II-III trial results. J Clin Oncol. 2001 May 1;19(9):2456–2471. PubMed PMID: 11331325.
  • Duvic M, Talpur R, Ni X, et al. Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood. 2007 Jan 1;109(1):31–39. PubMed PMID: 16960145; PubMed Central PMCID: PMCPMC1785068.
  • Whittaker SJ, Demierre MF, Kim EJ, et al. Final results from a multicenter, international, pivotal study of romidepsin in refractory cutaneous T-cell lymphoma. J Clin Oncol. 2010 Oct 10;28(29):4485–4491. PubMed PMID: 20697094.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.