3,237
Views
0
CrossRef citations to date
0
Altmetric
Review

Investigational drugs for the treatment of kidney transplant rejection

, , , , &
Pages 1087-1100 | Received 26 Apr 2022, Accepted 27 Sep 2022, Published online: 07 Oct 2022

References

  • Registry AaNZDaT. Australia and New Zealand dialysis and transplant registry: 39th annual report, Chapter 8, transplantation. Adelaide, Australia, 2016.
  • Loupy A, Haas M, Roufosse C, et al., The banff 2019 kidney meeting report (I): updates on and clarification of criteria for T cell- and antibody-mediated rejection. Am J Transplant. 2020;20(9): 2318–2331.
  • Nankivell BJ, Alexander SI, Schwartz RS. Rejection of the kidney allograft. N Engl J Med. 2010;363(15):1451–1462.
  • Kasiske BL, Zeier MG, Chapman JR, et al. KDIGO clinical practice guideline for the care of kidney transplant recipients: a summary. Kidney Int. 2010;77(4):299–311.
  • FDA. Thymoglobulin; 2018 . [updated 26th Febuary 2018; cited 2022 7th March]. [updated 26th Febuary 2018; cited 2022 7th March]: https://www.fda.gov/vaccines-blood-biologics/approved-blood-products/thymoglobulin
  • Rampersad C, Balshaw R, Gibson IW, et al. The negative impact of T cell-mediated rejection on renal allograft survival in the modern era. Am J Transplant. 2022;22(3):761–771.
  • Loupy A, Lefaucheur C. Antibody-mediated rejection of solid-organ allografts. N Engl J Med. 2018;379(12):1150–1160.
  • van der Zwan M, Baan CC, van Gelder T, et al. Review of the clinical pharmacokinetics and pharmacodynamics of alemtuzumab and its use in kidney transplantation. Clin Pharmacokinet. 2018;57(2):191–207.
  • EMA. Lemtrada: European medicines agency; 2013. [updated 7-jan-2022; cited 2022 February 10th]. [updated 7-jan-2022; cited 2022 February 10th]: https://www.ema.europa.eu/en/medicines/human/EPAR/lemtrada
  • van der Zwan M, Groningen MC C-V, van den Hoogen MWF, et al. Comparison of alemtuzumab and anti-thymocyte globulin treatment for acute kidney allograft rejection. Front Immunol. 2020;11:1332.
  • Betjes MGH, Kho MML, Litjens NHR, et al. Alemtuzumab as second-line treatment for late antibody-mediated rejection of transplanted kidneys. Transplant Proc. 2021;53(7):2206–2211.
  • Guarnera C, Bramanti P, Mazzon E. Alemtuzumab: a review of efficacy and risks in the treatment of relapsing remitting multiple sclerosis. Ther Clin Risk Manag. 2017;13:871–879.
  • Bank JR, Heidt S, Moes DJ, et al. Alemtuzumab induction and delayed acute rejection in steroid-free simultaneous pancreas-kidney transplant recipients. Transplant Direct. 2017;3(1):e124.
  • Willicombe M, Goodall D, McLean AG, et al. Alemtuzumab dose adjusted for body weight is associated with earlier lymphocyte repletion and less infective episodes in the first year post renal transplantation - a retrospective study. Transpl Int. 2017;30(11):1110–1118.
  • Guthoff M, Berger K, Althaus K, et al. Low-dose alemtuzumab induction in a tailored immunosuppression protocol for sensitized kidney transplant recipients. BMC Nephrol. 2020;21(1):178.
  • Willemsen L, Jol-van der Zijde CM, Admiraal R, et al. Impact of serotherapy on immune reconstitution and survival outcomes after stem cell transplantations in children: thymoglobulin versus alemtuzumab. Biol Blood Marrow Transplant. 2015;21(3):473–482.
  • Pavlasova G, Mraz M. The regulation and function of CD20: an “enigma” of B-cell biology and targeted therapy. Haematologica. 2020;105(6):1494–1506.
