378
Views
1
CrossRef citations to date
0
Altmetric
Review

Hypertrophic cardiomyopathy: an up-to-date snapshot of the clinical drug development pipeline

, &
Pages 1027-1052 | Received 04 Mar 2022, Accepted 11 Aug 2022, Published online: 13 Sep 2022

References

  • Elliott PM, Anastasakis A, Borger MA, et al. ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy: the task force for the diagnosis and management of hypertrophic cardiomyopathy of the European society of cardiology (ESC). Eur Heart J. 2014;35:2733–2779. Authors/Task Force Members.
  • Ommen SR, Mital S, Burke MA, et al. AHA/ACC guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy: a report of the American college of cardiology/American heart association joint committee on clinical practice guidelines. J Am Coll Cardiol. 2020;76(25):e159–e240.
  • Semsarian C, Ingles J, Maron MS, et al. New perspectives on the prevalence of hypertrophic cardiomyopathy. J Am Coll Cardiol. 2015;65(12):1249–1254.
  • Maron BJ. Clinical course and management of hypertrophic cardiomyopathy. N Engl J Med. 2018;379(7):655–668.
  • Geske JB, Ommen SR, Gersh BJ. Hypertrophic cardiomyopathy: clinical update. JACC Heart Fail. 2018;6(5):364–375.
  • Kogut J, Popjes ED. Hypertrophic Cardiomyopathy 2020. Curr Cardiol Rep. 2020;22(11):154.
  • Marian AJ, Braunwald E. Hypertrophic cardiomyopathy: genetics, pathogenesis, clinical manifestations, diagnosis, and therapy. Circ Res. 2017;121(7):749–770.
  • Ho CY, Day SM, Ashley EA, et al. Genotype and lifetime burden of disease in hypertrophic cardiomyopathy: insights from the sarcomeric human cardiomyopathy registry (SHaRe). Circulation. 2018;138(14):1387–1398.
  • Hughes SE. The pathology of hypertrophic cardiomyopathy. Histopathology. 2004;44(5):412–427.
  • Olivotto I, Girolami F, Sciagra R, et al. Microvascular function is selectively impaired in patients with hypertrophic cardiomyopathy and sarcomere myofilament gene mutations. J Am Coll Cardiol. 2011;58(8):839–848.
  • Pagourelias ED, Alexandridis GM, Vassilikos VP. Fibrosis in hypertrophic cardiomyopathy: role of novel echo techniques and multi-modality imaging assessment. Heart Fail Rev. 2021;26(6):1297–1310.
  • Marian A. Molecular genetic basis of hypertrophic cardiomyopathy. Circ Res. 2021;128(10):1533–1553.
  • Velicki L, Jakovljevic DG, Preveden A, et al. Genetic determinants of clinical phenotype in hypertrophic cardiomyopathy. BMC Cardiovasc Disord. 2020;20(1):516.
  • Walsh R, Offerhaus JA, Tadros R, et al. Minor hypertrophic cardiomyopathy genes, major insights into the genetics of cardiomyopathies. Nat Rev Cardiol. 2022;19(3):151–167.
  • Elliott PM. Evolving story of clinical trials in hypertrophic cardiomyopathy. Circ Heart Fail. 2018;11(1):e004572.
  • Wilder T, Ryba DM, Wieczorek DF, et al. N-acetylcysteine reverses diastolic dysfunction and hypertrophy in familial hypertrophic cardiomyopathy. Am J Physiol Heart Circ Physiol. 2015;309(10):H1720–30.
  • Stücker S, Kresin N, Carrier L, et al. Nebivolol desensitizes myofilaments of a hypertrophic cardiomyopathy mouse model. Front Physiol. 2017;8():558.
  • Lan F, Lee AS, Liang P, et al. Abnormal calcium handling properties underlie familial hypertrophic cardiomyopathy pathology in patient-specific induced pluripotent stem cells. Cell Stem Cell. 2013;12(1):101–113.
  • Han L, Li Y, Tchao J, et al. Study familial hypertrophic cardiomyopathy using patient-specific induced pluripotent stem cells. Cardiovasc Res. 2014;104(2):258–269.
  • Viola H, Johnstone V, Cserne Szappanos H, et al. The L-type Ca2+ channel facilitates abnormal metabolic activity in the cTnI-G2++03S mouse model of hypertrophic cardiomyopathy. J Physiol. 2016;594(14):4051–4070.
  • Viola HM, Johnstone VP, Cserne Szappanos H, et al. The role of the L-type Ca2+ channel in altered metabolic activity in a murine model of hypertrophic cardiomyopathy. JACC Basic Transl Sci. 2016;1(1–2):61–72.
  • Flenner F, Geertz B, Reischmann-Düsener S, et al. Diltiazem prevents stress-induced contractile deficits in cardiomyocytes, but does not reverse the cardiomyopathy phenotype in Mybpc3-knock-in mice. J Physiol. 2017;595(12):3987–3999.
  • Li X, Lu WJ, Li Y, et al. MLP-deficient human pluripotent stem cell derived cardiomyocytes develop hypertrophic cardiomyopathy and heart failure phenotypes due to abnormal calcium handling. Cell Death Dis. 2019;10(8):610.
  • Viola HM, Shah AA, Johnstone VPA, et al. Characterization and validation of a preventative therapy for hypertrophic cardiomyopathy in a murine model of the disease. Proc Natl Acad Sci USA. 2020;117(37):23113–23124.
  • Yi JS, Huang Y, Kwaczala AT, et al. Low-dose dasatinib rescues cardiac function in Noonan syndrome. JCI Insight. 2016;1(20):e90220.
