408
Views
0
CrossRef citations to date
0
Altmetric
Review

New investigational agents for the treatment of major depressive disorder

, , &
Pages 1053-1066 | Received 09 Apr 2022, Accepted 11 Aug 2022, Published online: 24 Aug 2022

References

  • Galecki P, Mossakowska-Wojcik J, Talarowska M. The anti-inflammatory mechanism of antidepressants – SSRIs, SNRIs. Prog Neuropsychopharmacol Biol Psychiatry. 2018;80(Pt C):291–294.
  • Ghaffari Darab M, Hedayati A, Khorasani E, et al. Selective serotonin reuptake inhibitors in major depression disorder treatment: an umbrella review on systematic reviews. Int J Psychiatry Clin Pract. 2020;24(4):357–370.
  • Vahid-Ansari F, Zhang M, Zahrai A, et al. Overcoming resistance to selective serotonin reuptake inhibitors: targeting serotonin, serotonin-1a receptors and adult neuroplasticity. Front Neurosci. 2019;13:404.
  • Faure C, Mnie-Filali O, Haddjeri N. Long-term adaptive changes induced by serotonergic antidepressant drugs. Expert Rev Neurother. 2006;6(2):235–245.
  • Ferguson JM. SSRI antidepressant medications: adverse effects and tolerability. Prim Care Companion J Clin Psychiatry. 2001;3(1):22–27.
  • Pompili M, Serafini G, Innamorati M, et al. Antidepressants and suicide risk: a comprehensive overview. Pharmaceuticals (Basel). 2010;3(9):2861–2883.
  • Wang SM, Han C, Bahk WM, et al. Addressing the side effects of contemporary antidepressant drugs: a comprehensive review. Chonnam Med J. 2018;54(2):101–112.
  • Li L, Vlisides PE. Ketamine: 50 years of modulating the mind. Front Hum Neurosci. 2016;10:612.
  • Abbar M, Demattei C, El-Hage W, et al. Ketamine for the acute treatment of severe suicidal ideation: double blind, randomised placebo controlled trial. BMJ. 2022;376:e067194.
  • Berman RM, Cappiello A, Anand A, et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry. 2000;47(4):351–354.
  • Witt K, Potts J, Hubers A, et al. Ketamine for suicidal ideation in adults with psychiatric disorders: a systematic review and meta-analysis of treatment trials. Aust N Z J Psychiatry. 2020;54(1):29–45.
  • Ulbrich MH, Isacoff EY. Rules of engagement for NMDA receptor subunits. Proc Natl Acad Sci U S A. 2008;105(37):14163–14168.
  • Hansen KB, Yi F, Perszyk RE, et al. Structure, function, and allosteric modulation of NMDA receptors. J Gen Physiol. 2018;150(8):1081–1105.
  • Hardingham GE, Bading H. Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci. 2010;11(10):682–696.
  • Anis NA, Berry SC, Burton NR, et al. The dissociative anaesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurones by n-methyl-aspartate. Br J Pharmacol. 1983;79(2):565–575.
  • Orser BA, Pennefather PS, MacDonald JF. Multiple mechanisms of ketamine blockade of N-methyl-D-aspartate receptors. Anesthesiology. 1997;86(4):903–917.
  • Zanos P, Gould TD. Mechanisms of ketamine action as an antidepressant. Mol Psychiatry. 2018;23(4):801–811.
  • Ali F, Gerhard DM, Sweasy K, et al. Ketamine disinhibits dendrites and enhances calcium signals in prefrontal dendritic spines. Nat Commun. 2020;11(1):72.
  • Pothula S, Kato T, Liu RJ, et al. Cell-type specific modulation of NMDA receptors triggers antidepressant actions. Mol Psychiatry. 2021;26(9):5097–5111.
