562
Views
2
CrossRef citations to date
0
Altmetric
Review

Investigational agents for the treatment of methicillin-resistant Staphylococcus aureus (MRSA) bacteremia: progress in clinical trials

, , , &
Pages 263-279 | Received 12 Nov 2021, Accepted 06 Feb 2022, Published online: 14 Feb 2022

References

  • Laupland KB. Incidence of bloodstream infection: a review of population-based studies. Clin Microbiol Infect. 2013 Jun;19(6):492–500.
  • Bearman GM, Wenzel RP. Bacteremias: a leading cause of death. Arch Med Res. 2005 Nov-Dec;36(6):646–659.
  • David MZ, Daum RS, Bayer AS, et al. Staphylococcus aureus bacteremia at 5 US academic medical centers, 2008-2011: significant geographic variation in community-onset infections. Clin Infect Dis. 2014 Sep 15;59(6):798–807.
  • Kaasch AJ, Barlow G, Edgeworth JD, et al. Staphylococcus aureus bloodstream infection: a pooled analysis of five prospective, observational studies. J Infect. 2014 Mar;68(3):242–251.
  • van Hal SJ, Jensen SO, Vaska VL, et al. Predictors of mortality in staphylococcus aureus bacteremia. Clin Microbiol Rev. 2012 Apr;25(2):362–386.
  • Cosgrove SE, Sakoulas G, Perencevich EN, et al. Comparison of mortality associated with methicillin-resistant and methicillin-susceptible staphylococcus aureus bacteremia: a meta-analysis. Clin Infect Dis. 2003;36(1):53–59.
  • Kourtis AP, Hatfield K, Baggs J, et al. Vital signs: epidemiology and recent trends in methicillin-resistant and in methicillin-susceptible staphylococcus aureus bloodstream infections - United States. MMWR Morb Mortal Wkly Rep. 2019 Mar 8;68(9):214–219.
  • Bassetti M, Trecarichi EM, Mesini A, et al. Risk factors and mortality of healthcare-associated and community-acquired Staphylococcus aureus bacteraemia. Clin Microbiol Infect. 2012 Sep;18(9):862–869.
  • Anantha RV, Jegatheswaran J, Pepe DL, et al. Risk factors for mortality among patients with Staphylococcus aureus bacteremia: a single-centre retrospective cohort study. CMAJ Open. 2014 Oct;2(4):E352–9.
  • Austin ED, Sullivan SS, Macesic N, et al. Reduced mortality of Staphylococcus aureus bacteremia in a retrospective cohort study of 2139 patients: 2007-2015. Clin Infect Dis. 2020 Apr 10;70(8):1666–1674.
  • Horino T, Hori S. Metastatic infection during Staphylococcus aureus bacteremia. J Infect Chemother. 2020;26(2):162–169.
  • Liu C, Bayer A, and Cosgrove SE, et al. Clinical practice guidelines by the infectious diseases society of america for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis. 2011 Feb 1;52(3):e18–55.
  • Patel S, Preuss CV, Bernice F, Vancomycin, StatPearls, 2021; Treasure Island (FL)
  • van Hal SJ, Paterson DL, Lodise TP. Systematic review and meta-analysis of vancomycin-induced nephrotoxicity associated with dosing schedules that maintain troughs between 15 and 20 milligrams per liter. Antimicrob Agents Chemother. 2013 Feb;57(2):734–744.
  • Kim SH, Kim KH, Kim HB, et al. Outcome of vancomycin treatment in patients with methicillin-susceptible Staphylococcus aureus bacteremia. Antimicrob Agents Chemother. 2008 Jan;52(1):192–197.
  • Rybak MJ. The pharmacokinetic and pharmacodynamic properties of vancomycin. Clin Infect Dis. 2006;42:S35–S39.
  • Aljohani S, Layqah L, Masuadi E, et al. Occurrence of vancomycin MIC creep in methicillin resistant isolates in Saudi Arabia. J Infect Public Health. 2020 Oct;13(10):1576–1579.
  • Kehrmann J, Kaase M, Szabados F, et al. Vancomycin MIC creep in MRSA blood culture isolates from Germany: a regional problem? Eur J Clin Microbiol Infect Dis. 2011 May;30(5):677–683.