  • Delate T, Hansen ML, Gutierrez AC, et al. Indications for rituximab use in an integrated health care delivery system. J Manag Care Spec Pharm. 2020;267:832–838
  • Schmitz R, Fitch ZW, Schroder PM, et al. B cells in transplant tolerance and rejection: friends or foes? Transpl Int. 2020;33(1):30–40.
  • Laws LH, Parker CE, Cherala G, et al. Inflammation causes resistance to anti-CD20-mediated B cell depletion. Am J Transplant. 2016;16(11):3139–3149.
  • Macklin PS, Morris PJ, Knight SR. A systematic review of the use of rituximab for desensitization in renal transplantation. Transplantation. 2014;98(8):794–805.
  • Macklin PS, Morris PJ, Knight SR. A systematic review of the use of rituximab as induction therapy in renal transplantation. Transplantation Rev. 2015;29(2):103–108.
  • Macklin PS, Morris PJ, Knight SR. A systematic review of the use of rituximab for the treatment of antibody-mediated renal transplant rejection. Transplant Rev (Orlando). 2017 Apr;31(2):87–95.
  • Moreso F, Crespo M, Ruiz JC, et al. Treatment of chronic antibody mediated rejection with intravenous immunoglobulins and rituximab: a multicenter, prospective, randomized, double-blind clinical trial. Am J Transplant. 2018;18(4):927–935.
  • Shiu KY, Stringer D, McLaughlin L, et al. Effect of optimized immunosuppression (including rituximab) on anti-donor alloresponses in patients with chronically rejecting renal allografts. Front Immunol. 2020;11:79.
  • Sautenet B, Blancho G, Büchler M, et al. One-year results of the effects of rituximab on acute antibody-mediated rejection in renal transplantation: RITUX ERAH, a multicenter double-blind randomized placebo-controlled trial. Transplantation. 2016;100(2):391–9.
  • Bailly E, Ville S, Blancho G, et al. An extension of the RITUX-ERAH study, multicenter randomized clinical trial comparing rituximab to placebo in acute antibody-mediated rejection after renal transplantation. Transpl Int. 2020;33(7):786–795.
  • Nunes AT, Annunziata CM. Proteasome inhibitors: structure and function. Semin Oncol. 2017 Dec;44(6):377–380.
  • Neubert K, Meister S, Moser K, et al. The proteasome inhibitor bortezomib depletes plasma cells and protects mice with lupus-like disease from nephritis. Nat Med. 2008;14(7):748–755.
  • Perry DK, Burns JM, Pollinger HS, et al. Proteasome inhibition causes apoptosis of normal human plasma cells preventing alloantibody production. Am J Transplant. 2009;9(1):201–209.
  • Choi AY, Manook M, Olaso D, et al. Emerging new approaches in desensitization: targeted therapies for HLA sensitization. Front Immunol. 2021;12:694763.
  • Eskandary F, Regele H, Baumann L, et al. A randomized trial of bortezomib in late antibody-mediated kidney transplant rejection. J Am Soc Nephrol. 2018;29(2):591–605.
  • Joher N, Matignon M, Grimbert P. HLA desensitization in solid organ transplantation: anti-CD38 to across the immunological barriers. Front Immunol. 2021;12:688301.
  • Offidani M, Corvatta L, Morè S, et al. Daratumumab for the management of newly diagnosed and relapsed/refractory multiple myeloma: current and emerging treatments [Review]. Front Oncol. 2021;2021:10.
  • Kwun J, Matignon M, Manook M, et al. Daratumumab in sensitized kidney transplantation: potentials and limitations of experimental and clinical use. J Am Soc Nephrol. 2019;30(7):1206–1219.
  • Doberer K, Kläger J, Gualdoni GA, et al. CD38 antibody daratumumab for the treatment of chronic active antibody-mediated kidney allograft rejection. Transplantation. 2021;105(2):451–457.
