1,156
Views
35
CrossRef citations to date
0
Altmetric
Review

Cyclin-dependent kinase (CDK) 9 and 4/6 inhibitors in acute myeloid leukemia (AML): a promising therapeutic approach

& ORCID Icon
Pages 989-1001 | Received 08 Jul 2019, Accepted 07 Oct 2019, Published online: 22 Oct 2019

References

  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34.
  • Appelbaum FR, Gundacker H, Head DR, et al. Age and acute myeloid leukemia. Blood. 2006 05–0100:00:00;107(9):3481–3485.
  • Howlader NNA, Krapcho M, Garshell J, et al., editors. SEER cancer statistics review, 1975–2012. Bethesda, MD: National Cancer Institute. http://seer.cancer.gov/csr/1975_2012/. based on November 2014 SEER data submission, posted to the SEER web site, April 2015.
  • Dennis M, Culligan D, Karamitros D, et al. Lenalidomide monotherapy and in combination with cytarabine, daunorubicin and etoposide for high-risk myelodysplasia and acute myeloid leukaemia with chromosome 5 abnormalities. Leuk Res Rep. 2013;2(2):70–74. PubMed PMID: 24371786; PubMed Central PMCID: PMCPmc3850387. eng
  • Lancet JE, Uy GL, Cortes JE, et al. CPX-351 (cytarabine and daunorubicin) liposome for injection versus conventional cytarabine plus daunorubicin in older patients with newly diagnosed secondary acute myeloid leukemia. J Clin Oncol. 2018;36(26):2684–2692. PubMed PMID: 30024784
  • Decker RH, Dai Y, Grant S. The cyclin-dependent kinase inhibitor flavopiridol induces apoptosis in human leukemia cells (U937) through the mitochondrial rather than the receptor-mediated pathway. Cell Death Differ. 2001 Jul;8(7):715–724. PubMed PMID: 11464216; eng.
  • Cortes JE, Heidel FH, Hellmann A, et al. Randomized comparison of low dose cytarabine with or without glasdegib in patients with newly diagnosed acute myeloid leukemia or high-risk myelodysplastic syndrome. Leukemia. 2019 Feb;33(2):379–389. PubMed PMID: 30555165; PubMed Central PMCID: PMCPMC6365492. eng.
  • Gandhi AK, Kang J, Havens CG, et al. Immunomodulatory agents lenalidomide and pomalidomide co-stimulate T cells by inducing degradation of T cell repressors Ikaros and Aiolos via modulation of the E3 ubiquitin ligase complex CRL4(CRBN.). Br J Haematol. 2014 Mar;164(6):811–821. PubMed PMID: 24328678; eng.
  • Stone RM, Mandrekar SJ, Sanford BL, et al. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N Engl J Med. 2017;377(5):454–464. PubMed PMID: 28644114
  • Xu Y, Sun J, Sheard MA, et al. Lenalidomide overcomes suppression of human natural killer cell anti-tumor functions by neuroblastoma microenvironment-associated IL-6 and TGFbeta1. Cancer Immunol Immunother. 2013 Oct;62(10):1637–1648. PubMed PMID: 23982484; PubMed Central PMCID: PMCPmc3907789. eng.
  • Levis MJ, Perl AE, Martinelli G, et al. Effect of gilteritinib on survival in patients with FLT3-mutated (FLT3mut+) relapsed/refractory (R/R) AML who have common AML co-mutations or a high FLT3-ITD allelic ratio [abstract]. J Clin Oncol. 2019;37:7000.
  • Wu L, Li X, Xu F, et al. Low RPS14 expression in MDS without 5q - aberration confers higher apoptosis rate of nucleated erythrocytes and predicts prolonged survival and possible response to lenalidomide in lower risk non-5q- patients. Eur J Haematol. 2013 Jun;90(6):486–493. PubMed PMID: 23506134; eng.