  • Widman AJ, McMahon LL. Disinhibition of CA1 pyramidal cells by low-dose ketamine and other antagonists with rapid antidepressant efficacy. Proc Natl Acad Sci U S A. 2018;115(13):E3007–E3016.
  • Gerhard DM, Pothula S, Liu RJ, et al. GABA interneurons are the cellular trigger for ketamine’s rapid antidepressant actions. J Clin Invest. 2020;130(3):1336–1349.
  • Zorumski CF, Izumi Y, Mennerick S. Ketamine: NMDA receptors and beyond. J Neurosci. 2016;36(44):11158–11164.
  • Tarres-Gatius M, Miquel-Rio L, Campa L, et al. Involvement of NMDA receptors containing the GluN2C subunit in the psychotomimetic and antidepressant-like effects of ketamine. Transl Psychiatry. 2020;10(1):427.
  • Duman RS. Ketamine and rapid-acting antidepressants: a new era in the battle against depression and suicide. F1000 Res. 2018;7:659.
  • Lepack AE, Bang E, Lee B, et al. Fast-acting antidepressants rapidly stimulate ERK signaling and BDNF release in primary neuronal cultures. Neuropharmacology. 2016;111:242–252.
  • Casarotto PC, Girych M, Fred SM, et al. Antidepressant drugs act by directly binding to TRKB neurotrophin receptors. Cell. 2021;184(5): 1299–1313 e1219.
  • Duman RS, Aghajanian GK, Sanacora G, et al. Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants. Nat Med. 2016;22(3):238–249.
  • Li N, Lee B, Liu RJ, et al. MTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science. 2010;329(5994):959–964.
  • Li N, Liu RJ, Dwyer JM, et al. Glutamate N-methyl-D-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure. Biol Psychiatry. 2011;69(8):754–761.
  • Lhl N, Huang Y, Han L, et al. Ketamine and selective activation of parvalbumin interneurons inhibit stress-induced dendritic spine elimination. Transl Psychiatry. 2018;8(1):272.
  • Autry AE, Adachi M, Nosyreva E, et al. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature. 2011;475(7354):91–95.
  • Gideons ES, Kavalali ET, Monteggia LM. Mechanisms underlying differential effectiveness of memantine and ketamine in rapid antidepressant responses. Proc Natl Acad Sci U S A. 2014;111(23):8649–8654.
  • Suzuki K, Monteggia LM. The role of eEF2 kinase in the rapid antidepressant actions of ketamine. Adv Pharmacol. 2020;89:79–99.
  • Kim JW, Autry AE, Na ES, et al. Sustained effects of rapidly acting antidepressants require BDNF-dependent MeCP2 phosphorylation. Nat Neurosci. 2021;24(8):1100–1109.
  • Lin PY, Ma ZZ, Mahgoub M, et al. A synaptic locus for TrkB signaling underlying ketamine rapid antidepressant action. Cell Rep. 2021;36(7):109513.
  • Yang Y, Cui Y, Sang K, et al. Ketamine blocks bursting in the lateral habenula to rapidly relieve depression. Nature. 2018;554(7692):317–322.
  • Yang C, Ren Q, Qu Y, et al. Mechanistic target of rapamycin-independent antidepressant effects of (R)-ketamine in a social defeat stress model. Biol Psychiatry. 2018;83(1):18–28.
  • Fukumoto K, Toki H, Iijima M, et al. Antidepressant potential of (R)-ketamine in rodent models: comparison with (S)-ketamine. J Pharmacol Exp Ther. 2017;361(1):9–16.
  • Yang C, Shirayama Y, Zhang JC, et al. R-ketamine: a rapid-onset and sustained antidepressant without psychotomimetic side effects. Transl Psychiatry. 2015;5:e632.
  • Zhang J, Qu Y, Chang L, et al. (R)-ketamine rapidly ameliorates the decreased spine density in the medial prefrontal cortex and hippocampus of susceptible mice after chronic social defeat stress. Int J Neuropsychopharmacol. 2019;22(10):675–679.