  • Jordan S, Vescio R, Toyoda M, et al. Daratumumab for treatment of antibody-mediated rejection in a kidney transplant recipient. Am J Transplant. 2019;19(S3). Abstract.
  • Spica D, Junker T, Dickenmann M, et al. Daratumumab for treatment of antibody-mediated rejection after ABO-incompatible kidney transplantation. Case Rep Nephrol Dial. 2019;9(3):149–157.
  • Raab MS, Engelhardt M, Blank A, et al. MOR202, a novel anti-CD38 monoclonal antibody, in patients with relapsed or refractory multiple myeloma: a first-in-human, multicentre, phase 1–2a trial. Lancet Haematol. 2020;7(5):e381–e394.
  • Mayer KA, Budde K, Halloran PF, et al. Safety, tolerability, and efficacy of monoclonal CD38 antibody felzartamab in late antibody-mediated renal allograft rejection: study protocol for a phase 2 trial. Trials. 2022;23(1):270.
  • Frampton JE. Isatuximab: a review of its use in multiple myeloma. Target Oncol. 2021;16(5):675–686.
  • Mackay F, Schneider P. Cracking the BAFF code. Nat Rev Immunol. 2009 Jul;9(7):491–502.
  • Oren DA, Li Y, Volovik Y, et al. Structural basis of BLyS receptor recognition. Nat Struct Biol. 2002;9(4):288–292.
  • Schiemann B, Gommerman JL, Vora K, et al. An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway. Science. 2001;293(5537):2111–2114.
  • Gross JA, Johnston J, Mudri S, et al. TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease. Nature. 2000;404(6781):995–999.
  • Schneider P, MacKay F, Steiner V, et al. BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth. J Exp Med. 1999;189(11):1747–1756.
  • Banham G, Prezzi D, Harford S, et al. Elevated pretransplantation soluble BAFF is associated with an increased risk of acute antibody-mediated rejection. Transplantation. 2013;96(4):413–420.
  • Wasowska BA. Mechanisms involved in antibody- and complement-mediated allograft rejection. Immunol Res. 2010 Jul;47(1–3):25–44.
  • Thibault-Espitia A, Foucher Y, Danger R, et al. BAFF and BAFF-R levels are associated with risk of long-term kidney graft dysfunction and development of donor-specific antibodies. Am J Transplant. 2012;12(10):2754–2762.
  • Schlößer HA, Thelen M, Dieplinger G, et al. Prospective analyses of circulating B cell subsets in ABO-compatible and ABO-incompatible kidney transplant recipients. Am J Transplant. 2017;17(2):542–550.
  • Navarra SV, Guzmán RM, Gallacher AE, et al. Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial. Lancet. 2011;377(9767):721–731.
  • Steri M, Orrù V, Idda ML, et al. Overexpression of the cytokine BAFF and autoimmunity risk. N Engl J Med. 2017;376(17):1615–1626.
  • Bath NM, Ding X, Wilson NA, et al. Desensitization and treatment with April/BLyS blockade in rodent kidney transplant model. PLoS One. 2019;14(2):e0211865.
  • Kwun J, Page E, Hong JJ, et al. Neutralizing BAFF/April with atacicept prevents early DSA formation and AMR development in T cell depletion induced nonhuman primate AMR model. Am J Transplant. 2015;15(3):815–822.
  • Wilson NA, Bath NM, Verhoven BM, et al. April/BLyS blockade reduces donor-specific antibodies in allosensitized mice. Transplantation. 2019;103(7):1372–1384.
  • Mujtaba MA, Komocsar WJ, Nantz E, et al. Effect of treatment with tabalumab, a B cell-activating factor inhibitor, on highly sensitized patients with end-stage renal disease awaiting transplantation. Am J Transplant. 2016;16(4):1266–1275.
  • Agarwal D, Luning Prak ET, Bharani T, et al. BLyS neutralization results in selective anti-HLA alloantibody depletion without successful desensitization. Transpl Immunol. 2021;69:101465.