  • DiNardo CD, Stein EM, de Botton S, et al. Durable remissions with Ivosidenib in IDH1-mutated relapsed or refractory AML. N Engl J Med. 2018;378(25):2386–2398. PubMed PMID: 29860938
  • Roboz GJ, DiNardo CD, Stein EM, et al. Ivosidenib (AG-120) induced durable remissions and transfusion independence in patients with IDH1-mutant untreated AML: results from a phase 1 dose escalation and expansion study [abstract]. Blood. 2018;132(Suppl 1):561.
  • Attar EC, Amrein PC, Fraser JW, et al. Phase I dose escalation study of bortezomib in combination with lenalidomide in patients with myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). Leuk Res. 2013 Sep;37(9):1016–1020. PubMed PMID: 23773898; PubMed Central PMCID: PMCPmc3969839. eng.
  • Stein EM, DiNardo CD, Pollyea DA, et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood. 2017;130(6):722–731.
  • Platzbecker U, Braulke F, Kundgen A, et al. Sequential combination of azacitidine and lenalidomide in del(5q) higher-risk myelodysplastic syndromes or acute myeloid leukemia: a phase I study. Leukemia. 2013 Jun;27(6):1403–1407. PubMed PMID: 23354011; PubMed Central PMCID: PMCPmc3677141. eng.
  • DiNardo CD, Pratz K, Pullarkat V, et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood. 2019;133(1):7–17.
  • Wei AH, Strickland SA Jr., Hou JZ, et al. venetoclax combined with low-dose cytarabine for previously untreated patients with acute myeloid leukemia: results from a phase Ib/II study. J Clin Oncol. 2019 May 20;37(15):1277–1284. PubMed PMID: 30892988; PubMed Central PMCID: PMCPMC6524989. eng.
  • Lim S, Kaldis P. Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development. 2013;140(15):3079–3093.
  • Malumbres M. Cyclin-dependent kinases. Genome Biol. 2014 June 30;15(6):122.
  • Otto T, Sicinski P. Cell cycle proteins as promising targets in cancer therapy [review article]. Nat Rev Cancer. 2017 Jan 27 online;17:93. https://www.nature.com/articles/nrc.2016.138#supplementary-information.
  • Aleem E, Arceci RJ. Targeting cell cycle regulators in hematologic malignancies [review]. Front Cell Dev Biol. 2015 April 09;3(16). English. DOI:10.3389/fcell.2015.00016.
  • Peng J, Zhu Y, Milton JT, et al. Identification of multiple cyclin subunits of human P-TEFb. Genes Dev. 1998 March 1;12(5):755–762.
  • Zhu Y, Pe’ery T, Peng J, et al. Transcription elongation factor P-TEFb is required for HIV-1 Tat transactivation in vitro. Genes Dev. 1997 October 15;11(20):2622–2632.
  • Marshall NF, Peng J, Xie Z, et al. Control of RNA polymerase II elongation potential by a novel carboxyl-terminal domain Kinase. J Biol Chem. 1996 October 25;271(43):27176–27183.
  • Hnisz D, Abraham Brian J, Lee Tong I, et al. Super-enhancers in the control of cell identity and disease. Cell. 2013 Nov 07;155(4):934–947.
  • Kozopas KM, Yang T, Buchan HL, et al. MCL1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to BCL2. Proc Nat Acad Sci. 1993;90(8):3516–3520.
  • Juin P, Geneste O, Gautier F, et al. Decoding and unlocking the BCL-2 dependency of cancer cells [review article]. Nat Rev Cancer. 2013 June 20 online;13:455.
  • De Blasio A, Vento R, Di Fiore R. Mcl-1 targeting could be an intriguing perspective to cure cancer. J Cell Physiol. 2018 Nov;233(11):8482–8498. PubMed PMID: 29797573; eng.
  • Bose P, Grant S. Mcl-1 as a therapeutic target in acute myelogenous leukemia (AML). Leuk Res Rep. 2013 Jan 1;2(1):12–14. PubMed PMID: 23977453; PubMed Central PMCID: PMCPMC3747011. eng.
  • Reynolds JE, Yang T, Qian L, et al. Mcl-1, a member of the Bcl-2 family, delays apoptosis induced by c-Myc overexpression in Chinese hamster ovary cells. Cancer Res. 1994;54(24):6348–6352.
