6,211
Views
13
CrossRef citations to date
0
Altmetric
Review

Cyclophilin inhibition as a potential treatment for nonalcoholic steatohepatitis (NASH)

, , &
Pages 163-178 | Received 07 Nov 2019, Accepted 08 Dec 2019, Published online: 23 Dec 2019

References

  • Nahon P, Bourcier V, Layese R, et al. Eradication of hepatitis C virus infection in patients with cirrhosis reduces risk of liver and non-liver complications. Gastroenterology. 2017;152:142–156.
  • Lusivika-Nzinga C, Fontaine H, Dorival C, et al. The dynamic effect of direct-acting antiviral treatments on the risk of hepatocellular carcinoma in patients with cirrhosis and chronic hepatitis C. J Viral Hepat. 2019;26:1489–1492.
  • Ioannou GN, Beste LA, Green PK, et al. Increased risk for hepatocellular carcinoma persists up to 10 years after HCV eradication in patients with baseline Cirrhosis or high FIB-4 scores. Gastroenterology. 2019;157:1264–1278.
  • Toyoda H, Kumada T, Tada T, et al. The impact of HCV eradication by direct-acting antivirals on the transition of precancerous hepatic nodules to HCC: A prospective observational study. Liver Int. 2019;39:448–454.
  • Noureddin M, Sanyal AJ. Pathogenesis of NASH: the impact of multiple pathways. Curr Hepatol Rep. 2018;17:350–360.
  • Handschumacher RE, Harding MW, Rice J, et al. Cyclophilin: a specific cytosolic binding protein for cyclosporin A. Science. 1984;226:544–547.
  • Fischer G, Bang H, Mech C. Determination of enzymatic catalysis for the cis-trans-isomerization of peptide binding in proline-containing peptides. Biomed Biochim Acta. 1984;43:1101–1111.
  • Lensmeyer GL, Wiebe DA, Carlson IH, et al. Concentrations of cyclosporin A and its metabolites in human tissues postmortem. J Anal Toxicol. 1991;15:110–115.
  • Wagner O, Schreier E, Heitz F, et al. Tissue distribution, disposition, and metabolism of cyclosporine in rats. Drug Metab Dispos. 1987;15:377–383.
  • Bruelisauer A, Kawai R, Misslin P, et al. Absorption and disposition of SDZ IMM 125, a new cyclosporine derivative, in rats after single and repeated administration. Drug Metab Dispos. 1994;22:194–199.
  • Naoumov NV. Cyclophilin inhibition as potential therapy for liver diseases. J Hepatol. 2014;61:1166–1174.
  • Pal D, Chakrabarti P. Cis peptide bonds in proteins: residues involved, their conformations, interactions and locations. J Mol Biol. 1999;294:271–288.
  • Schmidpeter PAM, Koch JR, Schmid FX. Control of protein function by prolyl isomerization. Biochim Biophys Acta. 2015;1850:1973–1982.
  • Lu KP, Finn G, Lee TH, et al. Prolyl cis-trans isomerization as a molecular timer. Nat Chem Biol. 2007;3:619–629.
  • Sarkar P, Reichman C, Saleh T, et al. Proline cis-trans isomerization controls autoinhibition of a signaling protein. Mol Cell. 2007;25:413–426.
  • Lummis SCR, Beene DL, Lee LW, et al. Cis-trans isomerization at a proline opens the pore of a neurotransmitter-gated ion channel. Nature. 2005;438:248–252.
  • Sarkar P, Saleh T, Tzeng SR, et al. Structural basis for regulation of the Crk signaling protein by a proline switch. Nat Chem Biol. 2011;7:51–57.
  • Aumüller T, Jahreis G, Fischer G, et al. Role of prolyl cis/trans isomers in cyclophilin-assisted Pseudomonas syringae AvrRpt2 protease activation. Biochemistry. 2010;49:1042–1052.
  • Davis TL, Walker JR, Campagna-Slater V, et al. Structural and biochemical characterization of the human cyclophilin family of peptidyl-prolyl isomerases. PLoS Biol. 2010;8:e1000439.
  • Ullah Dawar F, Tu J, Nasir Khan Khattak M, et al. Cyclophilin A: a key factor in virus replication and potential target for anti-viral therapy. Curr Issues Mol Biol. 2017;21:1–20.
  • Fischer G, Wittmann-liebold B, Lang K, et al. Cyclophilin and peptidyl-prolyl cis-trans isomerase are probably identical proteins. Nature. 1989;337:476–478.
  • Cung -T-T, Morel O, Cayla G, et al. Cyclosporine before PCI in patients with acute myocardial infarction. N Engl J Med. 2015;373:1021–1031.
  • Monassier L, Ayme-Dietrich E, Aubertin-Kirch G, et al. Targeting myocardial reperfusion injuries with cyclosporine in the CIRCUS trial - pharmacological reasons for failure. Fundam Clin Pharmacol. 2016;30:191–193.
  • Piot C, Croisille P, Staat P, et al. Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N Engl J Med. 2008;359:473–481.
  • Upadhaya S, Madala S, Baniya R, et al. Impact of cyclosporine A use in the prevention of reperfusion injury in acute myocardial infarction: A meta-analysis. Cardiol J. 2017;24:43–50.
  • Merlini L, Angelin A, Tiepolo T, et al. Cyclosporin A corrects mitochondrial dysfunction and muscle apoptosis in patients with collagen VI myopathies. Proc Natl Acad Sci. 2008;105:5225–5229.
  • Merlini L, Sabatelli P, Armaroli A, et al. Cyclosporine A in Ullrich congenital muscular dystrophy: long-term results. Oxid Med Cell Longev. 2011;2011:139194.
  • Sigal NH, Dumont F, Durette P, et al. Is cyclophilin involved in the immunosuppressive and nephrotoxic mechanism of action of cyclosporin A? J Exp Med. 1991;173:619–628.
  • Quesniaux VFJ, Schreier MH, Wenger RM, et al. Cyclophilin binds to the region of cyclosporine involved in its immunosuppressive activity. Eur J Immunol. 1987;17:1359–1365.
  • Sweeney ZK, Fu J, Wiedmann B. From chemical tools to clinical medicines: nonimmunosuppressive cyclophilin inhibitors derived from the cyclosporin and sanglifehrin scaffolds. J Med Chem. 2014;57:7145–7159.