  • Banham GD, Flint SM, Torpey N, et al. Belimumab in kidney transplantation: an experimental medicine, randomised, placebo-controlled phase 2 trial. Lancet. 2018;391(10140):2619–2630.
  • Miller CL, Madsen JC. IL-6 directed therapy in transplantation. Curr Transplant Rep. 2021 Jun;3:1–14.
  • Cordoba F, Wieczorek G, Audet M, et al. A novel, blocking, Fc-silent anti-CD40 monoclonal antibody prolongs nonhuman primate renal allograft survival in the absence of B cell depletion. Am J Transplant. 2015;15(11):2825–2836.
  • van Kooten C, Banchereau J. CD40-CD40 ligand. J Leukoc Biol. 2000 Jan;67(1):2–17.
  • Graham JP, Arcipowski KM, Bishop GA. Differential B-lymphocyte regulation by CD40 and its viral mimic, latent membrane protein 1. Immunol Rev. 2010 Sep;237(1):226–248.
  • Sayegh MH, Turka LA. The role of T-cell costimulatory activation pathways in transplant rejection. N Engl J Med. 1998;338(25):1813–1821.
  • Armitage RJ, Fanslow WC, Strockbine L, et al. Molecular and biological characterization of a murine ligand for CD40. Nature. 1992;357(6373):80–82.
  • Hollenbaugh D, Grosmaire LS, Kullas CD, et al. The human T cell antigen gp39, a member of the TNF gene family, is a ligand for the CD40 receptor: expression of a soluble form of gp39 with B cell co-stimulatory activity. Embo J. 1992;11(12):4313–4321.
  • Foy TM, Laman JD, Ledbetter JA, et al. gp39-CD40 interactions are essential for germinal center formation and the development of B cell memory. J Exp Med. 1994;180(1):157–163.
  • Kawabe T, Naka T, Yoshida K, et al. The immune responses in CD40-deficient mice: impaired immunoglobulin class switching and germinal center formation. Immunity. 1994;1(3):167–178.
  • Quezada SA, Jarvinen LZ, Lind EF, et al. CD40/CD154 interactions at the interface of tolerance and immunity. Annu Rev Immunol. 2004;22(1):307–328.
  • Alderson MR, Armitage RJ, Tough TW, et al. CD40 expression by human monocytes: regulation by cytokines and activation of monocytes by the ligand for CD40. J Exp Med. 1993;178(2):669–674.
  • Caux C, Massacrier C, Vanbervliet B, et al. Activation of human dendritic cells through CD40 cross-linking. J Exp Med. 1994;180(4):1263–1272.
  • Fisher BA, Szanto A, W-F N, et al. Assessment of the anti-CD40 antibody iscalimab in patients with primary Sjögren’s syndrome: a multicentre, randomised, double-blind, placebo-controlled, proof-of-concept study. Lancet Rheumatol. 2020;2(3):e142–e152.
  • Mauri C, Mars LT, Londei M. Therapeutic activity of agonistic monoclonal antibodies against CD40 in a chronic autoimmune inflammatory process. Nat Med. 2000 Jun;6(6):673–679.
  • Espié P, He Y, Koo P, et al. First-in-human clinical trial to assess pharmacokinetics, pharmacodynamics, safety, and tolerability of iscalimab, an anti-CD40 monoclonal antibody. Am J Transplant. 2020;20(2):463–473.
  • Pearson TC, Trambley J, Odom K, et al. Anti-CD40 therapy extends renal allograft survival in rhesus macaques. Transplantation. 2002;74(7):933–940.
  • Schuler W, Bigaud M, Brinkmann V, et al. Efficacy and safety of ABI793, a novel human anti-human CD154 monoclonal antibody, in cynomolgus monkey renal allotransplantation. Transplantation. 2004;77(5):717–726.
  • Kanmaz T, Fechner JJ Jr., Torrealba J, et al. Monotherapy with the novel human anti-CD154 monoclonal antibody ABI793 in rhesus monkey renal transplantation model. Transplantation. 2004;77(6):914–920.