  • Diaz R, Afreixo V, Ramalheira E, et al. Evaluation of vancomycin MIC creep in methicillin-resistant Staphylococcus aureus infections-a systematic review and meta-analysis. Clin Microbiol Infect. 2018 Feb;24(2):97–104.
  • Prakash V, Lewis JS II, Jorgensen JH. Vancomycin MICs for methicillin-resistant Staphylococcus aureus isolates differ based upon the susceptibility test method used. Antimicrob Agents Chemother. 2008 Dec;52(12):4528.
  • Edwards B, Milne K, Lawes T, et al. Is vancomycin MIC “creep” method dependent? analysis of methicillin-resistant Staphylococcus aureus susceptibility trends in blood isolates from North East Scotland from 2006 to 2010. J Clin Microbiol. 2012 Feb;50(2):318–325.
  • Sader HS, Fey PD, Limaye AP, et al. Evaluation of vancomycin and daptomycin potency trends (MIC creep) against methicillin-resistant Staphylococcus aureus isolates collected in nine U.S. medical centers from 2002 to 2006. Antimicrob Agents Chemother. 2009 Oct;53(10):4127–4132.
  • Tenover FC, Moellering RC Jr. The rationale for revising the clinical and laboratory standards institute vancomycin minimal inhibitory concentration interpretive criteria for Staphylococcus aureus. Clin Infect Dis. 2007 May 1;44(9):1208–1215.
  • Howden BP, Davies JK, Johnson PD, et al. Reduced vancomycin susceptibility in Staphylococcus aureus, including vancomycin-intermediate and heterogeneous vancomycin-intermediate strains: resistance mechanisms, laboratory detection, and clinical implications. Clin Microbiol Rev. 2010 Jan;23(1):99–139.
  • McGuinness WA, Malachowa N, DeLeo FR. Vancomycin resistance in Staphylococcus aureus. Yale J Biol Med. 2017 Jun;90(2):269–281.
  • Butler MS, Hansford KA, Blaskovich MA, et al. Glycopeptide antibiotics: back to the future. J Antibiot (Tokyo). 2014 Sep;67(9):631–644.
  • Shariati A, Dadashi M, Moghadam MT, et al. Global prevalence and distribution of vancomycin resistant, vancomycin intermediate and heterogeneously vancomycin intermediate Staphylococcus aureus clinical isolates: a systematic review and meta-analysis. Sci Rep. 2020 Jul 29;10(1):12689.
  • van Hal SJ, Lodise TP, Paterson DL. The clinical significance of vancomycin minimum inhibitory concentration in Staphylococcus aureus infections: a systematic review and meta-analysis. Clin Infect Dis. 2012 Mar;54(6):755–771.
  • Lodise TP, Graves J, Evans A, et al. Relationship between vancomycin MIC and failure among patients with methicillin-resistant Staphylococcus aureus bacteremia treated with vancomycin. Antimicrob Agents Chemother. 2008 Sep;52(9):3315–3320.
  • Sakoulas G, Moise-Broder PA, Schentag J, et al. Relationship of MIC and bactericidal activity to efficacy of vancomycin for treatment of methicillin-resistant Staphylococcus aureus bacteremia. J Clin Microbiol. 2004 Jun;42(6):2398–2402.
  • Adani S, Bhowmick T, Weinstein MP, et al. Impact of vancomycin MIC on clinical outcomes of patients with methicillin-resistant Staphylococcus aureus bacteremia treated with vancomycin at an institution with suppressed MIC reporting. Antimicrob Agents Chemother. 2018 Apr;62(4). DOI:https://doi.org/10.1128/AAC.02512-17
  • Yeh YC, Yeh KM, Lin TY, et al. Impact of vancomycin MIC creep on patients with methicillin-resistant Staphylococcus aureus bacteremia. J Microbiol Immunol Infect. 2012 Jun;45(3):214–220.
  • Zhang S, Sun X, Chang W, et al. Systematic review and meta-analysis of the epidemiology of vancomycin-intermediate and heterogeneous vancomycin-intermediate Staphylococcus aureus isolates. PLoS One. 2015;10(8):e0136082.