  • Yao W, Cao Q, Luo S, et al. Microglial ERK-NRBP1-CREB-BDNF signaling in sustained antidepressant actions of (R)-ketamine. Mol Psychiatry. 2022;27(3): 1618–1629.
  • Zhang K, Yang C, Chang L, et al. Essential role of microglial transforming growth factor-beta1 in antidepressant actions of (R)-ketamine and the novel antidepressant TGF-beta1. Transl Psychiatry. 2020;10(1):32.
  • Ju L, Yang J, Zhu T, et al. BDNF-TrkB signaling-mediated upregulation of Narp is involved in the antidepressant-like effects of (2R,6R)-hydroxynorketamine in a chronic restraint stress mouse model. BMC Psychiatry. 2022;22(1):182.
  • Ye L, Ko CY, Huang Y, et al. Ketamine metabolite (2R,6R)-hydroxynorketamine enhances aggression via periaqueductal gray glutamatergic transmission. Neuropharmacology. 2019;157:107667.
  • Zanos P, Moaddel R, Morris PJ, et al. Nmdar inhibition-independent antidepressant actions of ketamine metabolites. Nature. 2016;533(7604):481–486.
  • Shirayama Y, Hashimoto K. Lack of antidepressant effects of (2R,6R)-hydroxynorketamine in a rat learned helplessness model: comparison with (R)-ketamine. Int J Neuropsychopharmacol. 2018;21(1):84–88.
  • Fukumoto K, Fogaca MV, Liu RJ, et al. Activity-dependent brain-derived neurotrophic factor signaling is required for the antidepressant actions of (2R,6R)-hydroxynorketamine. Proc Natl Acad Sci U S A. 2019;116(1):297–302.
  • Liu RJ, Lee FS, Li XY, et al. Brain-derived neurotrophic factor Val66Met allele impairs basal and ketamine-stimulated synaptogenesis in prefrontal cortex. Biol Psychiatry. 2012;71(11):996–1005.
  • Highland JN, Morris PJ, Konrath KM, et al. Hydroxynorketamine pharmacokinetics and antidepressant behavioral effects of (2,6)- and (5R)-methyl-(2R,6R)-hydroxynorketamines. ACS Chem Neurosci. 2022;13(4):510–523.
  • Yang C, Kobayashi S, Nakao K, et al. Ampa receptor activation-independent antidepressant actions of ketamine metabolite (S)-norketamine. Biol Psychiatry. 2018;84(8):591–600.
  • Yokoyama R, Higuchi M, Tanabe W, et al. (S)-norketamine and (2S,6S)-hydroxynorketamine exert potent antidepressant-like effects in a chronic corticosterone-induced mouse model of depression. Pharmacol Biochem Behav. 2020;191(172876): 172876.
  • Lumsden EW, Troppoli TA, Myers SJ, et al. Antidepressant-relevant concentrations of the ketamine metabolite (2R,6R)-hydroxynorketamine do not block NMDA receptor function. Proc Natl Acad Sci U S A. 2019;116(11):5160–5169.
  • Joseph TT, Bu W, Lin W, et al. Ketamine metabolite (2R,6R)-hydroxynorketamine interacts with mu and kappa opioid receptors. ACS Chem Neurosci. 2021;12(9):1487–1497.
  • Lazarevic V, Yang Y, Flais I, et al. Ketamine decreases neuronally released glutamate via retrograde stimulation of presynaptic adenosine a1 receptors. Mol Psychiatry. 2021;26(12):7425–7435.
  • Hashimoto K, Kakiuchi T, Ohba H, et al. Reduction of dopamine d2/3 receptor binding in the striatum after a single administration of esketamine, but not R-ketamine: a pet study in conscious monkeys. Eur Arch Psychiatry Clin Neurosci. 2017;267(2):173–176.