  • Imai A, Suzuki T, Sugitani A, et al. A novel fully human anti-CD40 monoclonal antibody, 4D11, for kidney transplantation in cynomolgus monkeys. Transplantation. 2007;84(8):1020–1028.
  • van der Zwan M, Hesselink DA, van den Hoogen MWF, et al. Costimulation blockade in kidney transplant recipients. Drugs. 2020;80(1):33–46.
  • Ulrich P, Flandre T, Espie P, et al. Nonclinical safety assessment of CFZ533, a Fc-silent anti-CD40 antibody, in cynomolgus monkeys. Toxicol Sci. 2018;166(1):192–202.
  • Ristov J, Espie P, Ulrich P, et al. Characterization of the in vitro and in vivo properties of CFZ533, a blocking and non-depleting anti-CD40 monoclonal antibody. Am J Transplant. 2018;18(12):2895–2904.
  • Kirk AD, Burkly LC, Batty DS, et al. Treatment with humanized monoclonal antibody against CD154 prevents acute renal allograft rejection in nonhuman primates. Nat Med. 1999;5(6):686–693.
  • Farkash EA. CNI-Free Therapy with Iscalimab (anti-CD40 mAb) preserves allograft histology compared to standard of care after kidney transplantation; 2019. [ cited 2022 Apr 05]. Available from: https://atcmeetingabstracts.com/abstract/cni-free-therapy-with-iscalimab-anti-cd40-mab-preserves-allograft-histology-compared-to-standard-of-care-after-kidney-transplantation/
  • Nashan. CFZ533, a new anti-CD40 mAB demonstrates comparable efficacy and better renal function versus tacrolimus in De-Novo CNI-free kidney transplantation: American Transplant Congress; 2018 [ updated 06-05-2018; cited 2022 05-04-2022]. Available from: https://atcmeetingabstracts.com/abstract/cfz533-a-new-anti-cd40-mab-demonstrates-comparable-efficacy-and-better-renal-function-versus-tacrolimus-in-de-novo-cni-free-kidney-transplantation/
  • Novartis announces discontinuation of CIRRUS-1 study of CFZ533 (iscalimab) in kidney transplant patients: novartis AG; 2021. [ updated 03-09-2021; cited 2022 Feb 02]. Available from: https://www.novartis.com/news/novartis-announces-discontinuation-cirrus-1-study-cfz533-iscalimab-kidney-transplant-patients
  • Kim I, Wu G, Chai NN, et al. Anti-interleukin 6 receptor antibodies attenuate antibody recall responses in a mouse model of allosensitization. Transplantation. 2014;98(12):1262–1270.
  • Wu G, Chai N, Kim I, et al. Monoclonal anti-interleukin-6 receptor antibody attenuates donor-specific antibody responses in a mouse model of allosensitization. Transpl Immunol. 2013;28(2–3):138–143.
  • Liang Y, Christopher K, Finn PW, et al. Graft produced interleukin-6 functions as a danger signal and promotes rejection after transplantation. Transplantation. 2007;84(6):771–777.
  • Sheppard M, Laskou F, Stapleton PP, et al. Tocilizumab (Actemra). Hum Vaccin Immunother. 2017;13(9):1972–1988.
  • WHO. Therapeutics and COVID-19: living guideline. World Health Org. 2021. [cited 2021 Oct 18]. Available from: https://www.who.int/publications/i/item/WHO-2019-nCoV-therapeutics-2021.3
  • Choi J, Aubert O, Vo A, et al. Assessment of Tocilizumab (Anti-interleukin-6 receptor monoclonal) as a potential treatment for chronic antibody-mediated rejection and transplant glomerulopathy in HLA-sensitized renal allograft recipients. Am J Transplant. 2017;17(9):2381–2389.
  • Lavacca A, Presta R, Gai C, et al. Early effects of first-line treatment with anti-interleukin-6 receptor antibody tocilizumab for chronic active antibody-mediated rejection in kidney transplantation. Clin Transplant. 2020;34(8):e13908.