  • Zhou P, Qian L, Kozopas KM, et al. Mcl-1, a Bcl-2 family member, delays the death of hematopoietic cells under a variety of apoptosis-inducing conditions. Blood. 1997;89(2):630–643.
  • Glaser SP, Lee EF, Trounson E, et al. Anti-apoptotic Mcl-1 is essential for the development and sustained growth of acute myeloid leukemia. Genes Dev. 2012 January 15;26(2):120–125.
  • Xiang Z, Luo H, Payton JE, et al. Mcl1 haploinsufficiency protects mice from Myc-induced acute myeloid leukemia. J Clin Invest. 2010 June 01;120(6):2109–2118.
  • Kaufmann SH, Karp JE, Svingen PA, et al. Elevated expression of the apoptotic regulator Mcl-1 at the time of leukemic relapse. Blood. 1998;91(3):991–1000.
  • Niu X, Zhao J, Ma J, et al. Binding of released BIM to Mcl-1 is a mechanism of intrinsic resistance to ABT-199 which can be overcome by combination with daunorubicin or cytarabine in AML cells. Clin Cancer Res. 2016;22(17):4440–4451.
  • Karaman MW, Herrgard S, Treiber DK, et al. A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol. 2008 Jan 08 online;26:127. https://www.nature.com/articles/nbt1358#supplementary-information.
  • Kaur G, Stetler-Stevenson M, Sebers S, et al. Growth inhibition with reversible cell cycle arrest of carcinoma cells by flavone L86-8275. JNCI. 1992;84(22):1736–1740.
  • Carlson BA, Dubay MM, Sausville EA, et al. Flavopiridol induces G1 arrest with inhibition of cyclin-dependent kinase (CDK) 2 and CDK4 in human breast carcinoma cells. Cancer Res. 1996;56(13):2973–2978.
  • Parker BW, Kaur G, Nieves-Neira W, et al. Early Induction of apoptosis in hematopoietic cell lines after exposure to flavopiridol. Blood. 1998;91(2):458–465.
  • Kitada S, Zapata JM, Andreeff M, et al. Protein kinase inhibitors flavopiridol and 7-hydroxy-staurosporine down-regulate antiapoptosis proteins in B-cell chronic lymphocytic leukemia. Blood. 2000;96(2):393–397.
  • Pepper C, Thomas A, Hoy T, et al. Flavopiridol circumvents Bcl-2 family mediated inhibition of apoptosis and drug resistance in B-cell chronic lymphocytic leukaemia. Br J Haematol. 2001;114(1):70–77.
  • Gojo I, Zhang B, Fenton RG. The cyclin-dependent kinase inhibitor flavopiridol induces apoptosis in multiple myeloma cells through transcriptional repression and down-regulation of MCL-1. Clin Cancer Res. 2002;8(11):3527–3538.
  • Karp JE, Ross DD, Yang W, et al. Timed sequential therapy of acute leukemia with flavopiridol: in vitro model for a phase I clinical trial. Clin Cancer Res. 2003;9(1):307–315.
  • Ma Y, Cress WD, Haura EB. Flavopiridol-induced apoptosis is mediated through up-regulation of E2F1 and repression of MCL-1. Mol Cancer Ther. 2003;2(1):73–81.
  • Chao SH, Fujinaga K, Marion JE, et al. Flavopiridol inhibits P-TEFb and blocks HIV-1 replication. J Biol Chem. 2000 Sep 15;275(37):28345–28348. PubMed PMID: 10906320; eng.
  • Chao SH, Price DH. Flavopiridol inactivates P-TEFb and blocks most RNA polymerase II transcription in vivo. J Biol Chem. 2001 Aug 24;276(34):31793–31799. PubMed PMID: 11431468; eng.
  • Lam LT, Pickeral OK, Peng AC, et al. Genomic-scale measurement of mRNA turnover and the mechanisms of action of the anti-cancer drug flavopiridol. Genome Biol. 2001;2(10):RESEARCH0041. PubMed PMID: 11597333; PubMed Central PMCID: PMCPMC57796. eng.