  • Leal GC, Bandeira ID, Correia-Melo FS, et al. Intravenous arketamine for treatment-resistant depression: open-label pilot study. Eur Arch Psychiatry Clin Neurosci. 2021;271(3):577–582.
  • Mathisen LC, Skjelbred P, Skoglund LA, et al. Effect of ketamine, an NMDA receptor inhibitor, in acute and chronic orofacial pain. Pain. 1995;61(2):215–220.
  • Vollenweider FX, Leenders KL, Oye I, et al. Differential psychopathology and patterns of cerebral glucose utilisation produced by (S)- and (R)-ketamine in healthy volunteers using positron emission tomography (pet). Eur Neuropsychopharmacol. 1997;7(1):25–38.
  • Bartoli F, Riboldi I, Crocamo C, et al. Ketamine as a rapid-acting agent for suicidal ideation: a meta-analysis. Neurosci Biobehav Rev. 2017;77:232–236.
  • Feeney A, Hock RS, Freeman MP, et al. The effect of single administration of intravenous ketamine augmentation on suicidal ideation in treatment-resistant unipolar depression: results from a randomized double-blind study. Eur Neuropsychopharmacol. 2021;49:122–132.
  • Phillips JL, Norris S, Talbot J, et al. Single and repeated ketamine infusions for reduction of suicidal ideation in treatment-resistant depression. Neuropsychopharmacology. 2020;45(4):606–612.
  • Shiroma PR, Albott CS, Johns B, et al. Neurocognitive performance and serial intravenous subanesthetic ketamine in treatment-resistant depression. Int J Neuropsychopharmacol. 2014;17(11):1805–1813.
  • Chen X, Wang M, Hu Y, et al. Working memory associated with anti-suicidal ideation effect of repeated-dose intravenous ketamine in depressed patients. Eur Arch Psychiatry Clin Neurosci. 2021;271(3):431–438.
  • Das J. Repurposing of drugs-the ketamine story. J Med Chem. 2020;63(22):13514–13525.
  • Canuso CM, Ionescu DF, Li X, et al. Esketamine nasal spray for the rapid reduction of depressive symptoms in major depressive disorder with acute suicidal ideation or behavior. J Clin Psychopharmacol. 2021;41(5):516–524.
  • Vanicek T, Unterholzner J, Lanzenberger R, et al. Intravenous esketamine leads to an increase in impulsive and suicidal behaviour in a patient with recurrent major depression and borderline personality disorder. World J Biol Psychiatry. 2022;1–4. DOI:10.1080/15622975.2022.2031287
  • Zarate CA. Glutamate modulators and beyond: a neuroscience revolution in the making. Eur Neuropsychopharmacol. 2022;54:72–74.
  • Burgdorf J, Kroes RA, Zhang XL, et al. Rapastinel (GLYX-13) has therapeutic potential for the treatment of post-traumatic stress disorder: characterization of a NMDA receptor-mediated metaplasticity process in the medial prefrontal cortex of rats. Behav Brain Res. 2015;294:177–185.
  • Burgdorf J, Zhang XL, Nicholson KL, et al. GLYX-13, a NMDA receptor glycine-site functional partial agonist, induces antidepressant-like effects without ketamine-like side effects. Neuropsychopharmacology. 2013;38(5):729–742.
  • Yang B, Zhang JC, Han M, et al. Comparison of R-ketamine and rapastinel antidepressant effects in the social defeat stress model of depression. Psychopharmacology (Berl). 2016;233(19–20):3647–3657.
  • Preskorn S, Macaluso M, Mehra DO, et al. Randomized proof of concept trial of GLYX-13, an N-methyl-D-aspartate receptor glycine site partial agonist, in major depressive disorder nonresponsive to a previous antidepressant agent. J Psychiatr Pract. 2015;21(2):140–149.