  • Miller WR, Bayer AS, Arias CA. Mechanism of action and Resistance to daptomycin in Staphylococcus aureus and Enterococci. Cold Spring Harb Perspect Med. 2016 Nov 1;6(11). DOI:https://doi.org/10.1101/cshperspect.a026997
  • Grein F, Muller A, Scherer KM, et al. Ca(2+)-Daptomycin targets cell wall biosynthesis by forming a tripartite complex with undecaprenyl-coupled intermediates and membrane lipids. Nat Commun. 2020 Mar 19;11(1):1455.
  • Figueroa DA, Mangini E, Amodio-Groton M, et al. Safety of high-dose intravenous daptomycin treatment: three-year cumulative experience in a clinical program. Clin Infect Dis. 2009 Jul 15;49(2):177–180.
  • Falcone M, Russo A, Venditti M, et al. Considerations for higher doses of daptomycin in critically ill patients with methicillin-resistant Staphylococcus aureus bacteremia. Clin Infect Dis. 2013 Dec;57(11):1568–1576.
  • Fowler VG Jr., Boucher HW, Corey GR, et al. Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. N Engl J Med. 2006 Aug 17;355(7):653–665.
  • Patel N, Lubanski P, Ferro S, et al. Correlation between vancomycin MIC values and those of other agents against gram-positive bacteria among patients with bloodstream infections caused by methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2009 Dec;53(12):5141–5144.
  • Humphries RM, Pollett S, Sakoulas G. A current perspective on daptomycin for the clinical microbiologist. Clin Microbiol Rev. 2013 Oct;26(4):759–780.
  • Silverman JA, Mortin LI, Vanpraagh AD, et al. Inhibition of daptomycin by pulmonary surfactant: in vitro modeling and clinical impact. J Infect Dis. 2005 Jun 15;191(12):2149–2152.
  • Martinez Perez-Crespo PM, Lopez Cortes LE. Ceftobiprole: a clinical view. Rev Esp Quimioter. 2021 Sep;34(Suppl 1):32–34.
  • Noel GJ, Strauss RS, Amsler K, et al. Results of a double-blind, randomized trial of ceftobiprole treatment of complicated skin and skin structure infections caused by gram-positive bacteria. Antimicrob Agents Chemother. 2008 Jan;52(1):37–44.
  • Hamed K, Engelhardt M, Jones ME, et al. Ceftobiprole versus daptomycin in Staphylococcus aureus bacteremia: a novel protocol for a double-blind, phase III trial. Future Microbiol. 2020;15(1):35–48.
  • Morosini MI, Diez-Aguilar M, Canton R. Mechanisms of action and antimicrobial activity of ceftobiprole. Rev Esp Quimioter. 2019 Sep;32 Suppl 3:3–10.
  • Liapikou A, Cilloniz C, Torres A. Ceftobiprole for the treatment of pneumonia: a European perspective. Drug Des Devel Ther. 2015;9:4565–4572.
  • Casapao AM, Davis SL, Barr VO, et al. Large retrospective evaluation of the effectiveness and safety of ceftaroline fosamil therapy. Antimicrob Agents Chemother. 2014 May;58(5):2541–2546.
  • Arshad S, Huang V, Hartman P, et al. Ceftaroline fosamil monotherapy for methicillin-resistant Staphylococcus aureus bacteremia: a comparative clinical outcomes study. Int J Infect Dis. 2017 Apr;57:27–31.
  • Burnett YJ, Echevarria K, Traugott KA. Ceftaroline as Salvage Monotherapy for Persistent MRSA Bacteremia. Ann Pharmacother. 2016 Dec;50(12):1051–1059.
  • Raad I, Darouiche R, Vazquez J, et al. Efficacy and safety of weekly dalbavancin therapy for catheter-related bloodstream infection caused by gram-positive pathogens. Clin Infect Dis. 2005 Feb 1;40(3):374–380.
  • Billeter M, Zervos MJ, Chen AY, et al. Dalbavancin: a novel once-weekly lipoglycopeptide antibiotic. Clin Infect Dis. 2008 Feb 15;46(4):577–583.
  • Werth BJ, Jain R, Hahn A, et al. Emergence of dalbavancin non-susceptible, vancomycin-intermediate Staphylococcus aureus (VISA) after treatment of MRSA central line-associated bloodstream infection with a dalbavancin- and vancomycin-containing regimen. Clin Microbiol Infect. 2018 Apr;24(4):429 e1–29 e5.
