275
Views
4
CrossRef citations to date
0
Altmetric
Review

Chemoresistance and resistance to targeted therapies in biliary tract cancer: what have we learned?

, , , , ORCID Icon & ORCID Icon
Pages 221-233 | Received 07 Dec 2021, Accepted 24 Jan 2022, Published online: 07 Feb 2022

References

  • Ouyang G, Liu Q, Wu Y, et al. The global, regional, and national burden of gallbladder and biliary tract cancer and its attribuTable risk factors in 195 countries and territories, 1990 to 2017: a systematic analysis for the global burden of disease study 2017. Cancer. 2021Jul 1;127(13):2238–2250.
  • Valle J, Wasan H, Palmer DH, et al. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med. 2010 Apr 8;362(14):1273–1281.
  • Valle JW, Borbath I, Khan SA, et al. Biliary cancer: esmo clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2016 Sep;27(suppl 5):v28–v37.
  • Valle JW, Kelley RK, Nervi B, et al. Biliary tract cancer. Lancet. 2021 Jan 30;397(10272):428–444.
  • Banales JM, Marin JJG, Lamarca A, et al. Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nat Rev Gastroenterol Hepatol. 2020 Sep;17(9):557–588. (•) Excellent update on BTC - basic research and clinical aspects.
  • Marin JJG, Sanchon-Sanchez P, Cives-Losada C, et al. Novel pharmacological options in the treatment of cholangiocarcinoma: mechanisms of resistance. Cancers (Basel). 2021 May 13;13(10). 2358.
  • Valle JW, Furuse J, Jitlal M, et al. Cisplatin and gemcitabine for advanced biliary tract cancer: a meta-analysis of two randomised trials. Ann Oncol. 2014 Feb;25(2):391–398.
  • Bridgewater J, Galle PR, Khan SA, et al. Guidelines for the diagnosis and management of intrahepatic cholangiocarcinoma. J Hepatol. 2014 Jun;60(6):1268–1289.
  • Shroff RT, Javle MM, Xiao L, et al. Gemcitabine, cisplatin, and nab-paclitaxel for the treatment of advanced biliary tract cancers: a phase 2 clinical trial. JAMA Oncol. 2019 Jun 1;5(6):824–830.
  • Phelip JM, Desrame J, Edeline J, et al. Modified FOLFIRINOX versus CISGEM as first-line chemotherapy for advanced biliary tract cancer: results of AMEBICA PRODIGE 38 randomized phase II trial. Ann Oncol. 2020 Sep;31:S260–S261.
  • Lamarca A, Palmer DH, Wasan HS, et al. Second-line FOLFOX chemotherapy versus active symptom control for advanced biliary tract cancer (ABC-06): a phase 3, open-label, randomised, controlled trial. Lancet Oncol. 2021 May;22(5):690–701.
  • Yoo C, Jeong JH, Kim KP, et al. Multicenter randomized phase II trial of 5-fluorouracil/leucovorin (5-FU/LV) with or without liposomal irinotecan (nal-IRI) in metastatic biliary tract cancer (BTC) as second-line therapy after progression on gemcitabine plus cisplatin (gemCis): NIFTY trial. Ann Oncol. 2019 Oct;30.
  • Farshidfar F, Zheng S, Gingras MC, et al. Integrative genomic analysis of cholangiocarcinoma identifies distinct idh-mutant molecular profiles. Cell Rep. 2017 Jun 27;19(13):2878–2880.
  • Quaas A, Rehkaemper J, Rueschoff J, et al. Occurrence of high microsatellite-instability/mismatch repair deficiency in nearly 2,000 human adenocarcinomas of the gastrointestinal tract, pancreas, and bile ducts: a study from a large German comprehensive cancer center. Front Oncol. 2021;11:569475.
  • Vogel A, Bathon M, Saborowski A Immunotherapies in clinical development for biliary tract cancer. Expert Opin Investig Drugs. 2021 Apr;30(4):351–363.
  • Rizzo A, Ricci AD, Brandi G PD-L1, TMB, MSI, and other predictors of response to immune checkpoint inhibitors in biliary tract cancer. Cancers (Basel). 2021 Feb 1;13(3). 558
  • Abou-Alfa GK, Sahai V, Hollebecque A, et al. Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: a multicentre, open-label, phase 2 study. Lancet Oncol. 2020 May;21(5):671–684.
