321
Views
2
CrossRef citations to date
0
Altmetric
Drug Evaluation

ALZT-OP1: an experimental combination regimen for the treatment of Alzheimer’s disease

ORCID Icon, , , , , ORCID Icon, , , ORCID Icon, , , , , & ORCID Icon show all
Pages 759-771 | Received 07 Mar 2022, Accepted 24 Jun 2022, Published online: 29 Jun 2022

References

  • Alzheimer’s Disease Facts and Figures. 2021. Last accessed: March 7, 2022. Available from: https://www.alz.org/alzheimers-dementia/facts-figures
  • Cavazzoni P. FDA’s decision to approve new treatment for Alzheimer’s disease. FDA, 2021. Cited March 7, 2022. https://www.fda.gov/drugs/news-events-human-drugs/fdas-decisionapprove-new-treatment-alzheimers-disease
  • Hyman BT, Phelps CH, Beach TG, et al. National institute on aging- Alzheimer’s association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement. 2012;8(1):1–13.
  • Heneka MT, Carson MJ, El Khoury J, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015;14(4):388–405.
  • Tanaka M, Toldi J, Vécsei L. Exploring the etiological links behind neurodegenerative diseases: inflammatory cytokines and bioactive kynurenines. Int J Mol Sci. 2020 Mar 31;21(7):2431.
  • Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002;297(5580):353–356.
  • Sun MK, Alkon DL. Neuro-regeneration therapeutic for alzheimer’s dementia: perspectives on neurotrophic activity. Trends Pharmacol Sci. 2019;40(9):655–668.
  • Panza F, Lozupone M, Logroscino G, et al. A critical appraisal of amyloid-β-targeting therapies for Alzheimer disease. Nat Rev Neurol. 2019;15(2):73–88.
  • Villemagne VL, Pike KE, Chételat G, et al. Longitudinal assessment of Abeta and cognition in aging and Alzheimer disease. Ann Neurol. 2011;69(1):181–192.
  • Johnson KA, Minoshima S, Bohnen N, et al. Alzheimer’s Association. Society of nuclear medicine and molecular imaging; amyloid imaging taskforce. appropriate use criteria for amyloid PET: a report of the amyloid imaging task force, the society of nuclear medicine and molecular imaging, and the Alzheimer’s association. Alzheimers Dement. 2013;9(1):e-1–16.
  • Rossini PM, Di Iorio R, Vecchio F, et al. Early diagnosis of Alzheimer’s disease: the role of biomarkers including advanced EEG signals analysis. An IFCN-sponsored panel of experts. Clin Neurophysiol. 2020;131(6):1287–1310.
  • Panza F, Lozupone M, Bellomo A, et al. Do anti-amyloid-β drugs affect neuropsychiatric status in Alzheimer’s disease patients? Ageing Res Rev. 2019;55:100948.
  • Imbimbo BP, Ippati S, Watling M, et al. A critical appraisal of tau-targeting therapies for primary and secondary tauopathies. Alzheimers Dement. 2021 Sep 17;18(5):1008–1037.
  • NICE. Donepezil, galantamine, rivastigmine and memantine for the treatment of Alzheimer’s disease. London: National Institute for Health and Care Excellence; 2011.
  • Li DD, Zhang YH, Zhang W, et al. Meta-analysis of randomized controlled trials on the efficacy and safety of donepezil, galantamine, rivastigmine, and memantine for the treatment of Alzheimer’s disease. Front Neurosci. 2019;13:472.
  • IMS Health. White paper IMS disease insight. Alfinito P. Innovative therapies innovative therapies for Alzheimer’s disease. New treatments will drive significant market. Cited: March 7, 2022. Available from: http://www.pharma-iq.com/pre-clinical-discovery-anddevelopment/white-papers/ims-disease-insights-%E2%80%93-alzheimer%E2%80%99s-disease
  • Cited: February 15, 2022. Available from: https://www.alzforum.org/news/research-news/2021-turning-point-alzheimers-research-and-therapy
  • Bloom GS. Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol. 2014;71(4):505–508.
  • Imbimbo BP, Watling M. What have we learned from past failures of investigational drugs for Alzheimer’s disease? Expert Opin Investig Drugs. 2021;30(12):1175–1182.