  • Massat M, Congy-Jolivet N, Hebral A-L, et al. Do anti-IL-6R blockers have a beneficial effect in the treatment of antibody-mediated rejection resistant to standard therapy after kidney transplantation? Am J Transplant. 2021;21(4):1641–1649.
  • Mease PJ, Gottlieb AB, Berman A, et al. The efficacy and safety of clazakizumab, an anti-interleukin-6 monoclonal antibody, in a phase IIb study of adults with active psoriatic arthritis. Arthritis Rheumatol. 2016;68(9):2163–2173.
  • Weinblatt ME, Mease P, Mysler E, et al. The efficacy and safety of subcutaneous clazakizumab in patients with moderate-to-severe rheumatoid arthritis and an inadequate response to methotrexate: results from a multinational, phase IIb, randomized, double-blind, placebo/active-controlled, dose-ranging study. Arthritis Rheumatol. 2015;67(10):2591–2600.
  • Doberer K, Duerr M, Halloran PF, et al. A randomized clinical trial of anti-IL-6 antibody clazakizumab in late antibody-mediated kidney transplant rejection. J Am Soc Nephrol. 2021;32(3):708–722.
  • Jordan SC, Ammerman N, Choi J, et al. Evaluation of clazakizumab (Anti-interleukin-6) in patients with treatment-resistant chronic active antibody-mediated rejection of kidney allografts. Kidney Int Rep. 2022;7(4):720–731.
  • Nandakumar KS, Johansson BP, Björck L, et al. Blocking of experimental arthritis by cleavage of IgG antibodies in vivo. Arthritis Rheum. 2007;56(10):3253–3260.
  • Johansson BP, Shannon O, Björck L. IdeS: a bacterial proteolytic enzyme with therapeutic potential. PLoS One. 2008;3(2):e1692.
  • Ryan MH, Petrone D, Nemeth JF, et al. Proteolysis of purified IgGs by human and bacterial enzymes in vitro and the detection of specific proteolytic fragments of endogenous IgG in rheumatoid synovial fluid. Mol Immunol. 2008;45(7):1837–1846.
  • Yang R, Otten MA, Hellmark T, et al. Successful treatment of experimental glomerulonephritis with IdeS and EndoS, IgG-degrading streptococcal enzymes. Nephrol Dial Transplant. 2010;25(8):2479–2486.
  • Tradtrantip L, Asavapanumas N, Verkman AS. Therapeutic cleavage of anti-aquaporin-4 autoantibody in neuromyelitis optica by an IgG-selective proteinase. Mol Pharmacol. 2013 Jun;83(6):1268–1275.
  • von Pawel-Rammingen U, Johansson BP, Björck L. IdeS, a novel streptococcal cysteine proteinase with unique specificity for immunoglobulin G. Embo J. 2002;21(7):1607–1615.
  • Vincents B, von Pawel-Rammingen U, Björck L, et al. Enzymatic characterization of the streptococcal endopeptidase, IdeS, reveals that it is a cysteine protease with strict specificity for IgG cleavage due to exosite binding. Biochemistry. 2004;43(49):15540–15549.
  • Wenig K, Chatwell L, von Pawel-Rammingen U, et al. Structure of the streptococcal endopeptidase IdeS, a cysteine proteinase with strict specificity for IgG. Proc Natl Acad Sci U S A. 2004;101(50):17371–17376.
  • Akiyoshi T, Hirohashi T, Alessandrini A, et al. Role of complement and NK cells in antibody mediated rejection. Hum Immunol. 2012;73(12):1226–1232.
  • Thomas KA, Valenzuela NM, Reed EF. The perfect storm: HLA antibodies, complement, FcγRs, and endothelium in transplant rejection. Trends Mol Med. 2015 May;21(5):319–329.