  • Mazzaferro V, El-Rayes BF, Droz Dit Busset M, et al. Derazantinib (ARQ 087) in advanced or inoperable FGFR2 gene fusion-positive intrahepatic cholangiocarcinoma. Br J Cancer. 2019 Jan;120(2):165–171.
  • Zhu AX, Macarulla T, Javle MM, et al. Final overall survival efficacy results of ivosidenib for patients with advanced cholangiocarcinoma with idh1 mutation. JAMA Oncol. 2021 Sep 23. 7 11 1669
  • Javle M, Roychowdhury S, Kelley RK, et al. Infigratinib (BGJ398) in previously treated patients with advanced or metastatic cholangiocarcinoma with FGFR2 fusions or rearrangements: mature results from a multicentre, open-label, single-arm, phase 2 study. Lancet Gastroenterol Hepatol. 2021 Oct;6(10):803–815.
  • Goyal L, Meric-Bernstam F, Hollebecque A, et al. Primary results of phase 2 FOENIX-CCA2: the irreversible FGFR1-4 inhibitor futibatinib in intrahepatic cholangiocarcinoma (iCCA) with FGFR2 fusions/rearrangements. Cancer Res. 2021 Jul;81(13).
  • Park JO, Feng YH, Chen YY, et al. Updated results of a phase IIa study to evaluate the clinical efficacy and safety of erdafitinib in Asian advanced cholangiocarcinoma (CCA) patients with FGFR alterations. J Clin Oncol. 2019 May 20;37(15). 4117–4118
  • Subbiah V, Lassen U, Elez E, et al. Dabrafenib plus trametinib in patients with BRAF(V600E)-mutated biliary tract cancer (ROAR): a phase 2, open-label, single-arm, multicentre basket trial. Lancet Oncol. 2020 Sep;21(9):1234–1243.
  • Javle M, Borad MJ, Azad NS, et al. Pertuzumab and trastuzumab for HER2-positive, metastatic biliary tract cancer (MyPathway): a multicentre, open-label, phase 2a, multiple basket study. Lancet Oncol. 2021 Sep;22(9):1290–1300.
  • Jain A, Javle M Molecular profiling of biliary tract cancer: a target rich disease. J Gastrointest Oncol. 2016 Oct;7(5):797–803.
  • Marin JJG, Lozano E, Herraez E, et al. Chemoresistance and chemosensitization in cholangiocarcinoma. Biochim Biophys Acta Mol Basis Dis. 2018 Apr;1864(4 Pt B):1444–1453.
  • Nakamura H, Arai Y, Totoki Y, et al. Genomic spectra of biliary tract cancer. Nat Genet. 2015 Sep;47(9):1003–1010.
  • Marin JJG, Prete MG, Lamarca A, et al. Current and novel therapeutic opportunities for systemic therapy in biliary cancer. Br J Cancer. 2020 Sep;123(7):1047–1059.
  • Wang BL, Zhai HY, Chen BY, et al. Clinical relationship between MDR1 gene and gallbladder cancer. Hepatobiliary Pancreat Dis Int. 2004 May;3(2):296–299.
  • Kreso A, Dick JE Evolution of the cancer stem cell model. Cell Stem Cell. 2014 Mar 6;14(3):275–291.
  • Mayr C, Ocker M, Ritter M, et al. Biliary tract cancer stem cells - translational options and challenges. World J Gastroenterol. 2017 Apr 14;23(14):2470–2482.
  • Agrawal S, Kuvshinoff BW, Khoury T, et al. CD24 expression is an independent prognostic marker in cholangiocarcinoma. J Gastrointest Surg. 2007 Apr;11(4):445–451.
  • Shuang ZY, Wu WC, Xu J, et al. Transforming growth factor-beta1-induced epithelial-mesenchymal transition generates ALDH-positive cells with stem cell properties in cholangiocarcinoma. Cancer Lett. 2014 Nov 28;354(2):320–328.