  • Werth BJ, Ashford NK, Penewit K, et al. Dalbavancin exposure in vitro selects for dalbavancin-non-susceptible and vancomycin-intermediate strains of methicillin-resistant Staphylococcus aureus. Clin Microbiol Infect. 2021 Jun;27(6):910 e1–10 e8.
  • Stryjewski ME, Lentnek A, O’Riordan W, et al. A randomized Phase 2 trial of telavancin versus standard therapy in patients with uncomplicated Staphylococcus aureus bacteremia: the ASSURE study. BMC Infect Dis. 2014. 14. doi:https://doi.org/10.1186/1471-2334-14-14
  • Holland TL, Chambers HF, and Boucher HW, et al. Considerations for clinical trials of Staphylococcus aureus bloodstream infection in adults. Clin Infect Dis. 2019 Feb 15;68(5):865–872.
  • A Phase 3 Telavancin Staphylococcus Aureus (S. Aureus) Bacteremia Trial. 2020. Accessed 15 10 2021. [ cited; Available from: https://clinicaltrials.gov/ct2/show/results/NCT02208063
  • Hashemian SMR, Farhadi T, Ganjparvar M. Linezolid: a review of its properties, function, and use in critical care. Drug Des Devel Ther. 2018;12:1759–1767.
  • Wilcox MH, Tack KJ, Bouza E, et al. Complicated skin and skin-structure infections and catheter-related bloodstream infections: noninferiority of linezolid in a phase 3 study. Clin Infect Dis. 2009 Jan 15;48(2):203–212.
  • Senior K. FDA issue linezolid warning. Lancet Infect Dis. 2007;7(5):310.
  • Kemnic TR, Coleman M, Trimethoprim Sulfamethoxazole, StatPearls, 2021; Treasure Island (FL)
  • Markowitz N, Quinn EL, Saravolatz LD. Trimethoprim-sulfamethoxazole compared with vancomycin for the treatment of Staphylococcus aureus infection. Ann Intern Med. 1992 Sep 1;117(5):390–398.
  • Paul M, Bishara J, Yahav D, et al. Trimethoprim-sulfamethoxazole versus vancomycin for severe infections caused by meticillin resistant Staphylococcus aureus: randomised controlled trial. BMJ. 2015 May 14;350:h2219.
  • Wehrli W. Rifampin: mechanisms of action and resistance. Rev Infect Dis. 1983 Jul-Aug;5(Suppl 3):S407–11.
  • Forrest GN, Tamura K. Rifampin combination therapy for nonmycobacterial infections. Clin Microbiol Rev. 2010 Jan;23(1):14–34.
  • Zimmerli W, Sendi P. Role of rifampin against Staphylococcal biofilm infections in vitro, in animal models, and in orthopedic-device-related infections. Antimicrob Agents Chemother. 2019 Feb;63(2). https://doi.org/10.1128/AAC.01746-18
  • Jorgensen NP, Skovdal SM, Meyer RL, et al. Rifampicin-containing combinations are superior to combinations of vancomycin, linezolid and daptomycin against Staphylococcus aureus biofilm infection in vivo and in vitro. Pathog Dis. 2016 Jun;74(4):ftw019.
  • Darouiche RO, Hamill RJ. Antibiotic penetration of and bactericidal activity within endothelial cells. Antimicrob Agents Chemother. 1994 May;38(5):1059–1064.
  • Bayer AS, Lam K. Efficacy of vancomycin plus rifampin in experimental aortic-valve endocarditis due to methicillin-resistant Staphylococcus aureus: in vitro-in vivo correlations. J Infect Dis. 1985 Jan;151(1):157–165.
  • Thwaites GE, Scarborough M, and Szubert A, et al., Adjunctive rifampicin for Staphylococcus aureus bacteraemia (ARREST): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet. 391(10121): 668–678. 2018.
  • Bush K, Bradford PA. beta-Lactams and beta-Lactamase Inhibitors: an Overview. Cold Spring Harb Perspect Med. 2016 Aug 1;6(8). DOI:https://doi.org/10.1101/cshperspect.a025247
  • Pandey N, Cascella M, Beta Lactam Antibiotics, StatPearls, 2021; Treasure Island (FL)
  • Tang SS, Apisarnthanarak A, Hsu LY. Mechanisms of beta-lactam antimicrobial resistance and epidemiology of major community- and healthcare-associated multidrug-resistant bacteria. Adv Drug Deliv Rev. 2014 Nov 30;78:3–13.