  • Karp JE, Passaniti A, Gojo I, et al. Phase I and pharmacokinetic study of flavopiridol followed by 1-β-D-arabinofuranosylcytosine and mitoxantrone in relapsed and refractory adult acute leukemias. Clin Cancer Res. 2005;11(23):8403–8412.
  • Karp JE, Smith BD, Levis MJ, et al. Sequential flavopiridol, cytosine arabinoside, and mitoxantrone: a phase II trial in adults with poor-risk acute myelogenous leukemia. Clin Cancer Res. 2007;13(15):4467–4473.
  • Karp JE, Blackford A, Smith BD, et al. Clinical activity of sequential flavopiridol, cytosine arabinoside, and mitoxantrone for adults with newly diagnosed, poor-risk acute myelogenous leukemia. Leuk Res. 2010 July 01;34(7):877–882.
  • Zeidner JF, Foster MC, Blackford AL, et al. Randomized multicenter phase II study of flavopiridol (alvocidib), cytarabine, and mitoxantrone (FLAM) versus cytarabine/daunorubicin (7+3) in newly diagnosed acute myeloid leukemia. Haematologica. 2015;100(9):1172–1179.
  • Döhner H, Estey EH, Amadori S, et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European leukemianet. Blood. 2010;115(3):453–474.
  • Zeidner JF, Foster MC, Blackford AL, et al. Final results of a randomized multicenter phase II study of alvocidib, cytarabine, and mitoxantrone versus cytarabine and daunorubicin (7 + 3) in newly diagnosed high-risk acute myeloid leukemia (AML). Leuk Res. 2018 Sep;72:92–95. PubMed PMID: 30118897; eng.
  • Byrd JC, Lin TS, Dalton JT, et al. Flavopiridol administered using a pharmacologically derived schedule is associated with marked clinical efficacy in refractory, genetically high-risk chronic lymphocytic leukemia. Blood. 2007;109(2):399–404.
  • Blum W, Phelps MA, Klisovic RB, et al. Phase I clinical and pharmacokinetic study of a novel schedule of flavopiridol in relapsed or refractory acute leukemias. Haematologica. 2010;95(7):1098–1105.
  • Karp JE, Smith BD, Resar LS, et al. Phase 1 and pharmacokinetic study of bolus-infusion flavopiridol followed by cytosine arabinoside and mitoxantrone for acute leukemias. Blood. 2011;117(12):3302–3310.
  • Karp JE, Garrett-Mayer E, Estey EH, et al. Randomized phase II study of two schedules of flavopiridol given as timed sequential therapy with cytosine arabinoside and mitoxantrone for adults with newly diagnosed, poor-risk acute myelogenous leukemia. Haematologica. 2012 Nov;97(11):1736–1742. PubMed PMID: 22733022; PubMed Central PMCID: PMCPmc3487449. eng.
  • Smith BD, Warner SL, Whatcott C, et al. An alvocidib-containing regimen is highly effective in AML patients through a mechanism dependent on MCL1 expression and function [abstract]. J Clin Oncol. 2015;33(15_suppl):7062.
  • Ryan JA, Brunelle JK, Letai A. Heightened mitochondrial priming is the basis for apoptotic hypersensitivity of CD4+ CD8+ thymocytes. Proc Nat Acad Sci. 2010;107(29):12895–12900.
  • Montero J, Sarosiek Kristopher A, DeAngelo Joseph D, et al. Drug-induced death signaling strategy rapidly predicts cancer response to chemotherapy. Cell. 2015 Feb 26;160(5):977–989.