  • Chen MH, Weng JJ, Cheng CT, et al. ALDH1A3, the major aldehyde dehydrogenase isoform in human cholangiocarcinoma cells, affects prognosis and gemcitabine resistance in cholangiocarcinoma patients. Clin Cancer Res. 2016Aug 15;22(16):4225–4235.
  • Kalluri R, Weinberg RA The basics of epithelial-mesenchymal transition. J Clin Invest. 2009 Jun;119(6):1420–1428.
  • Yamada D, Kobayashi S, Wada H, et al. Role of crosstalk between interleukin-6 and transforming growth factor-beta 1 in epithelial-mesenchymal transition and chemoresistance in biliary tract cancer. Eur J Cancer. 2013 May;49(7):1725–1740.
  • Vaquero J, Guedj N, Claperon A, et al. Epithelial-mesenchymal transition in cholangiocarcinoma: from clinical evidence to regulatory networks. J Hepatol. 2017 Feb;66(2):424–441.
  • Leyva-Illades D, McMillin M, Quinn M, et al. Cholangiocarcinoma pathogenesis: role of the tumor microenvironment. Transl Gastrointest Cancer. 2012;1(1):71–80.
  • Mertens JC, Fingas CD, Christensen JD, et al. Therapeutic effects of deleting cancer-associated fibroblasts in cholangiocarcinoma. Cancer Res. 2013 Jan 15;73(2):897–907.
  • Carpino G, Overi D, Melandro F, et al. Matrisome analysis of intrahepatic cholangiocarcinoma unveils a peculiar cancer-associated extracellular matrix structure. Clin Proteomics. 2019;16:37. 1
  • Sirica AE, Almenara JA, Li C Periostin in intrahepatic cholangiocarcinoma: pathobiological insights and clinical implications. Exp Mol Pathol. 2014 Dec;97(3):515–524.
  • Xiao ZM, Wang XY, Wang AM Periostin induces chemoresistance in colon cancer cells through activation of the PI3K/Akt/survivin pathway. Biotechnol Appl Biochem. 2015 May-Jun;62(3):401–406.
  • Kajiyama K, Maeda T, Takenaka K, et al. The significance of stromal desmoplasia in intrahepatic cholangiocarcinoma: a special reference of ‘scirrhous-type’ and ‘nonscirrhous-type’ growth. Am J Surg Pathol. 1999 Aug;23(8):892–902.
  • Peraldo-Neia C, Massa A, Vita F, et al. A novel multidrug-resistant cell line from an Italian intrahepatic cholangiocarcinoma patient. Cancers (Basel). 2021 Apr 23;13(9). 2051
  • Choodetwattana P, Proungvitaya S, Jearanaikoon P, et al. The upregulation of oct4 in acidic extracellular ph is associated with gemcitabine resistance in cholangiocarcinoma cell lines. Asian Pac J Cancer Prev. 019 Sep 1;20(9):2745–2748.
  • Ruiz-Vela A, Aguilar-Gallardo C, Simon C Building a framework for embryonic microenvironments and cancer stem cells. Stem Cell Rev Rep. 2009 Dec;5(4):319–327.
  • Shi CJ, Gao J, Wang M, et al. CD133(+) gallbladder carcinoma cells exhibit self-renewal ability and tumorigenicity. World J Gastroenterol. 2011 Jun 28;17(24):2965–2971.
  • Hasita H, Komohara Y, Okabe H, et al. Significance of alternatively activated macrophages in patients with intrahepatic cholangiocarcinoma. Cancer Sci. 2010 Aug;101(8):1913–1919.
  • Subimerb C, Pinlaor S, Khuntikeo N, et al. Tissue invasive macrophage density is correlated with prognosis in cholangiocarcinoma. Mol Med Rep. 2010 Jul-Aug;3(4):597–605.
  • Ghidini M, Cascione L, Carotenuto P, et al. Characterisation of the immune-related transcriptome in resected biliary tract cancers. Eur J Cancer. 2017 Nov;86:158–165.
  • Mayr C, Beyreis M, Wagner A, et al. Deregulated micrornas in biliary tract cancer: functional targets and potential biomarkers. Biomed Res Int. 2016;2016:4805270.