  • Yi JS, Perla S, Huang Y, et al. Low-dose dasatinib ameliorates hypertrophic cardiomyopathy in Noonan syndrome with multiple lentigines. Cardiovasc Drugs Ther. 2021 Mar 10;36(4):589–604.
  • Coppini R, Ferrantini C, Pioner JM, et al. Electrophysiological and contractile effects of disopyramide in patients with obstructive hypertrophic cardiomyopathy: a translational study. JACC Basic Transl Sci. 2019;4(7):795–813.
  • Warren CM, Karam CN, Wolska BM, et al. Green tea catechin normalizes the enhanced Ca 2+++ Sensitivity Of Myofilaments Regulated By A Hypertrophic Cardiomyopathy–Associated Mutation In Human Cardiac Troponin I (K2++06I). Circ Cardiovasc Genet. 2015;8(6):765–773.
  • Friedrich FW, Flenner F, Nasib M, et al. Epigallocatechin-3-gallate accelerates relaxation and Ca2+ transient decay and desensitizes myofilaments in healthy and Mybpc3-targeted knock-in cardiomyopathic mice. Front Physiol. 2016;7:607.
  • Robinson PJ, Patel S, Liu X, et al. Novel potential treatment of familial hypertrophic cardiomyopathy with analogues of the green tea polyphenol epigallocatechin-3-gallate. Biophys J. 2016;110(3):125A.
  • Green EM, Wakimoto H, Anderson RL, et al., A small-molecule inhibitor of sarcomere contractility suppresses hypertrophic cardiomyopathy in mice. Science. 2016;351(6273): 617–621.
  • Kawas RF, Anderson RL, Ingle SRB, et al. A small molecule modulator of cardiac myosin acts on multiple stages of the myosin chemomechanical cycle. J Biol Chem. 2017;292(40):16571–16577.
  • Stern JA, Markova S, Ueda Y, et al. A small molecule inhibitor of sarcomere contractility acutely relieves left ventricular outflow tract obstruction in feline hypertrophic cardiomyopathy. PLoS One. 2016;11(12):e0168407.
  • Del Rio CL, Ueyama Y, Baker DC, et al. In vivo cardiac effects of mavacamten (MYK-461): evidence for negative inotropy and improved compliance. Circulation. 2017;136(suppl 1):20593.
  • Awinda PO, Watanabe M, Bishaw Y, et al. Mavacamten decreases maximal force and Ca2+ sensitivity in the N47K-myosin regulatory light chain mouse model of hypertrophic cardiomyopathy. Am J Physiol Heart Circ Physiol. 2021;320(2):H881–H890.
  • Sparrow AJ, Watkins H, Daniels MJ, et al. Mavacamten rescues increased myofilament calcium sensitivity and dysregulation of Ca2+ flux caused by thin filament hypertrophic cardiomyopathy mutations. Am J Physiol Heart Circ Physiol. 2020;318(3):H715–H722.
  • Toepfer CN, Wakimoto H, Garfinkel AC, et al. Hypertrophic cardiomyopathy mutations in MYBPC3 dysregulate myosin. Sci Transl Med. 2019;11(476):eaat1199.
  • Gehmlich K, Dodd MS, Allwood JW, et al. Changes in the cardiac metabolome caused by perhexiline treatment in a mouse model of hypertrophic cardiomyopathy. Mol Biosyst. 2015;11(2):564–573.
  • Del Rio CL, Yadav A, Ferguson BS, et al. Chronic treatment with a mavacamten-like myosin-modulator (MYK-581) blunts disease progression in a mini-pig genetic model of non-obstructed hypertrophic cardiomyopathy: in vivo evidence for improved relaxation and functional reserve. Circulation. 2019;140:A14585.
  • Bell KM, Ryba DM, Smit T, et al. Chronic treatment with a mavacamten-like myosin-modulator (MYK-581) prevents left-atrial remodeling, decreases cardiac troponin leakage, and blunts mortality in a mini-pig model of inherited hypertrophic cardiomyopathy. Circulation. 2020;142:A17492.
  • Ryba D, Smit T, Rohret F, et al. Chronic treatment with a mavacamten-like myosin-modulator (MYK-581) decreases left-ventricular fibrosis and glucose uptake while blunting mortality in a mini-pig model of inherited hypertrophic cardiomyopathy. J Am Coll Cardiol. 2021;77(4):586.
  • Ferguson BS, Stern JA, Oldach MS, et al. Acute effects of a mavacamten-like myosin-inhibitor (MYK-581 in a feline model of obstructed hypertrophic cardiomyopathy: evidence of improved ventricular filling (beyond obstruction reprieve). Eur Heart J. 2020;41(Suppl Supplement_2):ehaa946.3713.
  • Coppini R, Ferrantini C, Yao L, et al. Late sodium current inhibition reverses electromechanical dysfunction in human hypertrophic cardiomyopathy. Circulation. 2013;127(5):575–584.
  • Coppini R, Mazzoni L, Ferrantini C, et al. Ranolazine prevents phenotype development in a mouse model of hypertrophic cardiomyopathy. Circ Heart Fail. 2017;10:e003565.
  • Ferrantini C, Pioner JM, Mazzoni L, et al. Late sodium current inhibitors to treat exercise-induced obstruction in hypertrophic cardiomyopathy: an in vitro study in human myocardium. Br J Pharmacol. 2018;175(13):2635–2652.
  • Marian AJ, Tan Y, Li L, et al. Hypertrophy regression with N-acetylcysteine in hypertrophic cardiomyopathy (HALT-HCM): a randomized, placebo-controlled, double-blind pilot study. Circ Res. 2018;122:1109–1118.
