1,085
Views
1
CrossRef citations to date
0
Altmetric
Review

IgA nephropathy: an overview of drug treatments in clinical trials

ORCID Icon, , &
Pages 1321-1338 | Received 29 Aug 2022, Accepted 15 Dec 2022, Published online: 01 Jan 2023

References

  • Roberts ISD. Pathology of IgA nephropathy. Nat Rev Nephrol. 2014 Aug;10(8):445–454.
  • Radford MG, Donadio JV, Bergstralh EJ, et al. Predicting renal outcome in IgA nephropathy. JASN. 1997;8(2):199–207. -02-01 00:00:00.
  • D’Amico G, Colasanti G, Barbiano Di Belgioioso G, et al. Long-term follow-up of IgA mesangial nephropathy: clinico-histological study in 374 patients. Semin Nephrol. 1987 Dec;7(4):355–358.
  • Reich HN, Troyanov S, Scholey JW, et al. Remission of proteinuria improves prognosis in IgA nephropathy. J Am Soc Nephrol. 2007 12;18(12):3177–3183.
  • Selvaskandan H, Shi S, Twaij S, et al. Monitoring immune responses in IgA nephropathy: biomarkers to guide management. Front Immunol. 2020;11:572754.
  • Selvaskandan H, Cheung CK, Muto M, et al. New strategies and perspectives on managing IgA nephropathy. Clin Exp Nephrol. 2019 05;23(5):577–588.
  • Lai KN. Pathogenesis of IgA nephropathy. Nat Rev Nephrol. 2012 Mar 20; 8(5):275–283.
  • Barratt J, Smith AC, Feehally J. The pathogenic role of IgA1 O-linked glycosylation in the pathogenesis of IgA nephropathy. Nephrology (Carlton). 2007 Jun;12(3):275–284.
  • Novak J, Julian BA, Tomana M, et al. IgA glycosylation and IgA immune complexes in the pathogenesis of IgA nephropathy. Semin Nephrol. 2008 01;28(1):78–87.
  • Berthoux F, Suzuki H, Thibaudin L, et al. Autoantibodies targeting galactose-deficient IgA1 associate with progression of IgA nephropathy. J Am Soc Nephrol. 2012 09; 23(9): 1579–1587.
  • Suzuki Y, Matsuzaki K, Suzuki H, et al. Serum levels of galactose-deficient immunoglobulin (Ig) A1 and related immune complex are associated with disease activity of IgA nephropathy. Clin Exp Nephrol. 2014 10; 18(5): 770–777.
  • Tomana M, Novak J, Julian BA, et al. Circulating immune complexes in IgA nephropathy consist of IgA1 with galactose-deficient hinge region and antiglycan antibodies. J Clin Invest. 1999;104(1):73–81.
  • Kokubo T, Hiki Y, Iwase H, et al. Protective role of IgA1 glycans against IgA1 self-aggregation and adhesion to extracellular matrix proteins. J Am Soc Nephrol. 1998 11; 9(11): 2048–2054.
  • Lechner SM, Papista C, Chemouny JM, et al. Role of IgA receptors in the pathogenesis of IgA nephropathy. J Nephrol. 2016 02; 29(1): 5–11.
  • Selvaskandan H, Cheung CK, Barratt J. Immunological drivers of IgA nephropathy: exploring the mucosa-kidney link. Journal of Immunogenetics. 2022 Feb;49(1):8–21.
  • Allen AC, Bailey EM, Brenchley PE, et al. Mesangial IgA1 in IgA nephropathy exhibits aberrant O-glycosylation: observations in three patients. Kidney Int. 2001 09; 60(3): 969–973.
  • Tortajada A, Gutierrez E, Pickering MC, et al. The role of complement in IgA nephropathy. Mol Immunol. 2019 10;114:123–132.
  • Bene MC, Faure GC. Composition of mesangial deposits in IgA nephropathy: complement factors. Nephron. 1987;46(2):219.
  • Waldherr R, Seelig HP, Rambausek M, et al. Deposition of polymeric IgA1 in idiopathic mesangial IgA-glomerulonephritis. Klin Wochenschr. 1983 Sep 15;61(18):911–915.
  • Oortwijn BD, Rastaldi MP, Roos A, et al. Demonstration of secretory IgA in kidneys of patients with IgA nephropathy. Nephrol Dial Transplant. 2007 11; 22(11): 3191–3195.