  • Hopkins S, Dimassimo B, Rusnak P, et al. The cyclophilin inhibitor SCY-635 suppresses viral replication and induces endogenous interferons in patients with chronic HCV genotype 1 infection. J Hepatol. 2012;57:47–54.
  • Lawitz E, Godofsky E, Rouzier R, et al. Safety, pharmacokinetics, and antiviral activity of the cyclophilin inhibitor NIM811 alone or in combination with pegylated interferon in HCV-infected patients receiving 14 days of therapy. Antiviral Res. 2011;89:238–245.
  • Pawlotsky J-M-M, Flisiak R, Sarin SK, et al. Alisporivir plus ribavirin, interferon free or in combination with pegylated interferon, for hepatitis C virus genotype 2 or 3 infection. Hepatology. 2015;62:1013–1023.
  • Zeuzem S, Flisiak R, Vierling JM, et al. Randomised clinical trial: alisporivir combined with peginterferon and ribavirin in treatment-naïve patients with chronic HCV genotype 1 infection (ESSENTIAL II). Aliment Pharmacol Ther. 2015;42:829–844.
  • Buti M, Flisiak R, Kao JH, et al. Alisporivir with peginterferon/ribavirin in patients with chronic hepatitis C genotype 1 infection who failed to respond to or relapsed after prior interferon-based therapy: FUNDAMENTAL, a phase II trial. J Viral Hepat. 2015;22:596–606.
  • Baugh J, Gallay P. Cyclophilin involvement in the replication of hepatitis C virus and other viruses. Biol Chem. 2012;393:579–587.
  • Fu J, Tjandra M, Becker C, et al. Potent nonimmunosuppressive cyclophilin inhibitors with improved pharmaceutical properties and decreased transporter inhibition. J Med Chem. 2014;57:8503–8516.
  • Prell E, Kahlert V, Rücknagel KP, et al. Fine tuning the inhibition profile of cyclosporine a by derivatization of the MeBmt residue. ChemBioChem. 2013;14:63–65.
  • Malešević M, Kühling J, Erdmann F, et al. A cyclosporin derivative discriminates between extracellular and intracellular cyclophilins. Angew Chem Int Educ. 2010;49:213–215.
  • Malouitre S, Dube H, Selwood D, et al. Mitochondrial targeting of cyclosporin A enables selective inhibition of cyclophilin-D and enhanced cytoprotection after glucose and oxygen deprivation. Biochem J. 2010;425:137–148.
  • Gallay PA, Bobardt MD, Chatterji U, et al. The novel cyclophilin inhibitor CPI-431-32 concurrently blocks HCV and HIV-1 infections via a similar mechanism of action. PLoS One. 2015;10:e0134707.
  • Gallay PP, Ure D, Bobardt M, et al. The cyclophilin inhibitor CRV431 inhibits liver HBV DNA and HBsAg in transgenic mice. PLoS One. 2019;14:e0217433.
  • Kuo J, Bobardt M, Chatterji U, et al. A pan-cyclophilin inhibitor, CRV431, decreases fibrosis and tumor development in chronic liver disease models. J Pharmacol Exp Ther. 2019;371:231–241.
  • Gregory MA, Bobardt M, Obeid S, et al. Preclinical characterization of naturally occurring polyketide cyclophilin inhibitors from the sanglifehrin family. Antimicrob Agents Chemother. 2011;55:1975–1981.
  • Moss SJ, Bobardt M, Leyssen P, et al. Sangamides, a new class of cyclophilin-inhibiting host-targeted antivirals for treatment of HCV infection. Medchemcomm. 2012;3:938–943.
  • Hansson MJ, Moss SJ, Bobardt M, et al. Bioengineering and semisynthesis of an optimized cyclophilin inhibitor for treatment of chronic viral infection. Chem Biol. 2015;22:285–292.
  • Mackman RL, Steadman VA, Dean DK, et al. Discovery of a potent and orally bioavailable cyclophilin inhibitor derived from the sanglifehrin macrocycle. J Med Chem. 2018;61:9473–9499.
  • Briston T, Selwood DL, Szabadkai G, et al. Mitochondrial permeability transition: a molecular lesion with multiple drug targets. Trends Pharmacol Sci. 2019;40:50–70.
  • Park I, Londhe AM, Lim JW, et al. Discovery of non-peptidic small molecule inhibitors of cyclophilin D as neuroprotective agents in Aβ-induced mitochondrial dysfunction. J Comput Aided Mol Des. 2017;31:929–941.
  • Valasani KR, Sun Q, Fang D, et al. Identification of a small molecule cyclophilin D inhibitor for rescuing Aβ-mediated mitochondrial dysfunction. ACS Med Chem Lett. 2016;7:294–299.
  • Nevers Q, Ruiz I, Ahnou N, et al. Characterization of the anti-hepatitis C virus activity of new nonpeptidic small-molecule cyclophilin inhibitors with the potential for broad anti-flaviviridae activity. Antimicrob Agents Chemother. 2018;62:e00126-18.
  • Zhao X, Xia C, Wang X, et al. Cyclophilin J PPIase inhibitors derived from 2,3-quinoxaline-6 amine exhibit antitumor activity. Front Pharmacol. 2018;9:1–11.
  • Panel M, Ruiz I, Brillet R, et al. Small-molecule inhibitors of cyclophilins block opening of the mitochondrial permeability transition pore and protect mice from hepatic ischemia/reperfusion injury. Gastroenterology. 2019;157:1368–1382.
  • Lu W, Cheng F, Yan W, et al. Selective targeting p53WT lung cancer cells harboring homozygous p53 Arg72 by an inhibitor of CypA. Oncogene. 2017;36:4719–4731.
  • Ni S, Yuan Y, Huang J, et al. Discovering potent small molecule inhibitors of cyclophilin A using de novo drug design approach. J Med Chem. 2009;52:5295–5298.
  • Shore ER, Awais M, Kershaw NM, et al. Small molecule inhibitors of cyclophilin D to protect mitochondrial function as a potential treatment for acute pancreatitis. J Med Chem. 2016;59:2596–2611.
  • Porter GA, Beutner G. Cyclophilin D, somehow a master regulator of mitochondrial function. Biomolecules. 2018;8:176.
  • Wang X, Du H, Shao S, et al. Cyclophilin D deficiency attenuates mitochondrial perturbation and ameliorates hepatic steatosis. Hepatology. 2018;68:62–77.
  • Su X, Lin D, Luo D, et al. Cyclophilin D participates in the inhibitory effect of high‐fat diet on the expression of steroidogenic acute regulatory protein. J Cell Mol Med. 2019;23:6859–6871.