  • Imori Y, Takano H, Mase H, et al. Bisoprolol transdermal patch for perioperative care of non-cardiac surgery in patients with hypertrophic obstructive cardiomyopathy. BMC Cardiovasc Disord. 2019;19(1):316.
  • Dybro AM, Rasmussen TB, Nielsen RR, et al. Randomized trial of metoprolol in patients with obstructive hypertrophic cardiomyopathy. J Am Coll Cardiol. 2021;78(25):2505–2517.
  • Ho CY, Lakdawala NK, Cirino AL, et al., Diltiazem treatment for pre-clinical hypertrophic cardiomyopathy sarcomere mutation carriers: a pilot randomized trial to modify disease expression. JACC Heart Fail. 2015;3(2): 180–188.
  • Olivotto I, Hellawell JL, Farzaneh-Far R, et al. Novel approach targeting the complex pathophysiology of hypertrophic cardiomyopathy: the impact of late sodium current inhibition on exercise capacity in subjects with symptomatic hypertrophic cardiomyopathy (LIBERTY-HCM) trial. Circ Heart Fail. 2016;9(3):e00276.
  • Gentry JLs3rd, Mentz RJ, Hurdle M, et al. Ranolazine for treatment of angina or dyspnea in hypertrophic cardiomyopathy patients (RHYME). J Am Coll Cardiol. 2016;68(16):1815–1817.
  • Olivotto I, Camici PG, Merlini PA, et al. Efficacy of ranolazine in patients with symptomatic hypertrophic cardiomyopathy: the RESTYLE-HCM randomized, double-blind, placebo-controlled study. Circ Heart Fail. 2018;11(1):e004124.
  • Phase II clinical study of TY-0305 in symptomatic patients with hypertrophic obstructive cardiomyopathy - A pilot study. cited 2022 Mar 3. https://rctportal.niph.go.jp/en/detail?trial_id=JapicCTI-194910
  • Effects of ranolazine on coronary microvascular dysfunction in patients with hypertrophic cardiomyopathy. cited 2022 Mar 3. https://clinicaltrials.gov/ct2/show/NCT03953989
  • Heitner SB, Jacoby D, Lester SJ, et al., Mavacamten treatment for obstructive hypertrophic cardiomyopathy: a clinical trial. Ann Intern Med. 2019;170(11): 741–748.
  • Ho CY, Mealiffe ME, Bach RG, et al. Evaluation of mavacamten in symptomatic patients with nonobstructive hypertrophic cardiomyopathy. J Am Coll Cardiol. 2020;75:2649–2660.
  • Olivotto I, Oreziak A, Barriales-Villa R, et al. Mavacamten for treatment of symptomatic obstructive hypertrophic cardiomyopathy (EXPLORER-HCM): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2020;396(10253):759–769. EXPLORER-HCM study investigators.
  • Saberi S, Cardim N, Yamani M, et al., Mavacamten favorably impacts cardiac structure in obstructive hypertrophic cardiomyopathy: EXPLORER-HCM cardiac magnetic resonance substudy analysis. Circulation. 2021;143(6): 606–608.
  • Hegde SM, Lester SJ, Solomon SD, et al. Effect of mavacamten on echocardiographic features in symptomatic patients with obstructive hypertrophic cardiomyopathy. J Am Coll Cardiol. 2021;78(25):2518–2532.
  • Spertus JA, Fine JT, Elliott P, et al. Mavacamten for treatment of symptomatic obstructive hypertrophic cardiomyopathy (EXPLORER-HCM): health status analysis of a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2021;397:2467–2475.
  • Coats CJ, Pavlou M, Watkinson OT, et al. Effect of trimetazidine dihydrochloride therapy on exercise capacity in patients with nonobstructive hypertrophic cardiomyopathy: a randomized clinical trial. JAMA Cardiol. 2019;4(3):230–235.
  • Open-label study of perhexiline in patients with hypertrophic cardiomyopathy and moderate to severe heart failure. cited 2022 Mar 3. https://clinicaltrials.gov/ct2/show/NCT02862600
  • Efficacy, safety, and tolerability of perhexiline in subjects with hypertrophic cardiomyopathy and heart failure. cited 2022 Mar 3. https://clinicaltrials.gov/ct2/show/NCT02431221
  • Shimada YJ, Passeri JJ, Baggish AL, et al. Effects of losartan on left ventricular hypertrophy and fibrosis in patients with nonobstructive hypertrophic cardiomyopathy. JACC Heart Fail. 2013;1(6):480–487.
  • Axelsson A, Iversen K, Vejlstrup N, et al. Efficacy and safety of the angiotensin II receptor blocker losartan for hypertrophic cardiomyopathy: the INHERIT randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2015;3(2):123–131.
  • Axelsson A, Iversen K, Vejlstrup N, et al. Functional effects of losartan in hypertrophic cardiomyopathy - a randomised clinical trial. Heart. 2016;102(4):285–291.
  • Ho CY, Day SM, Axelsson A, et al. Valsartan in early-stage hypertrophic cardiomyopathy: a randomized phase 2 trial. Nat Med. 2021;27(10):1818–1824.
  • Penicka M, Gregor P, Kerekes R, et al. Candesartan use in hypertrophic and non-obstructive cardiomyopathy estate (CHANCE) study investigators. the effects of candesartan on left ventricular hypertrophy and function in nonobstructive hypertrophic cardiomyopathy: a pilot, randomized study. J Mol Diagn. 2009;11(1):35–41.