  • Kato T, Duman RS. Rapastinel, a novel glutamatergic agent with ketamine-like antidepressant actions: convergent mechanisms. Pharmacol Biochem Behav. 2020;188:172827.
  • Lei T, Dong D, Song M, et al. Rislenemdaz treatment in the lateral habenula improves despair-like behavior in mice. Neuropsychopharmacology. 2020;45(10):1717–1724.
  • Ibrahim L, Diaz Granados N, Jolkovsky L, et al. A randomized, placebo-controlled, crossover pilot trial of the oral selective NR2B antagonist MK-0657 in patients with treatment-resistant major depressive disorder. J Clin Psychopharmacol. 2012;32(4):551–557.
  • Paterson B, Fraser H, Wang C, et al. A randomized, double-blind, placebo-controlled, sequential parallel study of CERC-301 in the adjunctive treatment of subjects with severe depression and recent active suicidal ideation despite antidepressant treatment (NCT01941043). In: National Network of Depression Centers Annual Conference; 2015 Nov 5–6; Ann Arbor, Michigan; 2015. p. Accessed 2022 May 3
  • Mishra PK, Adusumilli M, Deolal P, et al. Impaired neuronal and astroglial metabolic activity in chronic unpredictable mild stress model of depression: reversal of behavioral and metabolic deficit with lanicemine. Neurochem Int. 2020;137:104750.
  • Neis VB, Moretti M, Rosa PB, et al. The involvement of PI3K/Akt/mTOR/GSK3beta signaling pathways in the antidepressant-like effect of AZD6765. Pharmacol Biochem Behav. 2020;198:173020.
  • Pochwat B, Szewczyk B, Kotarska K, et al. Hyperforin potentiates antidepressant-like activity of lanicemine in mice. Front Mol Neurosci. 2018;11:456.
  • Zarate CAsJr., Mathews D, Ibrahim L, et al. A randomized trial of a low-trapping nonselective N-methyl-D-aspartate channel blocker in major depression. Biol Psychiatry. 2013;74(4):257–264.
  • Sanacora G, Johnson MR, Khan A, et al. Adjunctive lanicemine (AZD6765) in patients with major depressive disorder and history of inadequate response to antidepressants: a randomized, placebo-controlled study. Neuropsychopharmacology. 2017;42(4):844–853.
  • Mishra SK, Hidau MK, Rai S. Memantine treatment exerts an antidepressant-like effect by preventing hippocampal mitochondrial dysfunction and memory impairment via upregulation of CREB/BDNF signaling in the rat model of chronic unpredictable stress-induced depression. Neurochem Int. 2021;142:104932.
  • Moriguchi S, Inagaki R, Shimojo H, et al. Memantine improves depressive-like behaviors via kir6.1 channel inhibition in olfactory bulbectomized mice. Neuroscience. 2020;442:264–273.
  • Hsu TW, Chu CS, Ching PY, et al. The efficacy and tolerability of memantine for depressive symptoms in major mental diseases: a systematic review and updated meta-analysis of double-blind randomized controlled trials. J Affect Disord. 2022;306:182–189.
  • Nowak G, Szewczyk B, Wieronska JM, et al. Antidepressant-like effects of acute and chronic treatment with zinc in forced swim test and olfactory bulbectomy model in rats. Brain Res Bull. 2003;61(2):159–164.
  • Szewczyk B, Branski P, Wieronska JM, et al. Interaction of zinc with antidepressants in the forced swimming test in mice. Pol J Pharmacol. 2002;54(6):681–685.
  • Szewczyk B, Poleszak E, Wlaz P, et al. The involvement of serotonergic system in the antidepressant effect of zinc in the forced swim test. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33(2):323–329.
  • Siwek M, Dudek D, Paul IA, et al. Zinc supplementation augments efficacy of imipramine in treatment resistant patients: a double blind, placebo-controlled study. J Affect Disord. 2009;118(1–3):187–195.