  • Bartel DP MicroRNAs: target recognition and regulatory functions. Cell. 2009 Jan 23;136(2):215–233.
  • Zhan M, Zhao X, Wang H, et al. miR-145 sensitizes gallbladder cancer to cisplatin by regulating multidrug resistance associated protein 1. Tumour Biol. 2016 Aug;37(8):10553–10562.
  • Okamoto K, Miyoshi K, Murawaki Y miR-29b, miR-205 and miR-221 enhance chemosensitivity to gemcitabine in HuH28 human cholangiocarcinoma cells. PLoS One. 2013;8(10):e77623.
  • Khandelwal A, Bacolla A, Vasquez KM, et al. Long non-coding RNA: a new paradigm for lung cancer. Mol Carcinog. 2015 Nov;54(11):1235–1251.
  • Bekric D, Neureiter D, Ritter M, et al. Long non-coding RNAs in biliary tract cancer-an up-to-date review. J Clin Med. 2020 Apr 22;9(4). 1200
  • Cai Q, Wang S, Jin L, et al. Long non-coding RNA GBCDRlnc1 induces chemoresistance of gallbladder cancer cells by activating autophagy. Mol Cancer. 2019 Apr 5;18(1):82.
  • Parasramka M, Yan IK, Wang X, et al. BAP1 dependent expression of long non-coding RNA NEAT-1 contributes to sensitivity to gemcitabine in cholangiocarcinoma. Mol Cancer. 2017 Jan 25;16(1):22.
  • Marin JJG, Lozano E, Briz O, et al. Molecular bases of chemoresistance in cholangiocarcinoma. Curr Drug Targets. 2017;18(8):889–900.
  • Fouassier L, Marzioni M, Afonso MB, et al. Signalling networks in cholangiocarcinoma: molecular pathogenesis, targeted therapies and drug resistance. Liver Int. 2019 May;39 Suppl 1:43–62.
  • Marin JJG, Macias RIR, Monte MJ, et al. Molecular bases of drug resistance in hepatocellular carcinoma. Cancers (Basel). 2020 Jun 23;12(6).
  • Pastor-Anglada M, Molina-Arcas M, Casado FJ, et al. Nucleoside transporters in chronic lymphocytic leukaemia. Leukemia. 2004 Mar;18(3):385–393.
  • Borbath I, Verbrugghe L, Lai R, et al. Human equilibrative nucleoside transporter 1 (hENT1) expression is a potential predictive tool for response to gemcitabine in patients with advanced cholangiocarcinoma. Eur J Cancer. 2012 May;48(7):990–996.
  • Martinez-Becerra P, Vaquero J, Romero MR, et al. No correlation between the expression of FXR and genes involved in multidrug resistance phenotype of primary liver tumors. Mol Pharm. 2012 Jun 4;9(6):1693–1704.
  • Tepsiri N, Chaturat L, Sripa B, et al. Drug sensitivity and drug resistance profiles of human intrahepatic cholangiocarcinoma cell lines. World J Gastroenterol. 2005 May 14;11(18):2748–2753.
  • Cao L, Duchrow M, Windhovel U, et al. Expression of MDR1 mRNA and encoding P-glycoprotein in archival formalin-fixed paraffin-embedded gall bladder cancer tissues. Eur J Cancer. 1998 Sep;34(10):1612–1617.
  • Srimunta U, Sawanyawisuth K, Kraiklang R, et al. High expression of ABCC1 indicates poor prognosis in intrahepatic cholangiocarcinoma. Asian Pac J Cancer Prev. 2012;13 Suppl: 125–130.
  • Yang J, Sontag D, Gong Y, et al. Enhanced gemcitabine cytotoxicity with knockdown of multidrug resistance protein genes in human cholangiocarcinoma cell lines. J Gastroenterol Hepatol. 2021 Apr;36(4):1103–1109.
  • Hahnvajanawong C, Chaiyagool J, Seubwai W, et al. Orotate phosphoribosyl transferase mRNA expression and the response of cholangiocarcinoma to 5-fluorouracil. World J Gastroenterol. 2012 Aug 14;18(30):3955–3961.