  • Montero J, Letai A. Why do BCL-2 inhibitors work and where should we use them in the clinic? Cell Death Differ. 2018 Jan;25(1):56–64. PubMed PMID: 29077093; PubMed Central PMCID: PMCPMC5729538. eng
  • Zeidner JF, Lin TL, Vigil CE, et al. Zella 201: a biomarker-guided phase ii study of alvocidib followed by cytarabine and mitoxantrone in MCL-1 dependent relapsed/refractory acute myeloid leukemia (AML) [abstract]. Blood. 2018;132(Suppl 1):30
  • Lee D, Smith B, Frattini M, et al. Zella-101: phase 1 study of alvocidib followed by 7+3 induction in newly diagnosed AML patients [abstract]. HemaSphere. 2019;3:94. PubMed PMID: 02014419-201906001-00184
  • Bogenberger J, Whatcott C, Hansen N, et al. Combined venetoclax and alvocidib in acute myeloid leukemia. Oncotarget. 2017 Dec 5;8(63):107206–107222. PubMed PMID: 29291023; PubMed Central PMCID: PMCPMC5739808. eng
  • Horibata S, Gui G, Lack J, et al. Heterogeneity in refractory acute myeloid leukemia. Proc Natl Acad Sci U S A. 2019 May 21;116(21):10494–10503. PubMed PMID: 31064876; PubMed Central PMCID: PMCPMC6535032. eng
  • Parry D, Guzi T, Shanahan F, et al. Dinaciclib (SCH 727965), a novel and potent cyclin-dependent kinase inhibitor. Mol Cancer Ther. 2010;9(8):2344–2353.
  • Paruch K, Dwyer MP, Alvarez C, et al. Discovery of dinaciclib (SCH 727965): a potent and selective inhibitor of cyclin-dependent kinases. ACS Med Chem Lett. 2010 Aug 12;1(5):204–208.
  • Baker A, Gregory GP, Verbrugge I, et al. The CDK9 inhibitor dinaciclib exerts potent apoptotic and antitumor effects in preclinical models of MLL-rearranged acute myeloid leukemia. Cancer Res. 2016;76(5):1158–1169.
  • Gojo I, Sadowska M, Walker A, et al. Clinical and laboratory studies of the novel cyclin-dependent kinase inhibitor dinaciclib (SCH 727965) in acute leukemias [journal article]. Cancer Chemother Pharmacol. 2013 Oct 01;72(4):897–908.
  • Mita MM, Mita AC, Moseley JL, et al. Phase 1 safety, pharmacokinetic and pharmacodynamic study of the cyclin-dependent kinase inhibitor dinaciclib administered every three weeks in patients with advanced malignancies [clinical study]. Br J Cancer. 2017 Aug 31 online;117:1258. https://www.nature.com/articles/bjc2017288#supplementary-information.
  • Li L, Pongtornpipat P, Tiutan T, et al. Synergistic induction of apoptosis in high-risk DLBCL by BCL2 inhibition with ABT-199 combined with pharmacologic loss of MCL1 [original article]. Leukemia. 2015 April 17 online;29:1702. https://www.nature.com/articles/leu201599#supplementary-information.
  • Scholz A, Luecking U, Siemeister G, et al. Abstract DDT02-02: BAY 1143572: A first-in-class, highly selective, potent and orally available inhibitor of PTEFb/CDK9 currently in phase I, inhibits MYC and shows convincing anti-tumor activity in multiple xenograft models by the induction of apoptosis. Cancer Res. 2015;75(15Supplement):DDT02.
  • Scholz A, Oellerich T, Hussain A, et al. Abstract 3022: BAY 1143572, a first-in-class, highly selective, potent and orally available inhibitor of PTEFb/CDK9 currently in phase I, shows convincing anti-tumor activity in preclinical models of acute myeloid leukemia (AML). Cancer Res. 2016;76(14 Supplement):3022.
  • Lücking U, Scholz A, Lienau P, et al. Identification of atuveciclib (BAY 1143572), the first highly selective, clinical PTEFb/CDK9 inhibitor for the treatment of cancer. ChemMedChem. 2017;12(21):1776–1793. PubMed PMID: 28961375; eng
  • Luecking UT, Scholz A, Kosemund D, et al. Abstract 984: identification of potent and highly selective PTEFb inhibitor BAY 1251152 for the treatment of cancer: from p.o. to i.v. application via scaffold hops [abstract]. Cancer Res. 2017;77(13Supplement):984.
  • Byrne M, Frattini MG, Ottmann OG, et al. Phase I study of the PTEFb inhibitor BAY 1251152 in patients with acute myelogenous leukemia [abstract]. Blood. 2018;132(Suppl 1):4055.