  • Zheng Y, Qu H, Xiong X, et al. Deficiency of mitochondrial glycerol 3‐phosphate dehydrogenase contributes to hepatic steatosis. Hepatology. 2019;70:84–97.
  • Greene NP, Lee DE, Brown JL, et al. Mitochondrial quality control, promoted by PGC-1 α, is dysregulated by Western diet-induced obesity and partially restored by moderate physical activity in mice. Physiol Rep. 2015;3:e12470.
  • Galluzzi L, Vitale I, Aaronson SA, et al. Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ. 2018;25:486–541.
  • Elrod JW, Molkentin JD. Physiologic functions of cyclophilin D and the mitochondrial permeability transition pore. Circ J. 2013;77:1111–1122.
  • Tapley DF. The effect of thyroxine and other substances on the swelling of isolated rat liver mitochondria. J Biol Chem. 1956;222:325–339.
  • Chappell J, Crofts A. Calcium ion accumulation and volume changes of isolated liver mitochondria. Calcium ion-induced swelling. Biochem J. 1965;95:378–386.
  • Hunter DR, Haworth RA, Southard JH. Relationship between configuration, function, and permeability in calcium-treated mitochondria. J Biol Chem. 1976;251:5069–5077.
  • Lehninger AL. Reversal of various types of mitochondrial swelling by adenosine triphosphate. J Biol Chem. 1959;234:2465–2471.
  • Hunter DR, Haworth RA. The Ca2+-induced membrane transition in mitochondria. III. Transitional Ca2+ release. Arch Biochem Biophys. 1979;195:468–477.
  • Halestrap AP, Richardson AP. The mitochondrial permeability transition: A current perspective on its identity and role in ischaemia/reperfusion injury. J Mol Cell Cardiol. 2015;78:129–141.
  • Alam MR, Baetz D, Ovize M. Cyclophilin D and myocardial ischemia-reperfusion injury: A fresh perspective. J Mol Cell Cardiol. 2015;78:80–89.
  • Shang W, Gao H, Lu F, et al. Cyclophilin D regulates mitochondrial flashes and metabolism in cardiac myocytes. J Mol Cell Cardiol. 2016;91:63–71.
  • Hüser J, Blatter LA. Fluctuations in mitochondrial membrane potential caused by repetitive gating of the permeability transition pore. Biochem J. 1999;343(Pt 2):311–317.
  • Lu X, Kwong JQ, Molkentin JD, et al. Individual cardiac mitochondria undergo rare transient permeability transition pore openings. Circ Res. 2016;118:834–841.
  • Korge P, Yang L, Yang J-H, et al. Protective role of transient pore openings in calcium handling by cardiac mitochondria. J Biol Chem. 2011;286:34851–34857.
  • Connern CP, Halestrap AP. Recruitment of mitochondrial cyclophilin to the mitochondrial inner membrane under conditions of oxidative stress that enhance the opening of a calcium-sensitive non-specific channel. Biochem J. 1994;302(Pt 2):321–324.
  • Matas J, Tien Sing Young N, Bourcier-Lucas C, et al. Increased expression and intramitochondrial translocation of cyclophilin-D associates with increased vulnerability of the permeability transition pore to stress-induced opening during compensated ventricular hypertrophy. J Mol Cell Cardiol. 2009;46:420–430.
  • Eliseev RA, Filippov G, Velos J, et al. Role of cyclophilin D in the resistance of brain mitochondria to the permeability transition. Neurobiol Aging. 2007;28:1532–1542.
  • Denton RM. Regulation of mitochondrial dehydrogenases by calcium ions. Biochim Biophys Acta - Bioenergy. 2009;1787:1309–1316.
  • Glancy B, Balaban RS. Role of mitochondrial Ca 2+ in the regulation of cellular energetics. Biochemistry. 2012;51:2959–2973.
  • Elrod JW, Wong R, Mishra S, et al. Cyclophilin D controls mitochondrial pore–dependent Ca2+ exchange, metabolic flexibility, and propensity for heart failure in mice. J Clin Invest. 2010;120:3680–3687.
  • Baines CP, Kaiser RA, Purcell NH, et al. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature. 2005;434:658–662.
  • Tavecchio M, Lisanti S, Bennett MJ, et al. Deletion of cyclophilin D impairs β-oxidation and promotes glucose metabolism. Sci Rep. 2015;5:1–11.
  • Klawitter J, Pennington A, Klawitter J, et al. Mitochondrial cyclophilin D ablation is associated with the activation of Akt/p70S6K pathway in the mouse kidney. Sci Rep. 2017;7:10540.
  • Menazza S, Wong R, Nguyen T, et al. CypD−/− hearts have altered levels of proteins involved in Krebs cycle, branch chain amino acid degradation and pyruvate metabolism. J Mol Cell Cardiol. 2013;56:81–90.
  • Shum LC, White NS, Nadtochiy SM, et al. Cyclophilin D knock-out mice show enhanced resistance to osteoporosis and to metabolic changes observed in aging bone. PLoS One. 2016;11:1–18.
  • Klawitter JJ, Klawitter JJ, Pennington A, et al. Cyclophilin D knockout protects the mouse kidney against cyclosporin A-induced oxidative stress. Am J Physiol Physiol. 2019;317:F683–94.
  • Nguyen TTM, Wong R, Menazza S, et al. Cyclophilin D modulates mitochondrial acetylome. Circ Res. 2013;113:1308–1319.
  • Theurey P, Tubbs E, Vial G, et al. Mitochondria-associated endoplasmic reticulum membranes allow adaptation of mitochondrial metabolism to glucose availability in the liver. J Mol Cell Biol. 2016;8:129–143.
  • Beutner G, Alanzalon RE, Porter GA. Cyclophilin D regulates the dynamic assembly of mitochondrial ATP synthase into synthasomes. Sci Rep. 2017;7:14488.
  • Radhakrishnan J, Baetiong A, Kaufman H, et al. Improved exercise capacity in cyclophilin-D knockout mice associated with enhanced oxygen utilization efficiency and augmented glucose uptake via AMPK-TBC1D1 signaling nexus. Faseb J. 2019;33:11443–11457.
  • Radhakrishnan J, Bazarek S, Chandran B, et al. Cyclophilin-D: a resident regulator of mitochondrial gene expression. Faseb J. 2015;29:2734–2748.