  • Schmitz KJ, Lang H, Kaiser G, et al. Metallothionein overexpression and its prognostic relevance in intrahepatic cholangiocarcinoma and extrahepatic hilar cholangiocarcinoma (Klatskin tumors). Hum Pathol. 2009 Dec;40(12):1706–1714.
  • Srijiwangsa P, Ponnikorn S, Na-Bangchang K Effect of beta-Eudesmol on NQO1 suppression-enhanced sensitivity of cholangiocarcinoma cells to chemotherapeutic agents. BMC Pharmacol Toxicol.2018 Jun 19;19(1):32.
  • Sato J, Kimura T, Saito T, et al. Gene expression analysis for predicting gemcitabine resistance in human cholangiocarcinoma. J Hepatobiliary Pancreat Sci. 2011 Sep;18(5):700–711.
  • Fisher SB, Fisher KE, Patel SH, et al. Excision repair cross-complementing gene-1, ribonucleotide reductase subunit M1, ribonucleotide reductase subunit M2, and human equilibrative nucleoside transporter-1 expression and prognostic value in biliary tract malignancy. Cancer. 2013 Jan 15;119(2):454–462.
  • Hwang IG, Jang JS, Do JH, et al. Different relation between ERCC1 overexpression and treatment outcomes of two platinum agents in advanced biliary tract adenocarcinoma patients. Cancer Chemother Pharmacol. 2011 Oct;68(4):935–944.
  • Ge X, Wang Y, Li Q, et al. NK4 regulates 5-fluorouracil sensitivity in cholangiocarcinoma cells by modulating the intrinsic apoptosis pathway. Oncol Rep. 2013 Jul;30(1):448–454.
  • Wattanawongdon W, Hahnvajanawong C, Namwat N, et al. Establishment and characterization of gemcitabine-resistant human cholangiocarcinoma cell lines with multidrug resistance and enhanced invasiveness. Int J Oncol. 2015 Jul;47(1):398–410.
  • Marin JJG, Briz O, Herraez E, et al. Molecular bases of the poor response of liver cancer to chemotherapy. Clin Res Hepatol Gastroenterol. 2018 Jun;42(3):182–192.
  • Morton SD, Cadamuro M, Brivio S, et al. Leukemia inhibitory factor protects cholangiocarcinoma cells from drug-induced apoptosis via a PI3K/AKT-dependent Mcl-1 activation. Oncotarget. 2015 Sep 22;6(28):26052–26064.
  • Quintavalle C, Burmeister K, Piscuoglio S, et al. High mobility group A1 enhances tumorigenicity of human cholangiocarcinoma and confers resistance to therapy. Mol Carcinog. 2017 Sep;56(9):2146–2157.
  • Sirica AE, Gores GJ Desmoplastic stroma and cholangiocarcinoma: clinical implications and therapeutic targeting. Hepatology. 2014 Jun;59(6):2397–2402.
  • Herraez E, Lozano E, Macias RI, et al. Expression of SLC22A1 variants may affect the response of hepatocellular carcinoma and cholangiocarcinoma to sorafenib. Hepatology. 2013 Sep;58(3):1065–1073.
  • Lozano E, Macias RIR, Monte MJ, et al. Causes of hOCT1-dependent cholangiocarcinoma resistance to sorafenib and sensitization by tumor-selective gene therapy. Hepatology. 2019 Oct;70(4):1246–1261.
  • Marin JJ, Romero MR, Briz O Molecular bases of liver cancer refractoriness to pharmacological treatment. Curr Med Chem. 2010;17(8):709–740.
  • Peraldo-Neia C, Cavalloni G, Fenocchio E, et al. Prognostic and predictive role of EGFR pathway alterations in biliary cancer patients treated with chemotherapy and anti-EGFR. PLoS One. 2018;13(1):e0191593.
  • Hezel AF, Deshpande V, Zhu AX Genetics of biliary tract cancers and emerging targeted therapies. J Clin Oncol. 2010 Jul 20;28(21):3531–3540.
  • Cavalloni G, Peraldo-Neia C, Varamo C, et al. Preclinical activity of EGFR and MEK1/2 inhibitors in the treatment of biliary tract carcinoma. Oncotarget. 2016 Aug 9;7(32):52354–52363.