  • Serrano-Pozo A, Das S, Hyman BT. APOE and Alzheimer’s disease: advances in genetics, pathophysiology, and therapeutic approaches. Lancet Neurol. 2021;20(1):68–80.4.
  • Hampel H, Caraci F, Cuello AC, et al. A path toward precision medicine for neuroinflammatory mechanisms in Alzheimer’s disease. Front Immunol. 2020;11:456.
  • Oset-Gasque MJ, Marco-Contelles J. Alzheimer’s disease, the “one-molecule, one-target” paradigm, and the multitarget directed ligand approach. ACS Chem Neurosci. 2018;9(3):401–403.
  • Peters JU. Polypharmacology—Foe or friend? J Med Chem. 2013;56(22):8955–8971.
  • Sun W, Sanderson PE, Zheng W. Drug combination therapy increases successful drug repositioning. Drug Discov Today. 2016;21(7):1189–1195.
  • CR J Jr, Bennett DA, Blennow K, et al. NIA-AA Research Framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14(4):535–562.
  • Jack CR Jr., Knopman DS, Jagust WJ, et al., Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013;12(2):207–216. .
  • Imbimbo BP, Watling M. Investigational BACE inhibitors for the treatment of Alzheimer’s disease. Expert Opin Investig Drugs. 2019;28(11):967–975.
  • Panza F, Lozupone M, Dibello V, et al. Are antibodies directed against amyloid-β (Aβ) oligomers the last call for the Aβ hypothesis of Alzheimer’s disease? Immunotherapy. 2019;11(1):3–6.
  • Panza F, Lozupone M, Seripa D, et al. Amyloid-β immunotherapy for Alzheimer disease: is it now a long shot? Ann Neurol. 2019;85(3):303–315.
  • Brookmeyer R, Abdalla N. Design and sample size considerations for Alzheimer’s disease prevention trials using multistate models. Clin Trials. 2019;16(2):111–119.
  • Swanson CJ, Zhang Y, Dhadda S, et al. A randomized, double- blind, phase 2b proof of- concept clinical trial in early Alzheimer’s disease with lecanemab, an anti- Aβ protofibril antibody. Alzheimer's Res Ther. 2021;13(1):80.
  • Mintun MA, Lo AC, Duggan Evans C, et al. Donanemab in early Alzheimer’s disease. N Engl J Med. 2021;384(18):1691–1704.
  • Ricci M, Cimini A, Camedda R, et al. Tau biomarkers in dementia: positron emission tomography radiopharmaceuticals in tauopathy assessment and future perspective. Int J Mol Sci. 2021;22(23):13002.
  • Panza F, Lozupone M, Solfrizzi V, et al. Time to test antibacterial therapy in Alzheimer’s disease. Brain. 2019;142(10):2905–2929.
  • Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol. 2021;17(3):157–172.
  • Liddelow SA, Guttenplan KA, Clarke LE, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541(7638):481–487.
  • Kim JJ, Diamond DM. The stressed hippocampus, synaptic plasticity and lost memories. Nat Rev Neurosci. 2002;3(6):453–462.
  • Manning AM, Davis RJ. Targeting JNK for therapeutic benefit: from junk to gold? Nat Rev Drug Discov. 2003;2(7):554–565.
  • Reynolds CH, Utton MA, Gibb GM, et al. Stress-activated protein kinase/c-Jun N-terminal kinase phosphorylates tau protein. J Neurochem. 1997;68(4):1736–1744.
  • Hirosumi J, Tuncman G, Chang L, et al. A central role for JNK in obesity and insulin resistance. Nature. 2002;420(6913):333–337.
  • Pugazhenthi S, Qin L, Reddy PH. Common neurodegenerative pathways in obesity, diabetes, and Alzheimer’s disease. Biochim Biophys Acta Mol Basis Dis. 2017;1863(5):1037–1045.
  • Hong S, Beja-Glasser VF, Nfonoyim BM, et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science. 2016;352(6286):712–716.
  • Szepesi Z, Manouchehrian O, Bachiller S, et al. Bidirectional microglia-neuron communication in health and disease. Front Cell Neurosci. 2018;12:323.
  • Imbimbo BP, Solfrizzi V, Panza F. Are NSAIDs useful to treat Alzheimer’s disease or mild cognitive impairment? Front Aging Neurosci. 2010;2:19.