  • Bernardi P, Rasola A, Forte M, et al. The mitochondrial permeability transition pore: channel formation by F-ATP synthase, integration in signal transduction, and role in pathophysiology. Physiol Rev. 2015;95:1111–1155.
  • Giorgio V, Bisetto E, Soriano ME, et al. Cyclophilin D modulates mitochondrial F0F1-ATP synthase by interacting with the lateral stalk of the complex. J Biol Chem. 2009;284:33982–33988.
  • Carraro M, Checchetto V, Szabó I, et al. F‐ ATP synthase and the permeability transition pore: fewer doubts, more certainties. FEBS Lett. 2019;593:1542–1553.
  • Leung AWC, Varanyuwatana P, Halestrap AP. The mitochondrial phosphate carrier interacts with cyclophilin D and may play a key role in the permeability transition. J Biol Chem. 2008;283:26312–26323.
  • Etzler JC, Bollo M, Holstein D, et al. Cyclophilin D over-expression increases mitochondrial complex III activity and accelerates supercomplex formation. Arch Biochem Biophys. 2017;613:61–68.
  • Paillard M, Tubbs E, Thiebaut P-A, et al. Depressing mitochondria-reticulum interactions protects cardiomyocytes from lethal hypoxia-reoxygenation injury. Circulation. 2013;128:1555–1565.
  • Vaseva AV, Marchenko ND, Ji K, et al. P53 opens the mitochondrial permeability transition pore to trigger necrosis. Cell. 2012;149:1536–1548.
  • Lebedev I, Nemajerova A, Foda ZH, et al. A novel in vitro CypD-mediated p53 aggregation assay suggests a model for mitochondrial permeability transition by chaperone systems. J Mol Biol. 2016;428:4154–4167.
  • Barreto-Torres G, Hernandez JS, Jang S, et al. The beneficial effects of AMP kinase activation against oxidative stress are associated with prevention of PPARα-cyclophilin D interaction in cardiomyocytes. Am J Physiol Heart Circ Physiol. 2015;308:H749–58.
  • Xi J, Wang H, Mueller RA, et al. Mechanism for resveratrol-induced cardioprotection against reperfusion injury involves glycogen synthase kinase 3beta and mitochondrial permeability transition pore. Eur J Pharmacol. 2009;604:111–116.
  • Rasola A, Sciacovelli M, Chiara F, et al. Activation of mitochondrial ERK protects cancer cells from death through inhibition of the permeability transition. Proc Natl Acad Sci U S A. 2010;107:726–731.
  • Fu M, Wan F, Li Z, et al. 4SC-202 activates ASK1-dependent mitochondrial apoptosis pathway to inhibit hepatocellular carcinoma cells. Biochem Biophys Res Commun. 2016;471:267–273.
  • Eliseev RA, Malecki J, Lester T, et al. Cyclophilin D interacts with Bcl2 and exerts an anti-apoptotic effect. J Biol Chem. 2009;284:9692–9699.
  • Koliaki C, Szendroedi J, Kaul K, et al. Adaptation of hepatic mitochondrial function in humans with non-alcoholic fatty liver is lost in steatohepatitis. Cell Metab. 2015;21:739–746.
  • Sanyal AJ, Campbell-Sargent C, Mirshahi F, et al. Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities. Gastroenterology. 2001;120:1183–1192.
  • Taddeo EP, Laker RC, Breen DS, et al. Opening of the mitochondrial permeability transition pore links mitochondrial dysfunction to insulin resistance in skeletal muscle. Mol Metab. 2014;3:124–134.
  • Feng D, Tang Y, Kwon H, et al. High-fat diet-induced adipocyte cell death occurs through a cyclophilin D intrinsic signaling pathway independent of adipose tissue inflammation. Diabetes. 2011;60:2134–2143.
  • Laker RC, Taddeo EP, Akhtar YN, et al. The mitochondrial permeability transition pore regulator cyclophilin D exhibits tissue-specific control of metabolic homeostasis. PLoS One. 2016;11:1–12.
  • Fujimoto K, Chen Y, Polonsky KS, et al. Targeting cyclophilin D and the mitochondrial permeability transition enhances cell survival and prevents diabetes in Pdx1 deficiency. Proc Natl Acad Sci. 2010;107:10214–10219.
  • Tubbs E, Theurey P, Vial G, et al. Mitochondria-associated endoplasmic reticulum membrane (MAM) integrity is required for insulin signaling and is implicated in hepatic insulin resistance. Diabetes. 2014;63:3279–3294.
  • Devalaraja-Narashimha K, Diener AM, Padanilam BJ. Cyclophilin D deficiency prevents diet-induced obesity in mice. FEBS Lett. 2011;585:677–682.
  • Ramachandran S, Venugopal A, Sathisha K, et al. Proteomic profiling of high glucose primed monocytes identifies cyclophilin A as a potential secretory marker of inflammation in type 2 diabetes. Proteomics. 2012;12:2808–2821.
  • Ramachandran S, Venugopal A, Kutty V, et al. Plasma level of cyclophilin A is increased in patients with type 2 diabetes mellitus and suggests presence of vascular disease. Cardiovasc Diabetol. 2014;13:38.
  • Mutlu HH, Caklili OT, Coskunpinar E. Serum concentrations of cyclophilin A in patients with nonalcoholic fatty liver disease. Acta Gastroenterol Belg. 2017;80:3–7.
  • Zhang L, Li Z, Zhang B, et al. PPIA is a novel adipogenic factor implicated in obesity. Obesity. 2015;23:2093–2100.
  • Zhang H, Fan Q, Xie H, et al. Elevated serum cyclophilin B levels are associated with the prevalence and severity of metabolic syndrome. Front Endocrinol (Lausanne). 2017;8:360.
  • Hollie NI, Cash JG, Matlib MA, et al. Micromolar changes in lysophosphatidylcholine concentration cause minor effects on mitochondrial permeability but major alterations in function. Biochim Biophys Acta - Mol Cell Biol Lipids. 2014;1841:888–895.
  • Amaral AU, Cecatto C, da Silva JC, et al. cis-4-decenoic and decanoic acids impair mitochondrial energy, redox and Ca 2+ homeostasis and induce mitochondrial permeability transition pore opening in rat brain and liver: possible implications for the pathogenesis of MCAD deficiency. Biochim Biophys Acta - Bioenergy. 2016;1857:1363–1372.