  • Evaluating the effect of spironolactone on hypertrophic cardiomyopathy. cited 2022 Mar 3. https://clinicaltrials.gov/ct2/show/NCT02948998
  • Maron MS, Chan RH, Kapur NK, et al. Effect of spironolactone on myocardial fibrosis and other clinical variables in patients with hypertrophic cardiomyopathy. Am J Med. 2018;131(7):837–841.
  • Hersi A, Giannoccaro JP, Howarth A, et al. Statin induced regression of cardiomyopathy trial: a randomized, placebo-controlled double-blind trial. Heart Views. 2016;17(4):129–135.
  • Randomized evaluation of dosing with CK-3773274 in obstructive outflow disease in HCM (REDWOOD-HCM). cited 2022 Mar 3. https://clinicaltrials.gov/ct2/show/NCT04219826
  • Cytokinetics announces progression of REDWOOD-HCM to cohort 2 Nasdaq:CYTK. https://www.globenewswire.com/news-release/2020/12/09/2142115/0/en/Cytokinetics-Announces-Progression-of-REDWOOD-HCM-to-Cohort-2.html. cited 2022 May 16
  • Owens AT, Masri A, Abraham TP, et al. Efficacy and safety of aficamten and disopyramide coadministration in obstructive hypertrophic cardiomyopathy: results from REDWOOD-HCM cohort 3. J Am Coll Cardiol. 2022;79(9):244.
  • CY 6022 is an open label study to collect long-term safety and tolerability data for aficamten (CK-3773274) (REDWOOD-OLE). cited 2022 Mar 3. https://clinicaltrials.gov/ct2/show/NCT04848506
  • Masri A. Efficacy and safety of aficamten in patients with symptomatic obstructive hypertrophic cardiomyopathy. In: Presented at the ESC-HF 2022. 2022 May 23. Madrid Spain
  • Cytokinetics announces start of SEQUOIA-HCM, a phase 3 clinical trial of aficamten in patients with symptomatic obstructive hypertrophic cardiomyopathy. cited 2022 Feb 23. https://ir.cytokinetics.com/news-releases/news-release-details/cytokinetics-announces-start-sequoia-hcm-phase-3-clinical-trial
  • Empagliflozin in hypertrophic cardiomyopathy (EMPA-REPAIR). cited 2022 Mar 3. https://clinicaltrials.gov/ct2/show/NCT05182658
  • Esmolol for myocardial protection in hypertrophic obstructive cardiomyopathy. cited 2022 Mar 3. https://clinicaltrials.gov/ct2/show/NCT05073094
  • A study to evaluate the safety, tolerability, and efficacy of IMB-1018972 in patients with non-obstructive hypertrophic cardiomyopathy trial (IMPROVE-HCM). cited 2022 Mar 3. https://clinicaltrials.gov/ct2/show/results/NCT04826185
  • Heitner SB, Lester S, Wang A, et al. Precision pharmacological treatment for obstructive hypertrophic cardiomyopathy with mavacamten: one-year results from PIONEER-OLE. Circulation. 2019;140(Suppl. 1):A13962.
  • Desai MY, Owens A, Geske JB, et al. Myosin Inhibition in Patients With Obstructive Hypertrophic Cardiomyopathy Referred for Septal Reduction Therapy. J Am Coll Cardiol. 2022;80(2): 95–108.
  • A long-term safety extension study of mavacamten in adults who have completed MAVERICK-HCM or EXPLORER-HCM. cited 2022 Mar 3. https://clinicaltrials.gov/ct2/show/NCT03723655
  • Rader F, Choudhury L, Saberi S, et al. Long-term safety of mavacamten in patients with obstructive hypertrophic cardiomyopathy: interim results of the MAVA-long term extension (LTE) study. J Am Coll Cardiol. 2021;77(Suppl. 18):532.
  • Owens A, Sherrid MV, Wong TC, et al. Long-term efficacy and safety of mavacamten in patients with non-obstructive hypertrophic cardiomyopathy: interim results from the MAVERICK-LTE cohort of the MAVA-LTE study. Circulation. 2021;144(Suppl_1):A9685.
  • A study to evaluate the efficacy and safety of mavacamten in Chinese adults with symptomatic obstructive HCM. NCT05174416. cited 2022 Mar 3. https://www.wuxuwang.com/linchuangus/90bcbd13-6979-11ec-a720-0a6bfd409a9a.https://clinicaltrials.gov/ct2/show/NCT05174416
  • Effect of metoprolol in post alcohol septal ablation patients with hypertrophic cardiomyopathy. cited 2022 Mar 3. https://clinicaltrials.gov/ct2/show/NCT04133532
  • van Driel BO, van Rossum AC, Michels M, et al. Extra energy for hearts with a genetic defect: ENERGY trial. Neth Heart J. 2019;27(4):200–205.
  • Ananthakrishna R, Lee SL, Foote J, et al. Randomized controlled trial of perhexiline on regression of left ventricular hypertrophy in patients with symptomatic hypertrophic cardiomyopathy (RESOLVE-HCM trial). Am Heart J. 2021 Oct;240:101–113.
  • Sacubitril/valsartan vs lifestyle in hypertrophic cardiomyopathy (SILICOFCM). cited 2022 Mar 3. https://clinicaltrials.gov/ct2/show/NCT03832660
  • Study of efficacy of oral sacubitril/valsartan in adult patients with non-obstructive hypertrophic cardiomyopathy. cited 2022 Mar 3. https://clinicaltrials.gov/ct2/show/NCT04164732
  • The efficacy and mechanism of trientine in patients with hypertrophic cardiomyopathy (TEMPEST). cited 2022 Mar 3. https://clinicaltrials.gov/ct2/show/NCT04706429
  • Sequeira V, Bertero E, Maack C. Energetic drain driving hypertrophic cardiomyopathy. FEBS Lett. 2019;593(13):1616–1626.
