355
Views
5
CrossRef citations to date
0
Altmetric
Drug Evaluation

Telacebec: an investigational antibacterial for the treatment of tuberculosis (TB)

ORCID Icon & ORCID Icon
Pages 139-144 | Received 19 Nov 2021, Accepted 13 Jan 2022, Published online: 26 Jan 2022

References

  • WHO. Global Tuberculosis Report 2020; 2020.
  • Koul A, Dendouga N, Vergauwen K, et al. Diarylquinolines target subunit c of mycobacterial ATP synthase. Nat Chem Biol. 2007 Jun;3(6):323–324.
  • Andries K, Verhasselt P, Guillemont J, et al. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science. 2005 Jan 14;307(5707):223–227.
  • Pharmaceutical O. Otsuka Wins European Marketing Authorization for Deltyba(TM) (delamanid). [Media Release] 2014 Apr 30 [cited 2021 Nov 1]; Available from: http://www.otsuka.co.jp/en/company/release/2014/0430_01.html
  • Diacon AH, Pym A, Grobusch MP, et al. Multidrug-resistant tuberculosis and culture conversion with bedaquiline. N Engl J Med. 2014 Aug 21;371(8):723–732.
  • Briasoulis A, Agarwal V, Pierce WJ. QT prolongation and torsade de pointes induced by fluoroquinolones: infrequent side effects from commonly used medications. Cardiology. 2011;120(2):103–110.
  • Johnson JUS. FDA Approves New Pediatric Formulation of SIRTURO® (bedaquiline) as Part of Combination Therapy to Treat Children with Pulmonary Multidrug-Resistant Tuberculosis. [Media Release] 2020 May 27 [cited 2021 Nov 11]; Available from: https://www.jnj.com/u-s-fda-approves-new-pediatric-formulation-of-sirturoo-bedaquiline-as-part-of-combination-therapy-to-treat-children-with-pulmonary-multidrug-resistant-tuberculosis
  • Moodliar R, Aksenova V, Frias MVGI, et al. Bedaquiline for multidrug-resistant TB in paediatric patients. Int J Tuberc Lung Dis. 2021;25(9):716–724.
  • Keam SJ. Pretomanid: first approval. Drugs. 2019 Nov;79(16):1797–1803.
  • Pethe K, Bifani P, Jang J, et al. Discovery of Q203, a potent clinical candidate for the treatment of tuberculosis. Nat Med. 2013 Sep;19(9):1157–1160.
  • de Jager VR, Dawson R, van Niekerk C, et al. Telacebec (Q203), a new antituberculosis agent. N Engl J Med. 2020 Mar 26;382(13):1280–1281.
  • Gong H, Li J, Xu A, et al. An electron transfer path connects subunits of a mycobacterial respiratory supercomplex. Science. 2018 Nov 30;362(6418):eaat8923.
  • Wiseman B, Nitharwal RG, Fedotovskaya O, et al. Structure of a functional obligate complex III2IV2 respiratory supercomplex from Mycobacterium smegmatis. Nat Struct Mol Biol. 2018 Dec;25(12):1128–1136.
  • Black PA, Warren RM, Louw GE, et al. Energy metabolism and drug efflux in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2014;58(5):2491–2503.
  • Beites T, O’Brien K, Tiwari D, et al. Plasticity of the Mycobacterium tuberculosis respiratory chain and its impact on tuberculosis drug development. Nat Commun. 2019 Oct 31;10(1):4970.
  • Matsoso LG, Kana BD, Crellin PK, et al. Function of the cytochrome bc1-aa3 branch of the respiratory network in mycobacteria and network adaptation occurring in response to its disruption. J Bacteriol. 2005 Sep;187(18):6300–6308.
  • Yanofsky DJ, Di Trani JM, Król S, et al. Structure of mycobacterial CIII(2)CIV(2) respiratory supercomplex bound to the tuberculosis drug candidate telacebec (Q203). Elife. 2021;10:e71959.
  • Kim J, Choi J, Kang H, et al. Safety, tolerability, and pharmacokinetics of telacebec (Q203), a new antituberculosis agent, in healthy subjects. Antimicrob Agents Chemother. 2021 Oct 25:Aac0143621. DOI:https://doi.org/10.1128/AAC.01436-21
  • Diacon AH, Maritz JS, Venter A, et al. Time to liquid culture positivity can substitute for colony counting on agar plates in early bactericidal activity studies of antituberculosis agents. Clin Microbiol Infect. 2012 Jul;18(7):711–717.
  • Lounis N, Gevers T, Berg JVD, et al. Prevention of drug carryover effects in studies assessing antimycobacterial efficacy of TMC207. J Clin Microbiol. 2008;46(7):2212–2215.
  • Koul A, Vranckx L, Dhar N, et al. Delayed bactericidal response of Mycobacterium tuberculosis to bedaquiline involves remodelling of bacterial metabolism. Nat Commun. 2014 Feb 26;5:3369.
  • Berube BJ, Parish T. Combinations of respiratory chain inhibitors have enhanced bactericidal activity against Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2017;62(1):e01677–17.
  • Bald D, Villellas C, Lu P, et al. Targeting energy metabolism in Mycobacterium tuberculosis, a new paradigm in antimycobacterial drug discovery. mBio. 2017 Apr 11;8(2). DOI:https://doi.org/10.1128/mBio.00272-17.
  • Lee BS, Hards K, Engelhart CA, et al. Dual inhibition of the terminal oxidases eradicates antibiotic-tolerant Mycobacterium tuberculosis. EMBO Mol Med. 2021 Jan 11;13(1):e13207.
  • Flentie K, Harrison GA, Tükenmez H, et al. Chemical disarming of isoniazid resistance in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2019 May 21;116(21):10510–10517.
  • Lamprecht DA, Finin PM, Rahman MA, et al. Turning the respiratory flexibility of Mycobacterium tuberculosis against itself. Nat Commun. 2016 Aug 10;7(1):12393.
  • Kalia NP, Hasenoehrl EJ, Ab Rahman NB, et al. Exploiting the synthetic lethality between terminal respiratory oxidases to kill Mycobacterium tuberculosis and clear host infection. Proc Natl Acad Sci U S A. 2017 Jul 11;114(28):7426–7431.
  • Chauffour A, Robert J, Veziris N, et al. Telacebec (Q203)-containing intermittent oral regimens sterilized mice infected with Mycobacterium ulcerans after only 16 doses. PLoS Negl Trop Dis. 2020 Aug;14(8):e0007857.
  • Scherr N, Bieri R, Thomas SS, et al. Targeting the Mycobacterium ulcerans cytochrome bc1:aa3 for the treatment of Buruli ulcer. Nat Commun. 2018 Dec 18;9(1):5370.
  • Thomas SS, Kalia NP, and Ruf MT, et al. Toward a single-dose cure for Buruli ulcer. Antimicrob Agents Chemother. 2020 Aug 20;64(9):e00727–20.
  • Arora K, Ochoa-Montano B, Tsang PS, et al. Respiratory flexibility in response to inhibition of cytochrome C oxidase in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2014 Nov;58(11):6962–6965.
  • Kalia NP, Lee BS, Ab Rahman NB, et al. Carbon metabolism modulates the efficacy of drugs targeting the cytochrome bc1:aa3 in Mycobacterium tuberculosis. Sci Rep. 2019 Jun 13;9(1):8608.
  • Hopfner SM, Lee BS, Kalia NP, et al. Structure guided generation of thieno[3,2-d]pyrimidin-4-amine Mycobacterium tuberculosis bd oxidase inhibitors. RSC Medicinal Chemistry. 2021 Jan 1;12(1):73–77.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.