  • Oyanagi E, Yano H, Kato Y, et al. L-carnitine suppresses oleic acid-induced membrane permeability transition of mitochondria. Cell Biochem Funct. 2008;26:778–786.
  • Palmeira CM, Rana MI, Frederick CB, et al. Induction of the mitochondrial permeability transition in vitro by short-chain carboxylic acids. Biochem Biophys Res Commun. 2000;272:431–435.
  • Rogers C, Davis B, Neufer PD, et al. A transient increase in lipid peroxidation primes preadipocytes for delayed mitochondrial inner membrane permeabilization and ATP depletion during prolonged exposure to fatty acids. Free Radic Biol Med. 2014;67:330–341.
  • Lablanche S, Cottet-Rousselle C, Lamarche F, et al. Protection of pancreatic INS-1 β-cells from glucose- and fructose-induced cell death by inhibiting mitochondrial permeability transition with cyclosporin A or metformin. Cell Death Dis. 2011;2:e134–e134.
  • Tonin AM, Amaral AU, Busanello ENB, et al. Long-chain 3-hydroxy fatty acids accumulating in long-chain 3-hydroxyacyl-CoA dehydrogenase and mitochondrial trifunctional protein deficiencies uncouple oxidative phosphorylation in heart mitochondria. J Bioenerg Biomembr. 2013;45:47–57.
  • Cecatto C, Hickmann FH, Rodrigues MDN, et al. Deregulation of mitochondrial functions provoked by long-chain fatty acid accumulating in long-chain 3-hydroxyacyl-CoA dehydrogenase and mitochondrial permeability transition deficiencies in rat heart - mitochondrial permeability transition pore opening a. Febs J. 2015;282:4714–4726.
  • Hickmann FH, Cecatto C, Kleemann D, et al. Uncoupling, metabolic inhibition and induction of mitochondrial permeability transition in rat liver mitochondria caused by the major long-chain hydroxyl monocarboxylic fatty acids accumulating in LCHAD deficiency. Biochim Biophys Acta - Bioenergy. 2015;1847:620–628.
  • Tominaga H, Katoh H, Odagiri K, et al. Different effects of palmitoyl- l -carnitine and palmitoyl-CoA on mitochondrial function in rat ventricular myocytes. Am J Physiol Circ Physiol. 2008;295:H105–12.
  • Sparagna GC, Hickson-Bick DL, Buja LM, et al. A metabolic role for mitochondria in palmitate-induced cardiac myocyte apoptosis. Am J Physiol Heart Circ Physiol. 2000;279:H2124–32.
  • Shibata H, Ichikawa T, Nakao K, et al. A high glucose condition sensitizes human hepatocytes to hydrogen peroxide-induced cell death. Mol Med Rep. 2008;1:379–385.
  • Yin X, Zheng F, Pan Q, et al. Glucose fluctuation increased hepatocyte apoptosis under lipotoxicity and the involvement of mitochondrial permeability transition opening. J Mol Endocrinol. 2015;55:169–181.
  • Düfer M, Krippeit-Drews P, Lembert N, et al. Diabetogenic effect of cyclosporin A is mediated by interference with mitochondrial function of pancreatic B-cells. Mol Pharmacol. 2001;60:873–879.
  • Jiang M, Wang C, Meng Q, et al. Cyclosporin A attenuates weight gain and improves glucose tolerance in diet-induced obese mice. Mol Cell Endocrinol. 2013;370:96–102.
  • Fuhrmann A, Lopes P, Sereno J, et al. Molecular mechanisms underlying the effects of cyclosporin A and sirolimus on glucose and lipid metabolism in liver, skeletal muscle and adipose tissue in an in vivo rat model. Biochem Pharmacol. 2014;88:216–228.
  • Muduma G, Saunders R, Odeyemi I, et al. Systematic review and meta-analysis of tacrolimus versus ciclosporin as primary immunosuppression after liver transplant. PLoS One. 2016;11:e0160421.
  • Wissing KM, Abramowicz D, Weekers L, et al. Prospective randomized study of conversion from tacrolimus to cyclosporine A to improve glucose metabolism in patients with posttransplant diabetes mellitus after renal transplantation. Am J Transplant. 2018;18:1726–1734.
  • Stanciu C, Trifan A, Muzica C, et al. Efficacy and safety of alisporivir for the treatment of hepatitis C infection. Expert Opin Pharmacother. 2019;20:379–384.
  • Bessone F, Razori MV, Roma MG. Molecular pathways of nonalcoholic fatty liver disease development and progression. Cell Mol Life Sci. 2019;76:99–128.
  • Begriche K, Massart J, Robin M-A, et al. Mitochondrial adaptations and dysfunctions in nonalcoholic fatty liver disease. Hepatology. 2013;58:1497–1507.
  • Mansouri A, Gattolliat C-H, Asselah T. Mitochondrial dysfunction and signaling in chronic liver diseases. Gastroenterology. 2018;155:629–647.
  • Mota M, Banini BA, Cazanave SC, et al. Molecular mechanisms of lipotoxicity and glucotoxicity in nonalcoholic fatty liver disease. Metabolism. 2016;65:1049–1061.
  • Luedde T, Kaplowitz N, Schwabe RF. Cell death and cell death responses in liver disease: mechanisms and clinical relevance. Gastroenterology. 2014;147:765–783.
  • van der Graaff D, Kwanten WJ, Francque SM. The potential role of vascular alterations and subsequent impaired liver blood flow and hepatic hypoxia in the pathophysiology of non-alcoholic steatohepatitis. Med Hypotheses. 2019;122:188–197.
  • Nguyen TT, Stevens MV, Kohr M, et al. Cysteine 203 of cyclophilin D is critical for cyclophilin D activation of the mitochondrial permeability transition pore. J Biol Chem. 2011;286:40184–40192.
  • Linard D, Kandlbinder A, Degand H, et al. Redox characterization of human cyclophilin D: identification of a new mammalian mitochondrial redox sensor? Arch Biochem Biophys. 2009;491:39–45.
  • Folda A, Citta A, Scalcon V, et al. Mitochondrial thioredoxin system as a modulator of cyclophilin D redox state. Sci Rep. 2016;6:23071.
  • López-Erauskin J, Galino J, Bianchi P, et al. Oxidative stress modulates mitochondrial failure and cyclophilin D function in X-linked adrenoleukodystrophy. Brain. 2012;135:3584–3598.