  • Beck WD, Berger-Bachi B, Kayser FH. Additional DNA in methicillin-resistant Staphylococcus aureus and molecular cloning of mec-specific DNA. J Bacteriol. 1986 Feb;165(2):373–378.
  • Barber KE, Ireland CE, Bukavyn N, et al. Observation of “seesaw effect” with vancomycin, teicoplanin, daptomycin and ceftaroline in 150 unique MRSA strains. Infect Dis Ther. 2014 Jun;3(1):35–43.
  • Tong SYC, Lye DC, Yahav D, et al. Effect of vancomycin or daptomycin with vs without an antistaphylococcal beta-lactam on mortality, bacteremia, relapse, or treatment failure in patients with MRSA bacteremia: a randomized clinical trial. JAMA. 2020 Feb 11;323(6):527–537.
  • Eljaaly K, Alshehri S, Erstad BL. Systematic review and meta-analysis of the safety of Antistaphylococcal Penicillins compared to Cefazolin. Antimicrob Agents Chemother. 2018 Apr;62(4). DOI:https://doi.org/10.1128/AAC.01816-17
  • Johnson TM, Molina KC, Miller MA, et al. Combination ceftaroline and daptomycin salvage therapy for complicated methicillin-resistant Staphylococcus aureus bacteraemia compared with standard of care. Int J Antimicrob Agents. 2021 Apr;57(4):106310.
  • Sakoulas G, Moise PA, Casapao AM, et al. Antimicrobial salvage therapy for persistent staphylococcal bacteremia using daptomycin plus ceftaroline. Clin Ther. 2014 Oct 1;36(10):1317–1333.
  • Geriak M, Haddad F, Rizvi K, et al. Clinical data on daptomycin plus ceftaroline versus standard of care monotherapy in the treatment of methicillin-Resistant Staphylococcus aureus bacteremia. Antimicrob Agents Chemother. 2019 May;63(5). doi:https://doi.org/10.1128/AAC.02483-18
  • Silver LL. Fosfomycin: mechanism and Resistance. Cold Spring Harb Perspect Med. 2017 Feb 1;7(2). DOI:https://doi.org/10.1101/cshperspect.a025262
  • Del Rio A, Gasch O, Moreno A, et al. Efficacy and safety of fosfomycin plus imipenem as rescue therapy for complicated bacteremia and endocarditis due to methicillin-resistant Staphylococcus aureus: a multicenter clinical trial. Clin Infect Dis. 2014 Oct 15;59(8):1105–1112.
  • Pericas JM, Moreno A, Almela M, et al. Efficacy and safety of fosfomycin plus imipenem versus vancomycin for complicated bacteraemia and endocarditis due to methicillin-resistant Staphylococcus aureus: a randomized clinical trial. Clin Microbiol Infect. 2018 Jun;24(6):673–676.
  • Garcia-de-la-maria C, Gasch O, Garcia-Gonzalez J, et al. The combination of daptomycin and fosfomycin has synergistic, potent, and rapid bactericidal activity against methicillin-resistant staphylococcus aureus in a rabbit model of experimental endocarditis. Antimicrob Agents Chemother. 2018 Jun;62(6). doi:https://doi.org/10.1128/AAC.02633-17
  • Pujol M, Miro JM, Shaw E, et al. Daptomycin plus fosfomycin versus daptomycin alone for methicillin-resistant staphylococcus aureus bacteremia and endocarditis: a randomized clinical trial. Clin Infect Dis. 2021 May 4;72(9):1517–1525.
  • Arbeit RD, Karakawa WW, Vann WF, et al. Predominance of two newly described capsular polysaccharide types among clinical isolates of Staphylococcus aureus. Diagn Microbiol Infect Dis. 1984;2(2):85–91.
  • Boyle-Vavra S, Li X, Alam MT, et al. USA300 and USA500 clonal lineages of Staphylococcus aureus do not produce a capsular polysaccharide due to conserved mutations in the cap5 locus. mBio. 2015 Apr 7;6(2). DOI:https://doi.org/10.1128/mBio.02585-14
  • Diekema DJ, Richter SS, Heilmann KP, et al. Continued emergence of USA300 methicillin-resistant Staphylococcus aureus in the United States: results from a nationwide surveillance study. Infect Control Hosp Epidemiol. 2014 Mar;35(3):285–292.