  • In’t Veld BA, Ruitenberg A, Hofman A, et al. Nonsteroidal antiinflammatory drugs and the risk of Alzheimer’s disease. N Engl J Med. 2001;345(21):1515–1521.
  • Alafuzoff I, Overmyer M, Helisalmi S, et al. Lower counts of astroglia and activated microglia in patients with Alzheimer’s disease with regular use of non-steroidal anti-inflammatory drugs. J Alzheimers Dis. 2000;2(1):37–46.
  • Weggen S, Eriksen JL, Das P, et al., A subset of NSAIDs lower amyloidogenic Abeta42 independently of cyclooxygenase activity. Nature. 2001;414(6860):212–216. .
  • Kotilinek LA, Westerman MA, Wang Q, et al. Cyclooxygenase-2 inhibition improves amyloid- beta-mediated suppression of memory and synaptic plasticity. Brain. 2008;131(Pt 3):651–664.
  • Jaturapatporn D, Isaac MG, McCleery J, et al. Aspirin, steroidal and non-steroidal anti-inflammatory drugs for the treatment of Alzheimer’s disease. Cochrane Database Syst Rev. 2012;2:CD006378. .
  • Vlad SC, Miller DR, Kowall NW, et al. Protective effects of NSAIDs on the development of Alzheimer disease. Neurology. 2008;70(19):1672–1677.
  • McGettigan P, Henry D. Cardiovascular risk and inhibition of cyclooxygenase: a systematic review of the observational studies of selective and nonselective inhibitors of cyclooxygenase 2. JAMA. 2006;296(13):1633–1644.
  • Pasqualetti P, Bonomini C, Dal Forno G, et al. A randomized controlled study on effects of ibuprofen on cognitive progression of Alzheimer’s disease. Aging Clin Exp Res. 2009;21(2):102–110.
  • Van Broeck B, Timmers M, Ramael S, et al. Impact of frequent cerebrospinal fluid sampling on Aβ levels: systematic approach to elucidate influencing factors. Alzheimers Res Ther. 2016;8(1):21.
  • Lleó A, Berezovska O, Herl L, et al. Nonsteroidal anti-inflammatory drugs lower Abeta42 and change presenilin 1 conformation. Nat Med. 2004;10(10):1065–1106.
  • Varvel NH, Bhaskar K, Kounnas MZ, et al. NSAIDs prevent, but do not reverse, neuronal cell cycle reentry in a mouse model of Alzheimer disease. J Clin Invest. 2009;119(12):3692–3702.
  • Avramovich Y, Amit T, Youdim MB. Non-steroidal anti inflammatory drugs stimulate secretion of non-amyloidogenic precursor protein. J Biol Chem. 2002;277(35):31466–31473.
  • Sastre M, Dewachter I, Rossner S, et al. Nonsteroidal anti-inflammatory drugs repress β-secretase gene promoter activity by the activation of PPARγ. Proc Natl Acad Sci USA. 2006;103(2):443–448.
  • Morihara T, Teter B, Yang F, et al. Ibuprofen suppresses interleukin-1β induction of pro-amyloidogenic α1-antichymotrypsin to ameliorate β-amyloid (Aβ) pathology in Alzheimer’s models. Neuropsychopharmacology. 2005;30(6):1111–1120.
  • Heneka MT, Sastre M, Dumitrescu- Ozimek L, et al. Acute treatment with the PPARγ agonist pioglitazone and ibuprofen reduces glial inflammation and Aβ1-42 levels in APPV717I transgenic mice. Brain. 2005;128(Pt 6):1442–1453.
  • Dill J, Patel AR, Yang XL, et al. A molecular mechanism for ibuprofen mediated RhoA inhibition in neurons. J Neurosci. 2010;30(3):963–972.
  • Fu Q, Hue J, Li S. Nonsteroidal anti-inflammatory drugs promote axon regeneration via RhoA inhibition. J Neurosci. 2007;27(15):4154–4164.
  • Hori Y, Takeda S, Cho H, et al., A Food and Drug Administration-approved asthma therapeutic agent impacts amyloid β in the brain in a transgenic model of Alzheimer disease. J Biol Chem. 2015;290(4):1966–1978. .
  • Lim GP, Yang F, Chu T, et al. Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer’s disease. J Neurosci. 2000;20(15):5709–5714.