  • Javadov S, Jang S, Parodi-Rullán R, et al. Mitochondrial permeability transition in cardiac ischemia–reperfusion: whether cyclophilin D is a viable target for cardioprotection? Cell Mol Life Sci. 2017;74:2795–2813.
  • Rehman H, Sun J, Shi Y, et al. NIM811 prevents mitochondrial dysfunction, attenuates liver injury, and stimulates liver regeneration after massive hepatectomy. Transplantation. 2011;91:406–412.
  • Fouzas I, Daoudaki M, Sotiropoulos GC, et al. Cyclosporine enhances liver regeneration: the role of hepatocyte MHC expression and PGE2–a study relevant to graft immunogenicity. Eur J Med Res. 2008;13:154–162.
  • Acar T, Ceyhan K, Qolakoglu T. Inhibition of apoptosis prevents liver failure and improves survival rates after extensive hepatectomy in rats. Acta Chir Belg. 2006;106:696–700.
  • Morii Y, Kawano K, Kim Y-I, et al. Augmentative effect of cyclosporin A on rat liver regeneration: influence on hepatocyte growth factor and transforming Growth factor-β1. Eur Surg Res. 1999;31:399–405.
  • Gao WY, Li D, Cai DE, et al. Hepatitis B virus X protein sensitizes HL-7702 cells to oxidative stress-induced apoptosis through modulation of the mitochondrial permeability transition pore. Oncol Rep. 2017;37:48–56.
  • Wang T, Weinman SA. Interactions between hepatitis C virus and mitochondria: impact on pathogenesis and innate immunity. Curr Pathobiol Rep. 2013;1:179–187.
  • Tan C, Guo H, Zheng M, et al. Involvement of mitochondrial permeability transition in hepatitis B virus replication. Virus Res. 2009;145:307–311.
  • Clippinger AJ, Bouchard MJ. Hepatitis B virus HBx protein localizes to mitochondria in primary rat hepatocytes and modulates mitochondrial membrane potential. J Virol. 2008;82:6798–6811.
  • Quarato G, D’Aprile A, Gavillet B, et al. The cyclophilin inhibitor alisporivir prevents hepatitis C virus-mediated mitochondrial dysfunction. Hepatology. 2012;55:1333–1343.
  • Rehman H, Ramshesh VK, Theruvath TP, et al. NIM811 (N-methyl-4-isoleucine cyclosporine), a mitochondrial permeability transition inhibitor, attenuates cholestatic liver injury but not fibrosis in mice. J Pharmacol Exp Ther. 2008;327:699–706.
  • Ramachandran A, Jaeschke H. Acetaminophen hepatotoxicity. Semin Liver Dis. 2019;39:221–234.
  • Kon K, Kim J-S, Jaeschke H, et al. Mitochondrial permeability transition in acetaminophen-induced necrosis and apoptosis of cultured mouse hepatocytes. Hepatology. 2004;40:1170–1179.
  • Ramachandran A, Lebofsky M, Baines CP, et al. Cyclophilin D deficiency protects against acetaminophen-induced oxidant stress and liver injury. Free Radic Res. 2011;45:156–164.
  • King AL, Swain TM, Mao Z, et al. Involvement of the mitochondrial permeability transition pore in chronic ethanol-mediated liver injury in mice. Am J Physiol Liver Physiol. 2014;306:G265–77.
  • King AL, Swain TM, Dickinson DA, et al. Chronic ethanol consumption enhances sensitivity to Ca 2+ -mediated opening of the mitochondrial permeability transition pore and increases cyclophilin D in liver. Am J Physiol Liver Physiol. 2010;299:G954–66.
  • Zhong Z, Ramshesh VK, Rehman H, et al. Acute ethanol causes hepatic mitochondrial depolarization in mice: role of ethanol metabolism. PLoS One. 2014;9:e91308.
  • Song MJ, Malhi H. The unfolded protein response and hepatic lipid metabolism in non alcoholic fatty liver disease. Pharmacol Ther. 2019;203:107401.
  • Lebeaupin C, Vallée D, Hazari Y, et al. Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease. J Hepatol. 2018;69:927–947.
  • Ram BM, Ramakrishna G. Endoplasmic reticulum vacuolation and unfolded protein response leading to paraptosis like cell death in cyclosporine A treated cancer cervix cells is mediated by cyclophilin B inhibition. Biochim Biophys Acta Mol Cell Res. 2014;1843:2497–2512.
  • Siwecka N, Rozpędek W, Pytel D, et al. Dual role of endoplasmic reticulum stress-mediated unfolded protein response signaling pathway in carcinogenesis. Int J Mol Sci. 2019;20:4354.
  • Ciechomska IA, Gabrusiewicz K, Szczepankiewicz AA, et al. Endoplasmic reticulum stress triggers autophagy in malignant glioma cells undergoing cyclosporine a-induced cell death. Oncogene. 2013;32:1518–1529.
  • Rao SR, Sundararajan S, Subbarayan R, et al. Cyclosporine-A induces endoplasmic reticulum stress and influences pro-apoptotic factors in human gingival fibroblasts. Mol Cell Biochem. 2017;429:179–185.
  • Choi Y-M, Cho H-Y, Anwar MA, et al. ATF3 attenuates cyclosporin A-induced nephrotoxicity by downregulating CHOP in HK-2 cells. Biochem Biophys Res Commun. 2014;448:182–188.
  • Groenendyk J, Paskevicius T, Urra H, et al. Cyclosporine A binding to COX-2 reveals a novel signaling pathway that activates the IRE1α unfolded protein response sensor. Sci Rep. 2018;8:16678.
  • Allaire M, Rautou P-E, Codogno P, et al. Autophagy in liver diseases: time for translation? J Hepatol. 2019;70:985–998.
  • Weiskirchen R, Tacke F. Relevance of autophagy in parenchymal and non-parenchymal liver cells for health and disease. Cells. 2019;8:16.
  • Sun T, Ding W, Xu T, et al. Parkin regulates programmed necrosis and myocardial ischemia/reperfusion injury by targeting cyclophilin-D. Antioxid Redox Signal. 2019;31:1177–1193.
  • Biczo G, Vegh ET, Shalbueva N, et al. Mitochondrial dysfunction, through impaired autophagy, leads to endoplasmic reticulum stress, deregulated lipid metabolism, and pancreatitis in animal models. Gastroenterology. 2018;154:689–703.