  • Lee JC, Park JS, Shepherd SE, et al. Protective efficacy of antibodies to the Staphylococcus aureus type 5 capsular polysaccharide in a modified model of endocarditis in rats. Infect Immun. 1997 Oct;65(10):4146–4151.
  • Fattom AI, Sarwar J, Ortiz A, et al. A Staphylococcus aureus capsular polysaccharide (CP) vaccine and CP-specific antibodies protect mice against bacterial challenge. Infect Immun. 1996 May;64(5):1659–1665.
  • Benjamin DK, Schelonka R, White R, et al. A blinded, randomized, multicenter study of an intravenous Staphylococcus aureus immune globulin. J Perinatol. 2006 May;26(5):290–295.
  • Rupp ME, Holley HP Jr., Lutz J, et al. Phase II, randomized, multicenter, double-blind, placebo-controlled trial of a polyclonal anti-Staphylococcus aureus capsular polysaccharide immune globulin in treatment of Staphylococcus aureus bacteremia. Antimicrob Agents Chemother. 2007 Dec;51(12):4249–4254.
  • Nabi Biopharmaceuticals Announces Results of StaphVAX® Confirmatory Phase III Clinical Trial. 2005. Accessed 5 11 2021. [ cited; Available from: https://www.sec.gov/Archives/edgar/data/72444/000119312505214434/dex99.htm
  • Peacock SJ, Moore CE, Justice A, et al. Virulent combinations of adhesin and toxin genes in natural populations of Staphylococcus aureus. Infect Immun. 2002 Sep;70(9):4987–4996.
  • Colque-Navarro P, Palma M, Soderquist B, et al. Antibody responses in patients with staphylococcal septicemia against two Staphylococcus aureus fibrinogen binding proteins: clumping factor and an extracellular fibrinogen binding protein. Clin Diagn Lab Immunol. 2000 Jan;7(1):14–20.
  • Siboo IR, Cheung AL, Bayer AS, et al. Clumping factor A mediates binding of Staphylococcus aureus to human platelets. Infect Immun. 2001 May;69(5):3120–3127.
  • Wolz C, Goerke C, Landmann R, et al. Transcription of clumping factor A in attached and unattached Staphylococcus aureus in vitro and during device-related infection. Infect Immun. 2002 Jun;70(6):2758–2762.
  • Hall AE, Domanski PJ, Patel PR, et al. Characterization of a protective monoclonal antibody recognizing Staphylococcus aureus MSCRAMM protein clumping factor A. Infect Immun. 2003 Dec;71(12):6864–6870.
  • Patti JM. A humanized monoclonal antibody targeting Staphylococcus aureus. Vaccine. 2004 Dec 6;22(Suppl 1):S39–43.
  • Weems JJ Jr., Steinberg JP, Filler S, et al. Phase II, randomized, double-blind, multicenter study comparing the safety and pharmacokinetics of tefibazumab to placebo for treatment of Staphylococcus aureus bacteremia. Antimicrob Agents Chemother. 2006 Aug;50(8):2751–2755.
  • John JF. Drug evaluation: tefibazumab–a monoclonal antibody against staphylococcal infection. Curr Opin Mol Ther. 2006 ;8(5):455–460.
  • Falugi F, Kim HK, Missiakas DM, et al. Role of protein A in the evasion of host adaptive immune responses by Staphylococcus aureus. mBio. 2013 Aug 27;4(5):e00575–13.
  • Sun Y, Emolo C, Holtfreter S, et al. Staphylococcal Protein A Contributes to Persistent Colonization of Mice with Staphylococcus aureus. J Bacteriol. 2018 May 1;200(9). DOI:https://doi.org/10.1128/JB.00735-17
  • Varshney AK, Kuzmicheva GA, Lin J, et al. A natural human monoclonal antibody targeting Staphylococcus Protein A protects against Staphylococcus aureus bacteremia. PLoS One. 2018;13(1):e0190537.