  • Majeed A, Xiong J, Teopiz KM, et al. Efficacy of dextromethorphan for the treatment of depression: a systematic review of preclinical and clinical trials. Expert Opin Emerg Drugs. 2021;26(1):63–74.
  • Henter ID, Park LT, Zarate CAsJr. Novel glutamatergic modulators for the treatment of mood disorders: current status. CNS Drugs. 2021;35(5):527–543.
  • Kishimoto T, Chawla JM, Hagi K, et al. Single-dose infusion ketamine and non-ketamine N-methyl-D-aspartate receptor antagonists for unipolar and bipolar depression: a meta-analysis of efficacy, safety and time trajectories. Psychol Med. 2016;46(7):1459–1472.
  • Vollenweider FX, Preller KH. Psychedelic drugs: neurobiology and potential for treatment of psychiatric disorders. Nat Rev Neurosci. 2020;21(11):611–624.
  • Nutt D, Carhart-Harris R. The current status of psychedelics in psychiatry. JAMA Psychiatry. 2021;78(2):121–122.
  • Nichols DE. Psychedelics. Pharmacol Rev. 2016;68(2):264–355.
  • Hesselgrave N, Troppoli TA, Wulff AB, et al. Harnessing psilocybin: antidepressant-like behavioral and synaptic actions of psilocybin are independent of 5-HT2R activation in mice. Proc Natl Acad Sci U S A. 2021;118(17). DOI:10.1073/pnas.2022489118
  • Hibicke M, Landry AN, Kramer HM, et al. Psychedelics, but not ketamine, produce persistent antidepressant-like effects in a rodent experimental system for the study of depression. ACS Chem Neurosci. 2020;11(6):864–871.
  • Shao LX, Liao C, Gregg I, et al. Psilocybin induces rapid and persistent growth of dendritic spines in frontal cortex in vivo. Neuron. 2021;109(16):2535–2544 e2534.
  • Casey AB, Cui M, Booth RG, et al. “Selective” serotonin 5-HT2A receptor antagonists. Biochem Pharmacol. 2022;200:115028.
  • Vesuna S, Kauvar IV, Richman E, et al. Deep posteromedial cortical rhythm in dissociation. Nature. 2020;586(7827):87–94.
  • Halberstadt AL, Nichols DE, Vollenweider FX. Behavioral neurobiology of psychedelic drugs preface. Curr Top Behav Neuro. 2018;36:V–Viii.
  • Newman-Tancredi A, Depoortere RY, Kleven MS, et al. Translating biased agonists from molecules to medications: serotonin 5-HT1A receptor functional selectivity for CNS disorders. Pharmacol Ther. 2022;229:107937.
  • Yohn CN, Gergues MM, Samuels BA. The role of 5-HT receptors in depression. Mol Brain. 2017;10(1):28.
  • Salaciak K, Pytka K. Biased agonism in drug discovery: is there a future for biased 5-HT1A receptor agonists in the treatment of neuropsychiatric diseases? Pharmacol Ther. 2021;227:107872.
  • Albert PR, Vahid-Ansari F, Luckhart C. Serotonin-prefrontal cortical circuitry in anxiety and depression phenotypes: pivotal role of pre- and post-synaptic 5-ht1a receptor expression. Front Behav Neurosci. 2014;8:199.
  • Gluch-Lutwin M, Salaciak K, Gawalska A, et al. The selective 5-HT1A receptor biased agonists, f15599 and f13714, show antidepressant-like properties after a single administration in the mouse model of unpredictable chronic mild stress. Psychopharmacology (Berl). 2021;238(8):2249–2260.
  • Depoortere R, Papp M, Gruca P, et al. Cortical 5-hydroxytryptamine 1a receptor biased agonist, NLX-101, displays rapid-acting antidepressant-like properties in the rat chronic mild stress model. J Psychopharmacol. 2019;33(11):1456–1466.