  • Fakharnia F, Khodagholi F, Dargahi L, et al. Prevention of cyclophilin D-mediated mPTP opening using cyclosporine-A alleviates the elevation of necroptosis, autophagy and apoptosis-related markers following global cerebral ischemia-reperfusion. J Mol Neurosci. 2017;61:52–60.
  • Gonçalves IO, Passos E, Diogo CV, et al. Exercise mitigates mitochondrial permeability transition pore and quality control mechanisms alterations in nonalcoholic steatohepatitis. Appl Physiol Nutr Metab. 2016;41:298–306.
  • Grumati P, Coletto L, Sabatelli P, et al. Autophagy is defective in collagen VI muscular dystrophies, and its reactivation rescues myofiber degeneration. Nat Med. 2010;16:1313–1320.
  • Wang L, Gundelach JH, Bram RJ. Cycloheximide promotes paraptosis induced by inhibition of cyclophilins in glioblastoma multiforme. Cell Death Dis. 2017;8:e2807.
  • Feng W, Xin Y, Xiao Y, et al. Cyclophilin A enhances cell proliferation and xenografted tumor growth of early gastric cancer. Dig Dis Sci. 2015;60:2700–2711.
  • Eberhardt W, Nasrullah U, Pfeilschifter J. Activation of renal profibrotic TGFβ controlled signaling cascades by calcineurin and mTOR inhibitors. Cell Signal. 2018;52:1–11.
  • Wu Q, Wang X, Nepovimova E, et al. Mechanism of cyclosporine A nephrotoxicity: oxidative stress, autophagy, and signalings. Food Chem Toxicol. 2018;118:889–907.
  • Priber J, Fonai F, Jakus PB, et al. Cyclophilin D disruption attenuates lipopolysaccharide-induced inflammatory response in primary mouse macrophages. Biochem Cell Biol. 2015;93:241–250.
  • Shimada K, Crother TR, Karlin J, et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity. 2012;36:401–414.
  • Yeon SH, Yang G, Lee HE, et al. Oxidized phosphatidylcholine induces the activation of NLRP3 inflammasome in macrophages. J Leukoc Biol. 2017;101:205–215.
  • Soe NN, Sowden M, Baskaran P, et al. Acetylation of cyclophilin A is required for its secretion and vascular cell activation. Cardiovasc Res. 2014;101:444–453.
  • Kim K, Kim H, Jeong K, et al. Release of overexpressed CypB activates ERK signaling through CD147 binding for hepatoma cell resistance to oxidative stress. Apoptosis. 2012;17:784–796.
  • Jin ZG, Melaragno MG, Liao DF, et al. Cyclophilin A is a secreted growth factor induced by oxidative stress. Circ Res. 2000;87:789–796.
  • Suzuki J, Jin Z-G, Meoli DF, et al. Cyclophilin A is secreted by a vesicular pathway in vascular smooth muscle cells. Circ Res. 2006;98:811–817.
  • Billich A, Winkler G, Aschauer H, et al. Presence of cyclophilin A in synovial fluids of patients with rheumatoid arthritis. J Exp Med. 1997;185:975–980.
  • Ramachandran S, Kartha CC. Cyclophilin-A: a potential screening marker for vascular disease in type-2 diabetes. Can J Physiol Pharmacol. 2012;90:1005–1015.
  • Xue C, Sowden MP, Berk BC. Extracellular and intracellular cyclophilin A, native and post-translationally modified, show diverse and specific pathological roles in diseases. Arterioscler Thromb Vasc Biol. 2018;38:986–993.
  • Bahmed K, Henry C, Holliday M, et al. Extracellular cyclophilin-A stimulates ERK1/2 phosphorylation in a cell-dependent manner but broadly stimulates nuclear factor kappa B. Cancer Cell Int. 2012;12:1–13.
  • Damsker JM, Okwumabua I, Pushkarsky T, et al. Targeting the chemotactic function of CD147 reduces collagen-induced arthritis. Immunology. 2009;126:55–62.
  • Bukrinsky M. Extracellular cyclophilins in health and disease. Biochim Biophys Acta Gen Subj. 2015;1850:2087–2095.
  • Yurchenko V, Constant S, Eisenmesser E, et al. Cyclophilin-CD147 interactions: A new target for anti-inflammatory therapeutics. Clin Exp Immunol. 2010;160:305–317.
  • Yurchenko V, O’Connor M, Dai WW, et al. CD147 is a signaling receptor for cyclophilin B. Biochem Biophys Res Commun. 2001;288:786–788.
  • Pushkarsky T, Yurchenko V, Vanpouille C, et al. Cell surface expression of CD147/EMMPRIN is regulated by cyclophilin 60. J Biol Chem. 2005;280:27866–27871.
  • Song F, Zhang X, Ren X-B, et al. Cyclophilin A (CyPA) induces chemotaxis independent of its peptidylprolyl Cis-trans isomerase activity. J Biol Chem. 2011;286:8197–8203.
  • Shi W-P, Ju D, Li H, et al. CD147 promotes CXCL1 expression and modulates liver fibrogenesis. Int J Mol Sci. 2018;19:E1145.
  • Li H-Y, Ju D, Zhang D-W, et al. Activation of TGF-β1-CD147 positive feedback loop in hepatic stellate cells promotes liver fibrosis. Sci Rep. 2015;5:16552.
  • Zhang D-W, Zhao Y-X, Wei D, et al. HAb18G/CD147 promotes activation of hepatic stellate cells and is a target for antibody therapy of liver fibrosis. J Hepatol. 2012;57:1283–1291.
  • Iordanskaia T, Malesevic M, Fischer G, et al. Targeting extracellular cyclophilins ameliorates disease progression in experimental biliary atresia. Mol Med. 2015;21:657–664.
  • Stemmy EJ, Balsley MA, Jurjus RA, et al. Blocking cyclophilins in the chronic phase of asthma reduces the persistence of leukocytes and disease reactivation. Am J Respir Cell Mol Biol. 2011;45:991–998.
  • Seizer P, Klingel K, Sauter M, et al. Cyclophilin A affects inflammation, virus elimination and myocardial fibrosis in coxsackievirus B3-induced myocarditis. J Mol Cell Cardiol. 2012;53:6–14.
  • Wang L, Jia J, Wang C, et al. Inhibition of synovitis and joint destruction by a new single domain antibody specific for cyclophilin A in two different mouse models of rheumatoid arthritis. Arthritis Res Ther. 2013;15:R208.