  • Ge S, Chu M, Choi J, et al. Imlifidase inhibits HLA antibody-mediated NK cell activation and antibody-dependent cell-mediated cytotoxicity (ADCC) In Vitro. Transplantation. 2020;104(8):1574–1579.
  • Winstedt L, Järnum S, Nordahl EA, et al. Complete removal of extracellular IgG antibodies in a randomized dose-escalation phase I study with the bacterial enzyme IdeS–A novel therapeutic opportunity. PLoS One. 2015;10(7):e0132011.
  • Lorant T, Bengtsson M, Eich T, et al. Safety, immunogenicity, pharmacokinetics, and efficacy of degradation of anti-HLA antibodies by IdeS (imlifidase) in chronic kidney disease patients. Am J Transplant. 2018;18(11):2752–2762.
  • Wahlberg J, Bengtsson M, Bergström C, et al. Impact of flow cytometry cross-matching results on the outcome of cadaveric kidney transplantation. Transplant Proc. 1994 Jun;26(3):1752–1753.
  • Järnum S, Bockermann R, Runström A, et al. The bacterial enzyme IdeS cleaves the IgG-type of B cell receptor (BCR), abolishes BCR-mediated cell signaling, and inhibits Memory B cell activation. J Immunol. 2015;195(12):5592–5601.
  • Jordan SC, Legendre C, Desai NM, et al. Imlifidase desensitization in crossmatch-positive, highly sensitized kidney transplant recipients: results of an international phase 2 trial (Highdes). Transplantation. 2021;105(8):1808–1817.
  • Jordan SC, Lorant T, Choi J, et al. IgG endopeptidase in highly sensitized patients undergoing transplantation. N Engl J Med. 2017;377(5):442–453.
  • Lonze BE, Tatapudi VS, Weldon EP, et al. IdeS (Imlifidase): a novel agent that cleaves human IgG and permits successful kidney transplantation across high-strength donor-specific antibody. Ann Surg. 2018;268(3):488–496.
  • Nauser CL, Farrar CA, Sacks SH. Complement recognition pathways in renal transplantation. J Am Soc Nephrol. 2017;28(9):2571–2578.
  • Stites E, Le Quintrec M, Thurman JM. The complement system and antibody-mediated transplant rejection. J Immunol. 2015;195(12):5525–5531.
  • Eskandary F, Wahrmann M, Mühlbacher J, et al. Complement inhibition as potential new therapy for antibody-mediated rejection. Transplant Int. 2016;29(4):392–402.
  • Wahrmann M, Mühlbacher J, Marinova L, et al. Effect of the anti-C1s humanized antibody TNT009 and its parental mouse variant TNT003 on HLA antibody-induced complement activation-A preclinical in vitro study. Am J Transplant. 2017;17(9):2300–2311.
  • Rother RP, Arp J, Jiang J, et al. C5 blockade with conventional immunosuppression induces long-term graft survival in presensitized recipients. Am J Transplant. 2008;8(6):1129–1142.
  • Wang H, Arp J, Liu W, et al. Inhibition of terminal complement components in presensitized transplant recipients prevents antibody-mediated rejection leading to long-term graft survival and accommodation. J Immunol. 2007;179(7):4451–4463.
  • Wang H, Jiang J, Liu W, et al. Prevention of acute vascular rejection by a functionally blocking anti-C5 monoclonal antibody combined with cyclosporine. Transplantation. 2005;79(9):1121–1127.
  • Chrvala CA, Caspi A. C1 esterase inhibitor (human). P&T. 2010;35(7 Section 2):2–3.
  • Viglietti D, Gosset C, Loupy A, et al. C1 inhibitor in acute antibody-mediated rejection nonresponsive to conventional therapy in kidney transplant recipients: a pilot study. Am J Transplant. 2016;16(5):1596–603.
  • Montgomery RA, Orandi BJ, Racusen L, et al. Plasma-derived C1 esterase inhibitor for acute antibody-mediated rejection following kidney transplantation: results of a randomized double-blind placebo-controlled pilot study. Am J Transplant. 2016;16(12):3468–3478.