  • Goh KC, Novotny-Diermayr V, Hart S, et al. TG02, a novel oral multi-kinase inhibitor of CDKs, JAK2 and FLT3 with potent anti-leukemic properties [original article]. Leukemia. 2011 Aug 23 online;26:236. https://www.nature.com/articles/leu2011218#supplementary-information.
  • Pallis M, Abdul-Aziz A, Burrows F, et al. The multi-kinase inhibitor TG02 overcomes signalling activation by survival factors to deplete MCL1 and XIAP and induce cell death in primary acute myeloid leukaemia cells. Br J Haematol. 2012;159(2):191–203.
  • Pallis M, Burrows F, Ryan J, et al. Complementary dynamic BH3 profiles predict co-operativity between the multi-kinase inhibitor TG02 and the BH3 mimetic ABT-199 in acute myeloid leukaemia cells. Oncotarget. 2017 Mar 7;8(10):16220–16232. PubMed PMID: 27092880; PubMed Central PMCID: PMCPMC5369958. eng.
  • Meyerson M, Harlow E. Identification of G1 kinase activity for CDK6, a novel cyclin D partner. Mol Cell Biol. 1994;14(3):2077–2086.
  • Lundberg AS, Weinberg RA. Functional inactivation of the retinoblastoma protein requires sequential modification by at least two distinct cyclin-CDK complexes. Mol Cell Biol. 1998;18(2):753–761.
  • Harbour JW, Luo RX, Santi AD, et al. CDK phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell. 1999 Sept 17;98(6):859–869.
  • Flemington EK, Speck SH, Kaelin WG. E2F-1-mediated transactivation is inhibited by complex formation with the retinoblastoma susceptibility gene product. Proc Nat Acad Sci. 1993;90(15):6914–6918.
  • Helin K, Harlow E, Fattaey A. Inhibition of E2F-1 transactivation by direct binding of the retinoblastoma protein. Mol Cell Biol. 1993;13(10):6501–6508.
  • Harbour JW, Dean DC. The Rb/E2F pathway: expanding roles and emerging paradigms. Genes Dev. 2000 Oct 1;14(19):2393–2409.
  • Trimarchi JM, Lees JA. Sibling rivalry in the E2F family. Nat Rev Mol Cell Biol. 2002 Jan 01;3(1):11–20.
  • Della Ragione F, Borriello A, Mastropietro S, et al. Expression of G1-phase cell cycle genes during hematopoietic lineage. Biochem Biophys Res Commun. 1997 Feb 03;231(1):73–76.
  • Chilosi M, Doglioni C, Yan Z, et al. Differential expression of cyclin-dependent kinase 6 in cortical thymocytes and T-cell lymphoblastic lymphoma/leukemia. Am J Pathol. 1998;152(1):209–217. PubMed PMID: 9422538; eng.
  • Malumbres M, Sotillo R, Santamarı́a D, et al. Mammalian cells cycle without the D-type cyclin-dependent kinases CDK4 and CDK6. Cell. 2004 Aug 20;118(4):493–504.
  • Placke T, Faber K, Nonami A, et al. Requirement for CDK6 in MLL-rearranged acute myeloid leukemia. Blood. 2014;124(1):13–23
  • Krivtsov AV, Twomey D, Feng Z, et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL–AF9. Nature. 2006 Aug 01;442(7104):818–822.
  • Somervaille TCP, Cleary ML. Identification and characterization of leukemia stem cells in murine MLL-AF9 acute myeloid leukemia. Cancer Cell. 2006 Nov 01;10(4):257–268.
  • Wang L, Wang J, Blaser BW, et al. Pharmacologic inhibition of CDK4/6: mechanistic evidence for selective activity or acquired resistance in acute myeloid leukemia. Blood. 2007;110(6):2075–2083
  • Lopez S, Voisset E, Tisserand JC, et al. An essential pathway links FLT3-ITD, HCK and CDK6 in acute myeloid leukemia. Oncotarget. 2016 Aug 9;7(32):51163–51173. PubMed PMID: 27323399; PubMed Central PMCID: PMCPMC5239466. eng.
  • Fry DW, Harvey PJ, Keller PR, et al. Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol Cancer Ther. 2004;3(11):1427–1438.