  • Lopaschuk GD, Karwi QG, Tian R, et al. Cardiac energy metabolism in heart failure. Circ Res. 2021;128(10):1487–1513.
  • Crilley JG, Boehm EA, Blair E, et al. Hypertrophic cardiomyopathy due to sarcomeric gene mutations is characterized by impaired energy metabolism irrespective of the degree of hypertrophy. J Am Coll Cardiol. 2003;41(10):1776–1782.
  • Timmer SA, Germans T, Brouwer WP, et al. Carriers of the hypertrophic cardiomyopathy MYBPC3 mutation are characterized by reduced myocardial efficiency in the absence of hypertrophy and microvascular dysfunction. Eur J Heart Fail. 2011;13(12):1283–1289.
  • van der Velden J, Tocchetti CG, Varricchi G, et al. Metabolic changes in hypertrophic cardiomyopathies: scientific update from the working group of myocardial function of the European society of cardiology. Cardiovasc Res. 2018;114(10):1273–1280.
  • Ashrafian H, McKenna WJ, Watkins H. Disease pathways and novel therapeutic targets in hypertrophic cardiomyopathy. Circ Res. 2011;109(1):86–96.
  • Abozguia K, Elliott P, McKenna W, et al. Metabolic modulator perhexiline corrects energy deficiency and improves exercise capacity in symptomatic hypertrophic cardiomyopathy. Circulation. 2010;122(16):1562–1569.
  • Forrester SJ, Booz GW, Sigmund CD, et al. Angiotensin II signal transduction: an update on mechanisms of physiology and pathophysiology. Physiol Rev. 2018;98(3):1627–1638.
  • Orenes-Piñero E, Hernández-Romero D, Jover E, et al. Impact of polymorphisms in the renin-angiotensin-aldosterone system on hypertrophic cardiomyopathy. J Renin Angiotensin Aldosterone Syst. 2011;12(4):521–530.
  • Lim DS, Lutucuta S, Bachireddy P, et al. Angiotensin II blockade reverses myocardial fibrosis in a transgenic mouse model of human hypertrophic cardiomyopathy. Circulation. 2001;103(6):789–791.
  • Tsybouleva N, Zhang L, Chen S, et al. Aldosterone, through novel signaling proteins, is a fundamental molecular bridge between the genetic defect and the cardiac phenotype of hypertrophic cardiomyopathy. Circulation. 2004;109(10):1284–1291.
  • de Resende MM, Kriegel AJ, Greene AS. Combined effects of low-dose spironolactone and captopril therapy in a rat model of genetic hypertrophic cardiomyopathy. J Cardiovasc Pharmacol. 2006;48(6):265–273.
  • Teekakirikul P, Eminaga S, Toka O, et al. Cardiac fibrosis in mice with hypertrophic cardiomyopathy is mediated by non-myocyte proliferation and requires Tgf-β. J Clin Invest. 2010;120(10):3520–3529.
  • Kawano H, Toda G, Nakamizo R, et al. Valsartan decreases type I collagen synthesis in patients with hypertrophic cardiomyopathy. Circ J. 2005;69(10):1244–1248.
  • Araujo AQ, Arteaga E, Ianni BM, et al. Effect of Losartan on left ventricular diastolic function in patients with nonobstructive hypertrophic cardiomyopathy. Am J Cardiol. 2005;96(11):1563–1567.
  • Yamazaki T, Suzuki J, Shimamoto R, et al. A new therapeutic strategy for hypertrophic nonobstructive cardiomyopathy in humans. A randomized and prospective study with an angiotensin II receptor blocker. Int Heart J. 2007;48(6):715–724.
  • Liao JK, Laufs U. Pleiotropic effects of statins. Annu Rev Pharmacol Toxicol. 2005;45(1):89–118.
  • Kostner KM. Statin therapy for hypertrophic cardiomyopathy: too good to be true? Eur J Clin Invest. 2010;40(11):965–967.
  • Loirand G, Sauzeau V, Pacaud P. Small G proteins in the cardiovascular system: physiological and pathological aspects. Physiol Rev. 2013;93(4):1659–1720.
  • Patel R, Nagueh SF, Tsybouleva N, et al. Simvastatin induces regression of cardiac hypertrophy and fibrosis and improves cardiac function in a transgenic rabbit model of human hypertrophic cardiomyopathy. Circulation. 2001;104(3):317–324.
  • Senthil V, Chen SN, Tsybouleva N, et al. Prevention of cardiac hypertrophy by atorvastatin in a transgenic rabbit model of human hypertrophic cardiomyopathy. Circ Res. 2005;97(3):285–292.
  • Bauersachs J, Störk S, Kung M, et al. HMG CoA reductase inhibition and left ventricular mass in hypertrophic cardiomyopathy: a randomized placebo-controlled pilot study. Eur J Clin Invest. 2007;37(11):852–859.
  • Nagueh SF, Lombardi R, Tan Y, et al. Atorvastatin and cardiac hypertrophy and function in hypertrophic cardiomyopathy: a pilot study. Eur J Clin Invest. 2010;40(11):976–983.
  • Ferrantini C, Coppini R, Pioner JM, et al. Pathogenesis of hypertrophic cardiomyopathy is mutation rather than disease specific: a comparison of the cardiac troponin T E163R and R92Q mouse models. J Am Heart Assoc. 2017;6(7):e005407.
  • Harada K, Potter JD. Familial hypertrophic cardiomyopathy mutations from different functional regions of troponin T result in different effects on the pH and Ca2+ sensitivity of cardiac muscle contraction. J Biol Chem. 2004;279(15):14488–14495.