  • Dubois EA, Cohen AF. Eculizumab. Br J Clin Pharmacol. 2009;68(3):318–319.
  • Wijnsma KL, Ter Heine R, Moes DJAR, et al. Pharmacology, pharmacokinetics and pharmacodynamics of eculizumab, and possibilities for an individualized approach to eculizumab. Clin Pharmacokinet. 2019;58(7):859–874.
  • González-Roncero F, Suñer M, Bernal G, et al. Eculizumab treatment of acute antibody-mediated rejection in renal transplantation: case reports. Transplant Proc. 2012;44(9):2690–2694.
  • Ikeda T, Okumi M, Unagami K, et al. Two cases of kidney transplantation-associated thrombotic microangiopathy successfully treated with eculizumab. Nephrology (Carlton). 2016;21 Suppl 1:35–40.
  • Smith B, Kumar V, Mompoint-Williams D, et al. Dosing eculizumab for antibody-mediated rejection in kidney transplantation: a case report. Transplant Proc. 2016;48(9):3099–3105.
  • Tan EK, Bentall A, Dean PG, et al. Use of eculizumab for active antibody-mediated rejection that occurs early post-kidney transplantation: a consecutive series of 15 cases. Transplantation. 2019;103(11):2397–2404.
  • Wongsaroj P, Choi J, Vo A, et al. Outcomes of eculizumab (ANTI-C5) therapy for treatment of refractory antibody-mediated rejection (ABMR) and thrombotic microangiopathy (TMA) [abstract]. Am J Transplant. 2015;15(suppl 3).
  • Orandi BJ, Zachary AA, Dagher NN, et al. Eculizumab and splenectomy as salvage therapy for severe antibody-mediated rejection after HLA-incompatible kidney transplantation. Transplantation. 2014;98(8):857–863.
  • Kulkarni S, Kirkiles-Smith NC, Deng YH, et al. Eculizumab therapy for chronic antibody-mediated injury in kidney transplant recipients: a pilot randomized controlled trial. Am J Transplant. 2017;17(3):682–691.
  • Eskandary F, Jilma B, Mühlbacher J, et al. Anti-C1s monoclonal antibody BIVV009 in late antibody-mediated kidney allograft rejection-results from a first-in-patient phase 1 trial. Am J Transplant. 2018;18(4):916–926.
  • Hariharan S, Israni AK, Danovitch G. Long-term survival after kidney transplantation. N Engl J Med. 2021;385(8):729–743.
  • Hullegie-Peelen DM, van der Zwan M, Clahsen-van Groningen MC, et al. Clinical and molecular profiling to develop a potential prediction model for the response to alemtuzumab therapy for acute kidney transplant rejection. Clin Pharmacol Ther. 2022;111(5):1155–1164.
  • Kim MY, Brennan DC. Therapies for Chronic Allograft Rejection. Front Pharmacol. 2021;12:651222.
  • Lonze BE. A review of imlifidase in solid organ transplantation. Expert Opin Biol Ther. 2021 Feb;21(2):135–143.
  • Lefaucheur C, Loupy A, Vernerey D, et al. Antibody-mediated vascular rejection of kidney allografts: a population-based study. Lancet. 2013;381(9863):313–319.
  • Lai X, Zheng X, Mathew JM, et al. Tackling chronic kidney transplant rejection: challenges and promises [Mini review]. Front Immunol. 2021;2021:12.
  • Stegall MD, Smith B, Bentall A, et al. The need for novel trial designs, master protocols, and research consortia in transplantation. Clin Transplant. 2020;34(1):e13759.
  • Anwar IJ, Srinivas TR, Gao Q, et al. Shifting clinical trial endpoints in kidney transplantation: the rise of composite endpoints and machine learning to refine prognostication. Transplantation. 2022;106(8):1558–1564.
  • Hilbrands L, Budde K, Bellini MI, et al. Allograft function as endpoint for clinical trials in kidney transplantation. Transpl Int. 2022;35:10139.