  • Akaishi T, Morimoto T, Shibao M, et al. Structural requirements for the flavonoid fisetin in inhibiting fibril formation of amyloid beta protein. Neurosci Lett. 2008;444(3):280–285.
  • Ushikubo H, Watanabe S, Tanimoto Y, et al. 3,3’,4’,5,5’-Pentahydroxyflavone is a potent inhibitor of amyloid β fibril formation. Neurosci Lett. 2012;513(1):51–56.
  • Elmaleh DR, Shoup TM, Fischman AJ, et al. Evaluation of F-18 radiolabeled cromolyn as a potential Ab polymerization inhibitor and PET tracer. Poster at Human Amyloid Image (HAI) Conference, Miami, Florida, January 2014, see Section 2.3, p. 63.
  • Richards R, Dickson CR, Renwick AG, et al. Absorption and disposition kinetics of cromolyn sodium and the influence of inhalation technique. J Pharmacol Exp Ther. 1987;241(3):1028–1032.
  • Aswania OA, Corlett SA, Chrystyn H. Relative bioavailability of sodium cromoglycate to the lung following inhalation, using urinary excretion. Br J Clin Pharmacol. 1999;47(6):613–618.
  • Keller M, Schierholz J. Have inadequate delivery systems hampered the clinical success of inhaled disodium cromoglycate? Time for reconsideration. Expert Opin Drug Deliv. 2011;8(1):1–17.
  • Zhang C, Griciuc A, Hudry E, et al., Cromolyn reduces levels of the Alzheimer’s disease-associated amyloid β-protein by promoting microglial phagocytosis. Sci Rep. 2018;8(1):1144. .
  • Dubbelaar ML, Kracht L, Eggen BJL, et al. The kaleidoscope of microglial phenotypes. Front Immunol. 2018;9:1753.
  • Cherry JD, Olschowka JA, O’Banion MK. Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J Neuroinflamm. 2014;11(1):98.
  • Kondo T, Imamura K, Funayama M, et al. iPSC-based compound screening and in vitro trials identify a synergistic anti-amyloid β combination for Alzheimer’s disease. Cell Rep. 2017 21;21(8):2304–2312.
  • Shoup TM, Griciuc A, Normandin MD, et al. Evaluation of fluorinated cromolyn derivatives as potential therapeutics for Alzheimer’s disease. J Alzheimers Dis. 2021;80(2):775–786.
  • Wang Y-J, Monteagudo A, Downey MA, et al. Cromolyn inhibits the secretion of inflammatory cytokines by human microglia (HMC3). Sci Rep. 2021;11(1):8054.
  • Wang YJ, Downey MA, Choi S, et al. Cromolyn platform suppresses fibrosis and inflammation, promotes microglial phagocytosis and neurite outgrowth. Sci Rep. 2021;11(1):22161.
  • Brazier D, Perry R, Keane J, et al., Pharmacokinetics of cromolyn and ibuprofen in healthy elderly volunteers. Clin Drug Investig. 2017;37(11):1025–1034. .
  • Forloni G. Alzheimer’s disease: from basic science to precision medicine approach. BMJ Neurol Open. 2020;2(2):e000079.
  • Lozupone M, Solfrizzi V, D’Urso F, et al. Anti-amyloid-β protein agents for the treatment of Alzheimer’s disease: an update on emerging drugs. Expert Opin Emerg Drugs. 2020;25(3):319–335.
  • Green Valley announces NMPA approval of oligomannate for mild to moderate Alzheimer’s disease. [cited 2020 Aug 5]. Available from: https://www.greenvalleypharma.com/En/Index/pageView/catid/48/id/28.html
  • Cao W, Zheng H. Peripheral immune system in aging and Alzheimer’s disease. Mol Neurodegener. 2018;13(1):51.
  • Culliford D, Sharples R, Sharif S et al. Etanercept in Alzheimer disease: a randomized, placebo-controlled, double-blind, phase 2 trial. Neurology. 2015;84(21):2161–2168.
  • Lopes KP, Snijders GJL, Humphrey J, et al. Genetic analysis of the human microglial transcriptome across brain regions, aging and disease pathologies. Nat Genet. 2022;54(1):4–17.