  • Gupte TM, Haque F, Gangadharan B, et al. Mechanistic heterogeneity in contractile properties of α-tropomyosin (TPM1) mutants associated with inherited cardiomyopathies. J Biol Chem. 2015;290(11):7003–7015.
  • Spudich JA. Three perspectives on the molecular basis of hypercontractility caused by hypertrophic cardiomyopathy mutations. Pflugers Arch Eur J Physiol. 2019;471(5):701–717.
  • Kraft T, Montag J. Altered force generation and cell-to-cell contractile imbalance in hypertrophic cardiomyopathy. Pflügers Arch Eur J Physiol. 2019;471(5):719–733.
  • Schuldt M, van Driel B, Algül S, et al. Distinct metabolomic signatures in preclinical and obstructive hypertrophic cardiomyopathy. Cells. 2021;10(11):2950.
  • Fatkin D, McConnell BK, Mudd JO, et al. An abnormal Ca2+++ response in mutant sarcomere protein–mediated familial hypertrophic cardiomyopathy. J Clin Invest. 2000;106(11):1351–1359.
  • Tardiff JC, Carrier L, Bers DM, et al. Targets for therapy in sarcomeric cardiomyopathies. Cardiovasc Res. 2015;105(4):457–470.
  • Helms AS, Alvarado FJ, Yob J, et al. Genotype-dependent and -independent calcium signaling dysregulation in human hypertrophic cardiomyopathy. Circulation. 2016;134(22):1738–1748.
  • Santini L, Coppini R, Cerbai E. Ion channel impairment and myofilament Ca2+ sensitization: two parallel mechanisms underlying arrhythmogenesis in hypertrophic cardiomyopathy. Cells. 2021;10(10):2789.
  • Semsarian C, Ahmad I, Giewat M, et al. The L-type calcium channel inhibitor diltiazem prevents cardiomyopathy in a mouse model. J Clin Invest. 2002;109(8):1013–1020.
  • Andries G, Yandrapalli S, Naidu S. Novel pharmacotherapy in hypertrophic cardiomyopathy. Cardiol Rev. 2018;26(5):239–244.
  • Alves ML, Dias FA, Gaffin RD, et al. Desensitization of myofilaments to Ca2+ as a therapeutic target for hypertrophic cardiomyopathy with mutations in thin filament proteins. Circ Cardiovasc Genet. 2014;7(2):132–143.
  • Baudenbacher F, Schober T, Pinto JR, et al. Myofilament Ca2+++ sensitization causes susceptibility to cardiac arrhythmia in mice. J Clin Invest. 2008;118(12):3893–3903.
  • Dweck D, Sanchez-Gonzalez MA, Chang AN, et al. Long term ablation of protein kinase A (PKA)-mediated cardiac troponin I phosphorylation leads to excitation-contraction uncoupling and diastolic dysfunction in a knock-in mouse model of hypertrophic cardiomyopathy. J Biol Chem. 2014;289(33):23097–23111.
  • Robertson IM, Li MX, Sykes BD. Solution structure of Human cardiac troponin C in complex with the green tea polyphenol, (-)-Epigallocatechin 3-Gallate. J Biol Chem. 2009;284(34):23012–23023.
  • Tadano N, Du CK, Yumoto F, et al. Biological actions of green tea catechins on cardiac troponin C. Br J Pharmacol. 2010;161(5):1034–1043.
  • Zeitz O, Rahman A, Hasenfuss G, et al. Impact of beta-adrenoceptor antagonists on myofilament calcium sensitivity of rabbit and human myocardium. J Cardiovasc Pharmacol. 2000;36(1):126–131.
  • Szyguła-Jurkiewicz B, Szczurek-Wasilewicz W, Osadnik T, et al. Oxidative stress markers in hypertrophic cardiomyopathy. Medicina (Kaunas). 2021;58(1):31.
  • Takimoto E, Kass DA. Role of oxidative stress in cardiac hypertrophy and remodeling. Hypertension. 2007;49(2):241–248.
  • Marian AJ, Senthil V, Chen SN, et al. Antifibrotic effects of antioxidant N-acetylcysteine in a mouse model of human hypertrophic cardiomyopathy mutation. J Am Coll Cardiol. 2006;47(4):827–834.
  • Lombardi R, Rodriguez G, Chen SN. Resolution of established cardiac hypertrophy and fibrosis and prevention of systolic dysfunction in a transgenic rabbit model of human cardiomyopathy through thiol-sensitive mechanisms. Circulation. 2009;119(10):1398–1407.
  • Sweeney HL, Hammers DW. Muscle Contraction. Cold Spring Harb Perspect Biol. 2018;10(2):a023200.
  • McNamara JW, Li A, Dos Remedios CG, et al. The role of super-relaxed myosin in skeletal and cardiac muscle. Biophysical Reviews. 2015;7(1):5–14.
  • Alamo L, Koubassova N, Pinto A, et al. Lessons from a tarantula: new insights into muscle thick filament and myosin interacting-heads motif structure and function. Biophys Rev. 2017;9(5):461–480.
  • Anderson RL, Trivedi DV, Sarkar SS, et al. Deciphering the super relaxed state of human beta-cardiac myosin and the mode of action of mavacamten from myosin molecules to muscle fibers. Proc Natl Acad Sci USA. 2018;115(35):e8143–52.
  • Trivedi DV, Adhikari AS, Sarkar SS, et al. Hypertrophic cardiomyopathy and the myosin Mesa: viewing an old disease in a new light. Biophys Rev. 2018;10(1):27–48.