  • Yang C, Boyson CA, Di Liberto M, et al. CDK4/6 inhibitor PD 0332991 sensitizes acute myeloid leukemia to cytarabine-mediated cytotoxicity. Cancer Res. 2015;75(9):1838–1845.
  • Uras IZ, Walter GJ, Scheicher R, et al. Palbociclib treatment of FLT3-ITD+ AML cells uncovers a kinase-dependent transcriptional regulation of FLT3 and PIM1 by CDK6. Blood. 2016;127(23):2890–2902.
  • Fröhling S, Agrawal M, Jahn N, et al. CDK4/6 inhibitor palbociclib for treatment of KMT2A-rearranged acute myeloid leukemia: interim analysis of the AMLSG 23-14 Trial [abstract]. Blood. 2016;128(22):1608.
  • Marubayashi S, Park A, Noubade R, et al. FLX925 is a rationally designed FLT3, CDK4/6 inhibitor with a desirable resistance profile [abstract]. Blood. 2016;128(22):2323.
  • Daver N, Pollyea DA, Rizzieri DA, et al. A phase I study of FLX925, a dual FLT3 and CDK4/6 inhibitor in patients with relapsed or refractory acute myeloid leukemia (AML) [abstract]. Blood. 2017;130(Suppl 1):1343.
  • Papaemmanuil E, Gerstung M, Bullinger L, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016 Jun 9;374(23):2209–2221. PubMed PMID: 27276561; PubMed Central PMCID: PMCPMC4979995. eng
  • Castaigne S, Pautas C, Terre C, et al. Effect of gemtuzumab ozogamicin on survival of adult patients with de-novo acute myeloid leukaemia (ALFA-0701): a randomised, open-label, phase 3 study. Lancet. 2012 Apr 21;379(9825):1508–1516. PubMed PMID: 22482940; eng.
  • Lambert J, Pautas C, Terre C, et al. Gemtuzumab ozogamicin for de novo acute myeloid leukemia: final efficacy and safety updates from the open-label, phase 3 ALFA-0701 trial. Haematologica. 2018 Aug 3. DOI:10.3324/haematol.2018.188888. [ PubMed PMID: 30076173; eng].
  • Dombret H, Seymour JF, Butrym A, et al. International phase 3 study of azacitidine vs conventional care regimens in older patients with newly diagnosed AML with >30% blasts. Blood. 2015;126(3):291–299.
  • Kantarjian HM, Thomas XG, Dmoszynska A, et al. Multicenter, randomized, open-label, phase III trial of decitabine versus patient choice, with physician advice, of either supportive care or low-dose cytarabine for the treatment of older patients with newly diagnosed acute myeloid leukemia. J Clin Oncol. 2012;30(21):2670–2677. PubMed PMID: 22689805
  • Burnett AK, Milligan D, Prentice AG, et al. A comparison of low-dose cytarabine and hydroxyurea with or without all-trans retinoic acid for acute myeloid leukemia and high-risk myelodysplastic syndrome in patients not considered fit for intensive treatment. Cancer. 2007;109(6):1114–1124.
  • Villalobos-Ortiz M, Ryan J, Mashaka TN, et al. BH3 profiling discriminates on-target small molecule BH3 mimetics from putative mimetics. Cell Death Differ. 2019 July 22. DOI:10.1038/s41418-019-0391-9.
  • Lin KH, Winter PS, Xie A, et al. Targeting MCL-1/BCL-XL forestalls the acquisition of resistance to ABT-199 in acute myeloid leukemia [article]. Sci Rep. 2016 June 10 online;6:27696. https://www.nature.com/articles/srep27696#supplementary-information.
  • Pan R, Hogdal LJ, Benito JM, et al. Selective BCL-2 Inhibition by ABT-199 causes on-target cell death in acute myeloid leukemia. Cancer Discov. 2014;4(3):362–375.
  • Konopleva M, Pollyea DA, Potluri J, et al. Efficacy and biological correlates of response in a phase II study of venetoclax monotherapy in patients with acute myelogenous leukemia. Cancer Discov. 2016;6(10):1106–1117.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.