  • Amigo J, Diaz A, Pilar-Cuellar F, et al. The absence of 5-HT4 receptors modulates depression- and anxiety-like responses and influences the response of fluoxetine in olfactory bulbectomised mice: adaptive changes in hippocampal neuroplasticity markers and 5-HT1A autoreceptor. Neuropharmacology. 2016;111:47–58.
  • Amigo J, Garro-Martinez E, Vidal Casado R, et al. 5-HT4 receptors are not involved in the effects of fluoxetine in the corticosterone model of depression. ACS Chem Neurosci. 2021;12(11):2036–2044.
  • Licht CL, Marcussen AB, Wegener G, et al. The brain 5-HT4 receptor binding is down-regulated in the flinders sensitive line depression model and in response to paroxetine administration. J Neurochem. 2009;109(5):1363–1374.
  • Lucas G, Rymar VV, Du J, et al. Serotonin(4) (5-HT(4)) receptor agonists are putative antidepressants with a rapid onset of action. Neuron. 2007;55(5):712–725.
  • Pascual-Brazo J, Castro E, Diaz A, et al. Modulation of neuroplasticity pathways and antidepressant-like behavioural responses following the short-term (3 and 7 days) administration of the 5-HT(4) receptor agonist rs67333. Int J Neuropsychopharmacol. 2012;15(5):631–643.
  • Schill Y, Bijata M, Kopach O, et al. Serotonin 5-HT4 receptor boosts functional maturation of dendritic spines via RhoA-dependent control of F-actin. Commun Biol. 2020;3(1):76.
  • Bijata M, Baczynska E, Muller FE, et al. Activation of the 5-HT7 receptor and MMP-9 signaling module in the hippocampal CA1 region is necessary for the development of depressive-like behavior. Cell Rep. 2022;38(11):110532.
  • Bijata M, Labus J, Guseva D, et al. Synaptic remodeling depends on signaling between serotonin receptors and the extracellular matrix. Cell Rep. 2017;19(9):1767–1782.
  • Guscott M, Bristow LJ, Hadingham K, et al. Genetic knockout and pharmacological blockade studies of the 5-HT7 receptor suggest therapeutic potential in depression. Neuropharmacology. 2005;48(4):492–502.
  • Hedlund PB, Huitron-Resendiz S, Henriksen SJ, et al. 5-HT7 receptor inhibition and inactivation induce antidepressant like behavior and sleep pattern. Biol Psychiatry. 2005;58(10):831–837.
  • Wesolowska A, Nikiforuk A, Stachowicz K, et al. Effect of the selective 5-HT7 receptor antagonist SB 269970 in animal models of anxiety and depression. Neuropharmacology. 2006;51(3):578–586.
  • Wesolowska A, Nikiforuk A, Stachowicz K. Potential anxiolytic and antidepressant effects of the selective 5-HT7 receptor antagonist SB 269970 after intrahippocampal administration to rats. Eur J Pharmacol. 2006;553(1–3):185–190.
  • Iovieno N, Papakostas GI, Feeney A, et al. Vortioxetine versus placebo for major depressive disorder: a comprehensive analysis of the clinical trial dataset. J Clin Psychiatry. 2021;82(4). DOI:10.4088/JCP.20r13682
  • Siwek M, Gorostowicz A, Bosak M, et al. Case report: vortioxetine in the treatment of depressive symptoms in patients with epilepsy-case series. Front Pharmacol (2022) 13 852042.
  • Fornaro M, De Berardis D, Perna G, et al. Lurasidone in the treatment of bipolar depression: systematic review of systematic reviews. Biomed Res Int. 2017;2017:3084859.
  • Okada M, Matsumoto R, Yamamoto Y, et al. Effects of subchronic administrations of vortioxetine, lurasidone, and escitalopram on thalamocortical glutamatergic transmission associated with serotonin 5-HT7 receptor. Int J Mol Sci. 2021;22(3):1351.