  • Spudich JA. Hypertrophic and dilated cardiomyopathy: four decades of basic research on muscle lead to potential therapeutic approaches to these devastating genetic diseases. Biophys J. 2014;106(6):1236–1249.
  • Teekakirikul P, Zhu W, Huang HC, et al. Hypertrophic cardiomyopathy: an overview of genetics and management. Biomolecules. 2019;9(12):878.
  • Stătescu C, Enachi Ș, Ureche C, et al. Pushing the limits of medical management in HCM: a review of current pharmacological therapy options. Int J Mol Sci. 2021;22(13):7218.
  • Yotti R, Seidman CE, Seidman JG. advances in the genetic basis and pathogenesis of sarcomere cardiomyopathies. Annu Rev Genomics Hum Genet. 2019;20(1):129–153.
  • Maron M, Ashley E, Blok T, et al. Obstructive hypertrophic cardiomyopathy: initial single ascending dose data in healthy volunteers and patients. Circulation. 2016;134:A16842.
  • Zampieri M, Argirò A, Marchi A, et al. Mavacamten, a novel therapeutic strategy for obstructive hypertrophic cardiomyopathy. Curr Cardiol Rep. 2021;23(7):79.
  • CAMZYOSTM© (mavacamten) capsules for oral use Prescribing information. cited Jun 1st 2022. https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/214998s000lbl.pdf
  • Grillo MP, Erve JCL, Dick R, et al. In vitro and in vivo pharmacokinetic characterization of mavacamten, a first-in-class small molecule allosteric modulator of beta cardiac myosin. Xenobiotica. 2019;49(6):718–733.
  • Chuang C, Collibee S, Ashcraft L, et al. Discovery of aficamten (CK-274), a next-generation cardiac myosin inhibitor for the treatment of hypertrophic cardiomyopathy. J Med Chem. 2021;64(19):14142–14152.
  • Hwee DT, Hartman JJ, Wang J, et al. Pharmacologic characterization of the cardiac myosin inhibitor, CK-3773274: a potential therapeutic approach for hypertrophic cardiomyopathy. Circ Res. 2019;125:A332.
  • Cremin P, Xu D, Zamora J, et al. In vivo pharmacokinetic characterization of CK-3773274, a novel cardiac myosin inhibitor. American Association of Pharmaceutical Scientists ePoster Library 2020, 304702 (Oct 25), 887215. https://virtual.aaps.org/aaps/2020/eposters/304702
  • Sheehan A, Messer AE, Papadaki M, et al. molecular defects in cardiac myofilament Ca2+-regulation due to cardiomyopathy-linked mutations can be reversed by small molecules binding to troponin. Front Physiol. 2018;9:243.
  • ESC Scientific Document Group, McDonagh TA, Metra M, Adamo M, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42(36):3599–3726.
  • Hamada M, Shigematsu Y, Hara Y, et al. Antiarrhythmic drug, cibenzoline, can directly improve the left ventricular diastolic function in patients with hypertrophic cardiomyopathy. Jpn Circ J. 2001;65(6):531–538.
  • Chamberlin P, Barrett L, Buckley N, et al. Phase 1 safety and tolerability study of IMB-1018972, a novel oral modulator of myocardial substrate utilization designed to improve cardiac metabolic efficiency and bioenergetics. J Am Coll Cardiol. 2021;77(Suppl 18):180.
  • Jüllig M, Chen X, Hickey AJ, et al. Reversal of diabetes-evoked changes in mitochondrial protein expression of cardiac left ventricle by treatment with a copper(II)-selective chelator. PROTEOMICS – Clin Appl. 2007;1(4):387–399.
  • Gong D, Lu J, Chen X, et al. Molecular changes evoked by triethylenetetramine treatment in the extracellular matrix of the heart and aorta in diabetic rats. Mol Pharmacol. 2006;70(6):2045–2051.
  • Osmak G, Baulina N, Kiselev I, et al. MiRNA-regulated pathways for hypertrophic cardiomyopathy: network-based approach to insight into pathogenesis. Genes (Basel). 2021;12(12):2016.
  • Scolari FL, Faganello LS, Garbin HI, et al. A systematic review of microRNAs in patients with hypertrophic cardiomyopathy. Int J Cardiol. 2021;327:146–154.
  • Gao J, Collyer J, Wang M, et al. Genetic dissection of hypertrophic cardiomyopathy with myocardial RNA-Seq. Int J Mol Sci. 2020;21(9):3040.
  • Foinquinos A, Batkai S, Genschel C, et al. Preclinical development of a miR-132 inhibitor for heart failure treatment. Nat Commun. 2020;11(1):633.
  • Täubel J, Hauke W, Rump S, et al. Novel antisense therapy targeting microRNA-132 in patients with heart failure: results of a first-in-human Phase 1b randomized, double-blind, placebo-controlled study. Eur Heart J. 2021;42(2):178–188.
  • Repetti GG, Toepfer CN, Seidman JG, et al. Novel therapies for prevention and early treatment of cardiomyopathies. Circ Res. 2019;124(11):1536–1550.
  • Cannatà A, Ali H, Sinagra G, et al. Gene therapy for the heart lessons learned and future perspectives. Circ Res. 2020;126(10):1394–1414.
  • Ma H, Marti-Gutierrez N, Park SW, et al., Correction of a pathogenic gene mutation in human embryos. Nature. 2017;548(7668): 413–419.
  • Ben Jehuda R, Eisen B, Shemer Y, et al. CRISPR correction of the PRKAG2 gene mutation in the patient’s induced pluripotent stem cell-derived cardiomyocytes eliminates electrophysiological and structural abnormalities. Heart Rhythm. 2018; 152: 267–276.