  • Huynh T, Stecher M, McKinnon J, et al. Safety and Tolerability of 514G3, a true human anti-protein A monoclonal antibody for the treatment of S. aureus bacteremia. Open Forum Infect Dis. 2016;3(suppl_1). DOI:https://doi.org/10.1093/ofid/ofw172.1057
  • XBiotech announces top-line results for 514G3 antibody therapy in serious Staphylococcus aureus infections. 2017. Accessed 19 10 2021. [ cited; Available from: https://www.globenewswire.com/news-release/2017/04/03/953500/0/en/XBiotech-Announces-Top-Line-Results-for-514G3-Antibody-Therapy-in-Serious-Staphylococcus-aureus-Infections.html
  • Garzoni C, Kelley WL. Return of the Trojan horse: intracellular phenotype switching and immune evasion by Staphylococcus aureus. EMBO Mol Med. 2011 Mar;3(3):115–117.
  • Peyrusson F, Tulkens PM, Van Bambeke F. Cellular pharmacokinetics and intracellular activity of gepotidacin against staphylococcus aureus isolates with different resistance phenotypes in models of cultured phagocytic cells. Antimicrob Agents Chemother. 2018 Apr;62(4). DOI:https://doi.org/10.1128/AAC.02245-17
  • Lehar SM, Pillow T, Xu M, et al. Novel antibody–antibiotic conjugate eliminates intracellular S. aureus. Nature. 2015;527(7578):323–328.
  • Staben LR, Koenig SG, Lehar SM, et al. Targeted drug delivery through the traceless release of tertiary and heteroaryl amines from antibody-drug conjugates. Nat Chem. 2016 Dec;8(12):1112–1119.
  • Zhou C, Lehar S, Gutierrez J, et al. Pharmacokinetics and pharmacodynamics of DSTA4637A: a novel THIOMAB antibody antibiotic conjugate against Staphylococcus aureus in mice. MAbs. 2016;8(8):1612–1619.
  • Peck M, Rothenberg Michael E, Deng R, et al. A Phase 1, Randomized, Single-Ascending-Dose Study To Investigate the Safety, Tolerability, and Pharmacokinetics of DSTA4637S, an Anti-Staphylococcus aureus Thiomab Antibody-Antibiotic Conjugate, in Healthy Volunteers. Antimicrob Agents Chemother. 2019;63(6):e02588–18.
  • Rymut SM, Deng R, Owen R, et al. 1305 comparison of pharmacokinetics of DSTA4637S, a novel THIOMAB(TM) antibody-antibiotic conjugate, in patients with Staphylococcus aureus bacteremia receiving standard-of-care antibiotics with pharmacokinetics in healthy volunteers. Open Forum Infect Dis. 2020;7(Suppl 1):S666–S67.
  • Jun SY, Jung GM, Son JS, et al. Comparison of the antibacterial properties of phage endolysins SAL-1 and LysK. Antimicrob Agents Chemother. 2011 Apr;55(4):1764–1767.
  • Jun SY, Jung GM, Yoon SJ, et al. Antibacterial properties of a pre-formulated recombinant phage endolysin, SAL-1. Int J Antimicrob Agents. 2013 Feb;41(2):156–161.
  • Kim N-H, Park Wan B, Cho Jeong E, et al. Effects of phage endolysin SAL200 combined with antibiotics on Staphylococcus aureus infection. Antimicrob Agents Chemother. 2018;62(10):e00731–18.
  • Jun SY, Jung GM, Yoon SJ, et al. Preclinical safety evaluation of intravenously administered SAL200 containing the recombinant phage endolysin SAL-1 as a pharmaceutical ingredient. Antimicrob Agents Chemother. 2014;58(4):2084–2088.
  • Jun SY, Jang IJ, and Yoon S, et al. Pharmacokinetics and tolerance of the phage endolysin-based candidate drug SAL200 after a single intravenous administration among healthy volunteers. Antimicrob Agents Chemother. 2017 Jun;61(6). DOI:https://doi.org/10.1128/AAC.02629-16
  • A study to evaluate the safety, PK, PD, immunogenicity of N-Rephasin® SAL200 in healthy male Volunteers. 2021. Accessed 5 11 2021. [ cited; Available from: https://clinicaltrials.gov/ct2/show/results/NCT03446053
  • Phase iia clinical study of N-Rephasin® SAL200. 2021. Accessed 5 11 2021. [ cited; Available from: https://clinicaltrials.gov/ct2/show/results/NCT03089697
  • Schuch R, Lee HM, Schneider BC, et al. Combination therapy with lysin CF-301 and antibiotic is superior to antibiotic alone for treating methicillin-resistant Staphylococcus aureus-induced murine bacteremia. J Infect Dis. 2014 May 1;209(9):1469–1478.