  • Borgomaneri S, Battaglia S, Sciamanna G, et al. Memories are not written in stone: re-writing fear memories by means of non-invasive brain stimulation and optogenetic manipulations. Neurosci Biobehav Rev. 2021;127:334–352.
  • Chang CH, Lane HY, Lin CH. Brain Stimulation in Alzheimer’s Disease. Front Psychiatry. 2018;9:201.
  • X-L B, Jiao -S-S, Lian Y, et al. Perspectives on the tertiary prevention strategy for Alzheimer’s Disease. Curr Alzheimer Res. 2016;13(3):307–316.
  • Ettcheto M, Cano A, Sanchez-López E, et al. Masitinib for the treatment of Alzheimer’s disease. Neurodegener Dis Manag. 2021;11(4):263–276.
  • Hashemiaghdam A, Mroczek M. Microglia heterogeneity and neurodegeneration: the emerging paradigm of the role of immunity in Alzheimer’s disease. J Neuroimmunol. 2020;341:577185.
  • Srinivasan K, Friedman BA, Etxeberria A, et al. Alzheimer’s patient microglia exhibit enhanced aging and unique transcriptional activation. Cell Rep. 2020;31(13):107843.
  • Castellani RJ, Lee HG, Zhu X, et al. Alzheimer disease pathology as a host response. J Neuropathol Exp Neurol. 2008;67(6):523–531.
  • Krstic D, Knuesel I. Deciphering the mechanism underlying late-onset Alzheimer disease. Nat Rev Neurol. 2013;9(1):25–34.
  • Jones DT, Graff-Radford J, Lowe VJ, et al. Tau, amyloid, and cascading network failure across the Alzheimer’s disease spectrum. Cortex. 2017;97:143–159.
  • Do Carmo S, Kannel B, Cuello AC. The nerve growth factor metabolic pathway dysregulation as cause of Alzheimer’s cholinergic atrophy. Cells. 2021 Dec 22;11(1):16.
  • Butterfield DA, Di Domenico F, Barone E. Elevated risk of type 2 diabetes for development of Alzheimer disease: a key role for oxidative stress in brain. Biochim Biophys Acta. 2014;1842(9):1693–1706.
  • Castello MA, Soriano S. Rational heterodoxy: cholesterol reformation of the amyloid doctrine. Ageing Res Rev. 2013;12(1):282–288.
  • Swerdlow RH, Burns JM, Khan SM. The Alzheimer’s disease mitochondrial cascade hypothesis: progress and perspectives. Biochim Biophys Acta. 2014;1842(8):1219–1231.
  • Benek O, Korabecny J, Soukup O. A perspective on multi-target drugs for Alzheimer’s disease. Trends Pharmacol Sci. 2020;41(7):434–445.
  • Sperling RA, Aisen PS, Beckett LA, et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the national institute on aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):280–292.
  • Mormino EC, Papp KV, Rentz DM, et al. Early and late change on the preclinical Alzheimer’s cognitive composite in clinically normal older individuals with elevated amyloid β. Alzheimers Dement. 2017;13(9):1004–1012.
  • Donohue MC, Sperling RA, Petersen R, et al. Alzheimer’s disease neuroimaging initiative. Association between elevated brain amyloid and subsequent cognitive decline among cognitively normal persons. JAMA. 2017;317(22):2305–2316.
  • CR J Jr, Wiste HJ, Therneau TM, et al. Associations of amyloid, tau, and neurodegeneration biomarker profiles with rates of memory decline among individuals without dementia. JAMA. 2019;321(23):2316–2325.
  • Jessen F, Amariglio RE, Buckley RF, et al., The characterisation of subjective cognitive decline. Lancet Neurol. 2020;19(3):271–278. .
  • Vos SJ, Xiong C, Visser PJ, et al. Preclinical Alzheimer’s disease and its outcome: a longitudinal cohort study. Lancet Neurol. 2013;12(10):957–965.
  • Insel PS, Hansson O, Mackin RS, et al. Alzheimer’s Disease neuroimaging initiative. Amyloid pathology in the progression to mild cognitive impairment. Neurobiol Aging. 2018;64:76–84.
  • Sperling RA, Donohue MC, Raman R, et al. Association of factors with elevated amyloid burden in clinically normal older individuals. JAMA Neurol. 2020;77(6):735–745.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.