  • Vaquero J, Lobe C, Tahraoui S, et al. The IGF2/IR/igf1r pathway in tumor cells and myofibroblasts mediates resistance to egfr inhibition in cholangiocarcinoma. Clin Cancer Res. 2018 Sep 1;24(17):4282–4296.
  • Goyal L, Saha SK, Liu LY, et al. Polyclonal secondary fgfr2 mutations drive acquired resistance to fgfr inhibition in patients with fgfr2 fusion-positive cholangiocarcinoma. Cancer Discov. 2017 Mar;7(3):252–263.
  • Goyal L, Liu LY, Lennerz JK, et al. NTAS120, a covalently-binding FGFR inhibitor (FGFRi), overcomes resistance to BGJ398 in patients with FGFR2 fusion positive cholangiocarcinoma. Cancer Res. 2018 Jul;78(13).
  • Lamberti D, Cristinziano G, Porru M, et al. HSP90 inhibition drives degradation of fgfr2 fusion proteins: implications for treatment of cholangiocarcinoma. Hepatology. 2019 Jan;69(1):131–142.
  • Yokoi K, Kobayashi A, Motoyama H, et al. Survival pathway of cholangiocarcinoma via AKT/mTOR signaling to escape RAF/MEK/ERK pathway inhibition by sorafenib. Oncol Rep. 2018 Feb;39(2):843–850.
  • Wu S, Fu L Tyrosine kinase inhibitors enhanced the efficacy of conventional chemotherapeutic agent in multidrug resistant cancer cells. Mol Cancer. 2018 Feb 19;17(1):25.
  • Geier A, Macias RI, Bettinger D, et al. The lack of the organic cation transporter OCT1 at the plasma membrane of tumor cells precludes a positive response to sorafenib in patients with hepatocellular carcinoma. Oncotarget. 2017 Feb 28;8(9):15846–15857.
  • Grimm D, Lieb J, Weyer V, et al. Organic cation transporter 1 (OCT1) mRNA expression in hepatocellular carcinoma as a biomarker for sorafenib treatment. BMC Cancer. 2016 Feb 12;16:94. 1
  • Lozano E, Herraez E, Briz O, et al. Role of the plasma membrane transporter of organic cations OCT1 and its genetic variants in modern liver pharmacology. Biomed Res Int. 2013; 2013:692071. 2013
  • Cirqueira CS, Felipe-Silva AS, Wakamatsu A, et al. Immunohistochemical assessment of the expression of biliary transportation proteins mrp2 and mrp3 in hepatocellular carcinoma and in cholangiocarcinoma. Pathol Oncol Res. 2019 Oct;25(4):1363–1371.
  • Briz O, Serrano MA, Rebollo N, et al. Carriers involved in targeting the cytostatic bile acid-cisplatin derivatives cis-diammine-chloro-cholylglycinate-platinum(II) and cis-diammine-bisursodeoxycholate-platinum(II) toward liver cells. Mol Pharmacol. 2002 Apr;61(4):853–860.
  • Lozano E, Asensio M, Perez-Silva L, et al. MRP3-Mediated chemoresistance in cholangiocarcinoma: target for chemosensitization through restoring sox17 expression. Hepatology. 2020 Sep;72(3):949–964.
  • Herraez E, Sanchez-Vicente L, Macias RIR, et al. Usefulness of the MRP2 promoter to overcome the chemoresistance of gastrointestinal and liver tumors by enhancing the expression of the drug transporter OATP1B1. Oncotarget. 2017 May 23;8(21):34617–34629.
  • Wang C, Ye H, Zhang L, et al. Enhanced expression of ten-eleven translocation 1 reverses gemcitabine resistance in cholangiocarcinoma accompanied by a reduction in P-glycoprotein expression. Cancer Med. 2019 Mar;8(3):990–1003.
  • Zhan M, Wang H, Xu S-W, et al. Variants in oxidative stress-related genes affect the chemosensitivity through Nrf2-mediated signaling pathway in biliary tract cancer. EBioMedicine. 2019 Oct;48:143–160.