  • Schuch R, Khan BK, and Raz A, et al. Bacteriophage lysin CF-301, a potent antistaphylococcal biofilm agent. Antimicrob Agents Chemother. 2017 Jul;61(7):e02666–16.
  • Indiani C, Sauve K, Raz A, et al. The antistaphylococcal lysin, CF-301, activates key host factors in human blood to potentiate methicillin-resistant staphylococcus aureus bacteriolysis. Antimicrob Agents Chemother. 2019 Apr;63(4). doi:https://doi.org/10.1128/AAC.02291-18
  • Watson A, Sauve K, Cassino C, et al. Exebacase demonstrates in vitro synergy with a broad range of antibiotics against both methicillin-resistant and methicillin-susceptible staphylococcus aureus. Antimicrob Agents Chemother. 2020 Jan 27;64(2). DOI:https://doi.org/10.1128/AAC.01885-19
  • Exebacase Pipeline. 2021. Accessed 11 11 2021. [ cited; Available from: https://www.contrafect.com/pipeline/exebacase
  • Fowler VG Jr., Das AF, and Lipka-Diamond J, et al. Exebacase for patients with Staphylococcus aureus bloodstream infection and endocarditis. J Clin Invest. 2020 Jul 1;130(7):3750–3760.
  • Stewart CL, Turner MS, Frens JJ, et al. Real-world experience with oritavancin therapy in invasive gram-positive infections. Infect Dis Ther. 2017 Jun;6(2):277–289.
  • Tice A. Oritavancin: a new opportunity for outpatient therapy of serious infections. Clin Infect Dis. 2012 Apr;54(Suppl 3):S239–43.
  • Oritavancin for Staphylococcus Aureus Infections in Opioid Users. 2018. Accessed 21 1 2022. [ cited; Available from: https://clinicaltrials.gov/ct2/show/NCT03761953
  • Hall RG 2nd, Smith WJ, Putnam WC, et al. An evaluation of tedizolid for the treatment of MRSA infections. Expert Opin Pharmacother. 2018 Sep;19(13):1489–1494.
  • Renzoni A, Kelley WL, Rosato RR, et al. Molecular bases determining daptomycin resistance-mediated resensitization to beta-lactams (seesaw effect) in methicillin-resistant staphylococcus aureus. Antimicrob Agents Chemother. 2017 Jan;61(1). doi:https://doi.org/10.1128/AAC.01634-16
  • Gu J, Xu W, Lei L, et al. LysGH15, a novel bacteriophage lysin, protects a murine bacteremia model efficiently against lethal methicillin-resistant Staphylococcus aureus infection. J Clin Microbiol. 2011 Jan;49(1):111–117.
  • Channabasappa S, Chikkamadaiah R, Durgaiah M, et al. Efficacy of chimeric ectolysin P128 in drug-resistant Staphylococcus aureus bacteraemia in mice. J Antimicrob Chemother. 2018 Dec 1;73(12):3398–3404.
  • Yang H, Zhang H, Wang J, et al. A novel chimeric lysin with robust antibacterial activity against planktonic and biofilm methicillin-resistant Staphylococcus aureus. Sci Rep. 2017 Jan 9;7:40182.
  • ContraFect announces U.S. FDA grants breakthrough therapy designation to exebacase for the treatment of methicillin-resistant staphylococcus aureus (mrsa) bacteremia, including right-sided endocarditis. 2020. Accessed 11 11 2021. [ cited; Available from: https://www.globenewswire.com/en/news-release/2020/02/24/1989110/0/en/ContraFect-Announces-U-S-FDA-Grants-Breakthrough-Therapy-Designation-to-Exebacase-for-the-Treatment-of-Methicillin-Resistant-Staphylococcus-aureus-MRSA-Bacteremia-Including-Right-S.html
  • Rose W, Fantl M, Geriak M, et al. Current paradigms of combination therapy in methicillin-resistant staphylococcus aureus (mrsa) bacteremia: does it work, which combination, and for which patients? Clin Infect Dis. 2021 Dec 16;73(12):2353–2360.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.