  • Okada M, Fukuyama K, Okubo R, et al. Lurasidone sub-chronically activates serotonergic transmission via desensitization of 5-HT1A and 5-HT7 receptors in dorsal raphe nucleus. Pharmaceuticals (Basel). 2019;12(4):149.
  • Fornaro M, Fusco A, Anastasia A, et al. Brexpiprazole for treatment-resistant major depressive disorder. Expert Opin Pharmacother. 2019;20(16):1925–1933.
  • Zangani C, Giordano B, Stein HC, et al. Efficacy of amisulpride for depressive symptoms in individuals with mental disorders: a systematic review and meta-analysis. Hum Psychopharmacol. 2021;36(6):e2801.
  • Rittmannsberger H. Amisulpride as an augmentation agent in treatment resistant depression: a case series and review of the literature. Psychiatr Danub. 2019;31(2):148–156.
  • Loebel A, Koblan KS, Tsai J, et al. A randomized, double-blind, placebo-controlled proof-of-concept trial to evaluate the efficacy and safety of non-racemic amisulpride (sep-4199) for the treatment of bipolar I depression. J Affect Disord. 2022;296:549–558.
  • Niswender CM, Conn PJ. Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol. 2010;50:295–322.
  • Dogra S, Conn PJ. Targeting metabotropic glutamate receptors for the treatment of depression and other stress-related disorders. Neuropharmacology. 2021;196:108687.
  • Gould RW, Amato RJ, Bubser M, et al. Partial mGlu(5) negative allosteric modulators attenuate cocaine-mediated behaviors and lack psychotomimetic-like effects. Neuropsychopharmacology. 2016;41(4):1166–1178.
  • Musazzi L. Targeting metabotropic glutamate receptors for rapid-acting antidepressant drug discovery. Expert Opin Drug Discov. 2021;16(2):147–157.
  • Dong C, Zhang JC, Yao W, et al. Rapid and sustained antidepressant action of the mGlu2/3 receptor antagonist MGS0039 in the social defeat stress model: comparison with ketamine. Int J Neuropsychopharmacol. 2017;20(3):228–236.
  • Dwyer JM, Lepack AE, Duman RS. Mglur2/3 blockade produces rapid and long-lasting reversal of anhedonia caused by chronic stress exposure. J Mol Psychiatry. 2013;1(1):15.
  • Palucha-Poniewiera A, Podkowa K, Rafalo-Ulinska A. The group II mGlu receptor antagonist LY341495 induces a rapid antidepressant-like effect and enhances the effect of ketamine in the chronic unpredictable mild stress model of depression in C57BL/6J mice. Prog Neuropsychopharmacol Biol Psychiatry. 2021;109:110239.
  • Dong C, Zhang JC, Yao W, et al. Rapid and Sustained Antidepressant Action of the mGlu2/3 Receptor Antagonist MGS0039 in the Social Defeat Stress Model: Comparison with Ketamine. Int J Neuropsychopharmacol. 2017;20(3):228–236. DOI:10.1093/ijnp/pyw089.
  • Joffe ME, Santiago CI, Oliver KH, et al. mGlu2 and mGlu3 negative allosteric modulators divergently enhance thalamocortical transmission and exert rapid antidepressant-like effects. Neuron. 2020;105(1):46–59 e43.
  • Dong C, Tian Z, Fujita Y, et al. Antidepressant-like actions of the mGlu2/3 receptor antagonist TP0178894 in the chronic social defeat stress model: comparison with escitalopram. Pharmacol Biochem Behav. 2022;212:173316.
  • Rafalo-Ulinska A, Branski P, Palucha-Poniewiera A. Combined administration of (R)-ketamine and the mGlu2/3 receptor antagonist LY341495 induces rapid and sustained effects in the CUMS model of depression via a Trkb/BDNF-dependent mechanism. Pharmaceuticals (Basel). 2022;15(2):125.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.