  • Lu G, Jia Z, Zu Q, et al. Inhibition of the cyclophilin A–CD147 interaction attenuates right ventricular injury and dysfunction after acute pulmonary embolism in rats. J Biol Chem. 2018;293:12199–12208.
  • Satoh K, Nigro P, Matoba T, et al. Cyclophilin A enhances vascular oxidative stress and the development of angiotensin II-induced aortic aneurysms. Nat Med. 2009;15:649–656.
  • Satoh K, Nigro P, Zeidan A, et al. Cyclophilin A promotes cardiac hypertrophy in apolipoprotein e-deficient mice. Arterioscler Thromb Vasc Biol. 2011;31:1116–1123.
  • Nigro P, Satoh K, O’Dell MR, et al. Cyclophilin A is an inflammatory mediator that promotes atherosclerosis in apolipoprotein E–deficient mice. J Exp Med. 2011;208:53–66.
  • Von Ungern-Sternberg SNI, Vogel S, Walker-Allgaier B, et al. Extracellular cyclophilin a augments platelet-dependent thrombosis and thromboinflammation. Thromb Haemost. 2017;117:2063–2078.
  • Pasetto L, Pozzi S, Castelnovo M, et al. Targeting extracellular cyclophilin A reduces neuroinflammation and extends survival in a mouse model of amyotrophic lateral sclerosis. J Neurosci. 2017;37:1413–1427.
  • Chang C-S, Su S-L, Kuo C-L, et al. Cyclophilin A: a predictive biomarker of carotid stenosis in cerebral ischemic stroke. Curr Neurovasc Res. 2018;15:111–119.
  • Kröller-Schön S, Steven S, Kossmann S, et al. Molecular mechanisms of the crosstalk between mitochondria and NADPH oxidase through reactive oxygen species—studies in white blood cells and in animal models. Antioxid Redox Signal. 2014;20:247–266.
  • Friedman SL. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev. 2008;88:125–172.
  • Ishikawa Y, Boudko S, Bächinger HP. Ziploc-ing the structure: triple helix formation is coordinated by rough endoplasmic reticulum resident PPIases. Biochim Biophys Acta. 2015;1850:1983–1993.
  • Ishikawa Y, Mizuno K, Bächinger HP. Ziploc-ing the structure 2.0: endoplasmic reticulum-resident peptidyl prolyl isomerases show different activities toward hydroxyproline. J Biol Chem. 2017;292:9273–9282.
  • Gjaltema RAF, Bank RA. Molecular insights into prolyl and lysyl hydroxylation of fibrillar collagens in health and disease. Crit Rev Biochem Mol Biol. 2017;52:74–95.
  • Terajima M, Taga Y, Chen Y, et al. Cyclophilin-B modulates collagen cross-linking by differentially affecting lysine hydroxylation in the helical and telopeptidyl domains of tendon type I collagen. J Biol Chem. 2016;291:9501–9512.
  • Cabral WA, Perdivara I, Weis MA, et al. Abnormal type I collagen post-translational modification and crosslinking in a cyclophilin B KO mouse model of recessive osteogenesis imperfecta. PLoS Genet. 2014;10:e1004465.
  • Sarkar SK, Young PE, Sullivan CE, et al. Detection of cis and trans X-Pro peptide bonds in proteins by 13C NMR: application to collagen. Proc Natl Acad Sci. 1984;81:4800–4803.
  • Terajima M, Taga Y, Cabral WA, et al. Cyclophilin B control of lysine post-translational modifications of skin type I collagen. PLOS Genet. 2019;15:e1008196.
  • Choi JW, Sutor SL, Lindquist L, et al. Severe osteogenesis imperfecta in cyclophilin B-deficient mice. PLoS Genet. 2009;5:e1000750.
  • Pyott SM, Schwarze U, Christiansen HE, et al. Mutations in PPIB (cyclophilin B) delay type I procollagen chain association and result in perinatal lethal to moderate osteogenesis imperfecta phenotypes. Hum Mol Genet. 2011;20:1595–1609.
  • Ishikawa Y, Vranka JA, Boudko SP, et al. Mutation in cyclophilin B that causes hyperelastosis cutis in american quarter horse does not affect peptidylprolyl cis-trans isomerase activity but shows altered cyclophilin B-protein interactions and affects collagen folding. J Biol Chem. 2012;287:22253–22265.
  • Cunningham J. Posttransplantation bone disease. Transplantation. 2005;79:629–634.
  • Shimizu C, Fujita T, Fuke Y, et al. Effects of cyclosporine on bone mineral density in patients with glucocorticoid-dependent nephrotic syndrome in remission. Int Urol Nephrol. 2013;45:803–808.
  • Ponticelli C, Aroldi A. Osteoporosis after organ transplantation. Lancet. 2001;357:1623.
  • Steinmann B, Bruckner P, Superti-Furga A. Cyclosporin A slows collagen triple-helix formation in vivo: indirect evidence for a physiologic role of peptidyl-prolyl cis-trans-isomerase. J Biol Chem. 1991;266:1299–1303.
  • Nakamuta M, Kohjima M, Fukushima M, et al. Cyclosporine suppresses cell growth and collagen production in hepatic stellate cells. Transplant Proc. 2005;37:4598–4602.
  • Kohjima M, Enjoji M, Higuchi N, et al. NIM811, a nonimmunosuppressive cyclosporine analogue, suppresses collagen production and enhances collagenase activity in hepatic stellate cells. Liver Int. 2007;27:1273–1281.
  • Scorneaux B, Thomas G, Hopkins S, et al. The effects of SCY-635, a nonimmunosuppressive cyclosporine analog on stellate cell proliferation, collagen synthesis, TIMP-1 and collagenase production. Hepatology. 2010;52:183.
  • Lie TS, Preissinger H, Bach M, et al. The protective effect of cyclosporine against cirrhotic alteration of the liver. Surgery. 1991;110:847–853.
  • Wang H, Zhang Y, Wang T, et al. N-methyl-4-isoleucine cyclosporine attenuates CCl 4 -induced liver fibrosis in rats by interacting with cyclophilin B and D. J Gastroenterol Hepatol. 2011;26:558–567.
  • Wiesner RH, Ludwig J, Lindor KD, et al. A controlled trial of cyclosporine in the treatment of primary biliary cirrhosis. N Engl J Med. 1990;322:1419–1424.
  • Lombard M, Portmann B, Neuberger J, et al. Cyclosporin a treatment in primary biliary cirrhosis: results of a long-term placebo controlled trial. Gastroenterology. 1993;104:519–526.