  • Yu J, Shi L, Lin W, et al. UCP2 promotes proliferation and chemoresistance through regulating the NF-kappaB/beta-catenin axis and mitochondrial ROS in gallbladder cancer. Biochem Pharmacol. 2020 Feb;172:113745.
  • Carotenuto P, Hedayat S, Fassan M, et al. Modulation of biliary cancer chemo-resistance through microRNA-mediated rewiring of the expansion of cd133+ Cells. Hepatology. 2020 Sep;72(3):982–996.
  • Chen L, Yan HX, Yang W, et al. The role of microRNA expression pattern in human intrahepatic cholangiocarcinoma. J Hepatol. 2009 Feb;50(2):358–369.
  • Meng F, Henson R, Lang M, et al. Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology. 2006 Jun;130(7):2113–2129.
  • Salati M, Braconi C Noncoding RNA in cholangiocarcinoma. Semin Liver Dis. 2019 Feb;39(1):13–25.
  • Zhang KP, Fang X, Zhang Y, et al. The prognosis of cancer patients undergoing liposomal doxorubicin-based chemotherapy: a systematic review and meta-analysis. Medicine (Baltimore). 2021 Aug 27;100(34):e26690.
  • Rezvantalab S, Drude NI, Moraveji MK, et al. PLGA-based nanoparticles in cancer treatment. Front Pharmacol. 2018;9:1260.
  • Wu HJ, Chu PY Role of cancer stem cells in cholangiocarcinoma and therapeutic implications. Int J Mol Sci. 2019 Aug 25;20(17). 4154
  • Galadari S, Rahman A, Pallichankandy S, et al. Reactive oxygen species and cancer paradox: to promote or to suppress? Free Radic Biol Med. 2017 Mar;104:144–164.
  • Ikeda M, Ohno I, Ueno H, et al. Phase I study of resminostat, an HDAC inhibitor, combined with S-1 in patients with pre-treated biliary tract or pancreatic cancer. Invest New Drugs. 2019 Feb;37(1):109–117.
  • Mayr C, Helm K, Jakab M, et al. The histone methyltransferase G9a: a new therapeutic target in biliary tract cancer. Hum Pathol. 2018 Feb;72:117–126.
  • Mayr C, Kiesslich T, Erber S, et al. HDAC screening identifies the HDAC class I inhibitor romidepsin as a promising epigenetic drug for biliary tract cancer. Cancers (Basel). 2021 Jul 31;13(15). 3862
  • Garcia-Costela M, Escudero-Feliu J, Puentes-Pardo JD, et al. Circadian genes as therapeutic targets in pancreatic cancer. Front Endocrinol (Lausanne). 2020;11:638.
  • Kiesslich T, Mayr C, Neureiter D NRF2: the key to tumor- and patient-dependent chemosensitivity in biliary tract cancer? EBioMedicine. 2019 Nov;49:9–10.
  • Schmidlin CJ, Shakya A, Dodson M, et al. The intricacies of NRF2 regulation in cancer. Semin Cancer Biol. 2021 May 18. 76 110–119
  • Vlachogiannis G, Hedayat S, Vatsiou A, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science. 2018 Feb 23;359(6378):920–926.
  • Amato F, Rae C, Prete MG, et al. Cholangiocarcinoma disease modelling through patients derived organoids. Cells. 2020 Mar 30;9(4). 832
  • Hummel R, Hussey DJ, Haier J MicroRNAs: predictors and modifiers of chemo- and radiotherapy in different tumour types. Eur J Cancer. 2010 Jan;46(2):298–311.
  • Lozano E, Monte MJ, Briz O, et al. Enhanced antitumour drug delivery to cholangiocarcinoma through the apical sodium-dependent bile acid transporter (ASBT). J Control Release. 2015 Oct 28;216:93–102.
  • Lie ALM, Bakker CT, Deurholt T, et al. Selection of tumour specific promoters for adenoviral gene therapy of cholangiocarcinoma. J Hepatol. 2006 Jan;44(1):126–133.
  • Nagi P, Vickers SM, Davydova J, et al. Development of a therapeutic adenoviral vector for cholangiocarcinoma combining tumor-restricted gene expression and infectivity enhancement. J Gastrointest Surg. 2003 Mar-Apr;7(3):364–371.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.