  • Gedicke-Hornung C, Behrens-Gawlik V, Reischmann S, et al. Rescue of cardiomyopathy through U7sn RNA -mediated exon skipping in Mybpc3 -targeted knock-in mice. EMBO Mol Med. 2013;5(7):1128–1145.
  • Jiang J, Wakimoto H, Seidman JG, et al. Allele-specific silencing of mutant Myh6 transcripts in mice suppresses hypertrophic cardiomyopathy. Science. 2013;342(6154):111–114.
  • Mearini G, Stimpel D, Geertz B. Mybpc3 gene therapy for neonatal cardiomyopathy enables long-term disease prevention in mice. Nat Commun. 2014;5(1):5515.
  • Mearini G, Stimpel D, Krämer E, et al. Repair of Mybpc3 mRNA by 5′-trans-splicing in a mouse model of hypertrophic cardiomyopathy. Mol Ther Nucleic Acids. 2013;2:e102.
  • Prondzynski M, Krämer E, Laufer SD, et al. Evaluation of MYBPC3 trans-splicing and gene replacement as therapeutic options in human iPSC-derived cardiomyocytes. Mol Ther Nucleic Acids. 2017;7:475–486.
  • Vignier N, Schlossarek S, Fraysse B, et al. Nonsense-mediated mRNA decay and ubiquitin-proteasome system regulate cardiac myosin-binding protein C mutant levels in cardiomyopathic mice. Circ Res. 2009;105(3):239–248.
  • Lombardi L, Greer-Short A, Leon EC, et al. Reversal of cardiac hypertrophy with an optimized MYBPC3 gene therapy. Mol Ther. 2021;29:4S1.
  • Gaffin RD, Peña JR, Alves MS, et al. Long-term rescue of a familial hypertrophic cardiomyopathy caused by a mutation in the thin filament protein, tropomyosin, via modulation of a calcium cycling protein. J Mol Cell Cardiol. 2011;51(5):812–820.
  • Nakai A, Yamaguchi O, Takeda T, et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med. 2007;13(5):619–624.
  • Singh SR, Zech ATL, Geertz B, et al. Activation of autophagy ameliorates cardiomyopathy in Mybpc3 -targeted knockin mice. Circ Heart Fail. 2017;10(10):e004140.
  • Ramachandra CJA, Mmj K, Chua J, et al. Inhibiting cardiac myeloperoxidase alleviates the relaxation defect in hypertrophic cardiomyocytes. Cardiovasc Res. 2022;118(2):517–530.
  • Briasoulis A, Mallikethi-Reddy S, Palla M, et al. Myocardial fibrosis on cardiac magnetic resonance and cardiac outcomes in hypertrophic cardiomyopathy: a meta-analysis. Heart. 2015;101(17):1406–1411.
  • Hullmann JE, Grisanti LA, Makarewich CA, et al. GRK5-mediated exacerbation of pathological cardiac hypertrophy involves facilitation of nuclear NFAT activity. Circ Res. 2014;115(12):976–985.
  • Kuusisto J, Kärjä V, Sipola P, et al. Low-grade inflammation and the phenotypic expression of myocardial fibrosis in hypertrophic cardiomyopathy. Heart. 2012;98(13):1007–1013.
  • Fang L, Ellims AH, Beale AL, et al. Systemic inflammation is associated with myocardial fibrosis, diastolic dysfunction, and cardiac hypertrophy in patients with hypertrophic cardiomyopathy. Am J Transl Res. 2017;9(11):5063–5073.
  • Becker RC, Owens APs3rd, Sadayappan S. Tissue-level inflammation and ventricular remodeling in hypertrophic cardiomyopathy. J Thromb Thrombolysis. 2020;49(2):177–183.
  • Shimada YJ, Raita Y, Liang LW, et al. Comprehensive proteomics profiling reveals circulating biomarkers of hypertrophic cardiomyopathy. Circ Heart Fail. 2021;14(7):e007849.
  • Shahzadi SK, Naidoo N, Alsheikh-Ali A, et al. Reconnoitering the role of long-noncoding RNAs in hypertrophic cardiomyopathy: a descriptive review. Int J Mol Sci. 2021;22(17):9378.
  • Micheletti R, Plaisance I, Abraham BJ, et al. The long noncoding RNA wisper controls cardiac fibrosis and remodeling. Sci Transl Med. 2017;9(395):eaai9118.
  • Frangogiannis NG. Transforming growth factor-β in myocardial disease. Nat Rev Cardiol. 2022 Jan 4;19(7):435–455.
  • Kuwahara F, Kai H, Tokuda K, et al. Transforming growth factor-beta function blocking prevents myocardial fibrosis and diastolic dysfunction in pressure-overloaded rats. Circulation. 2002;106(1):130–135.
  • Khalil H, Kanisicak O, Prasad V, et al. Fibroblast-specific TGF-β-Smad2/3 signaling underlies cardiac fibrosis. J Clin Invest. 2017;127(10):3770–3783.
  • Snoberger A, Barua B, Atherton JL, et al. Myosin with hypertrophic cardiac mutation R712L has a decreased working stroke which is rescued by omecamtiv mecarbil. Elife. 2021;10:e63691.
  • Gaedigk A, Sangkuhl K, Whirl-Carrillo M, et al. Prediction of CYP2D6 phenotype from genotype across world populations. Genet Med. 2017;19(1):69–76.
  • Schmid M, Toepfer CN. Cardiac myosin super relaxation (SRX): a perspective on fundamental biology, human disease and therapeutics. Biol Open. 2021;10(2):bio057646.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.