  • Oortwijn BD, van der Boog PJM, Roos A, et al. A pathogenic role for secretory IgA in IgA nephropathy. Kidney Int. 2006 Apr 1 69(7):1131–1138.
  • Zhang J, Xu L, Liu G, et al. The level of serum secretory IgA of patients with IgA nephropathy is elevated and associated with pathological phenotypes. Nephrol Dial Transplant. 2008 01; 23(1): 207–212.
  • Kerr MA. The structure and function of human IgA. Biochem J. 1990 Oct 15;271(2):285–296.
  • Barratt J, Smith AC, Molyneux K, et al. Immunopathogenesis of IgAN. Semin Immunopathol. 2007 11;29(4):427–443.
  • Emmerson CD, EJvd V, Braam MR, et al. Enhancement of polymeric immunoglobulin receptor transcytosis by biparatopic VHH. PLOS ONE. 2011 14 Oct 6(10):e26299.
  • Wyatt RJ, Julian BA. IgA nephropathy. N Engl J Med. 2013 Jun 20;368(25):2402–2414.
  • Thompson A, Carroll K, A Inker L, et al. Proteinuria reduction as a surrogate end point in trials of IgA nephropathy. Clin J Am Soc Nephrol. 2019 Mar 7, 14(3):469–481.
  • Inker LA, Mondal H, Greene T, et al. Early change in urine protein as a surrogate end point in studies of IgA nephropathy: an individual-patient meta-analysis. Am J Kidney Diseases. 2016;68(3):392–401.
  • Inker LA, Heerspink HJL, Tighiouart H, et al. GFR slope as a surrogate end point for kidney disease progression in clinical trials: a meta-analysis of treatment effects of randomized controlled trials. JASN. 2019;30(9):1735–1745.
  • Grams ME, Sang Y, Ballew SH, et al. Evaluating glomerular filtration rate slope as a surrogate end point for ESKD in clinical trials: an individual participant meta-analysis of observational data. J Am Soc Nephrol. 2019 09;30(9):1746–1755.
  • KDIGO. KDIGO clinical practice guideline for glomerulonephritis. Kidney Int Suppl. 2012 June;2(2):209–217.
  • Rauen T, Eitner F, Fitzner C, et al. Intensive supportive care plus immunosuppression in IgA nephropathy. N Engl J Med. 2015 Dec 3;373(23):2225.
  • Goodwin JE. Role of the glucocorticoid receptor in glomerular disease. Am J Physiol Renal Physiol. 2019 Jul 1,;317(1):F133–F136.
  • Settipane GA, Pudupakkam RK, McGowan JH. Corticosteroid effect on immunoglobulins. J Allergy Clin Immunol. 1978;62(3):162–166.
  • Cupps TR, Gerrard TL, Falkoff RJM, et al. Effects of in vitro corticosteroids on B cell activation, proliferation, and differentiation. J Clin Invest. 1985;75(2):754–761.
  • Förster A, Emmler T, Schwalm S, et al. Glucocorticoids protect renal mesangial cells from apoptosis by increasing cellular sphingosine-1-phosphate. Kidney Int. 2010 May 2 77(10):870–879.
  • Kuriki M, Asahi K, Asano K, et al. Steroid therapy reduces mesangial matrix accumulation in advanced IgA nephropathy. Nephrology, dialysis, transplantation. 2003 Jul;18(7):1311–1315.
  • de Haij S, Daha MR, Kooten C. Mechanism of steroid action in renal epithelial cells. Kidney Int. 2004 May;65(5):1577–1588.
  • Rice JB, White AG, Scarpati LM, et al. Long-term systemic corticosteroid exposure: a systematic literature review. Clin Ther. 2017 Nov;39(11):2216–2229.
  • Pozzi C, Bolasco PG, Fogazzi GB, et al. Corticosteroids in IgA nephropathy: a randomised controlled trial. Lancet. 1999 Mar 13;353(9156):883–887.
  • Manno C, Torres DD, Rossini M, et al. Randomized controlled clinical trial of corticosteroids plus ACE-inhibitors with long-term follow-up in proteinuric IgA nephropathy. Nephrol Dial Transplant. 2009 12; 24(12): 3694–3701.
  • Lv J, Zhang H, Chen Y, et al. Combination therapy of prednisone and ACE inhibitor versus ACE-inhibitor therapy alone in patients with IgA nephropathy: a randomized controlled trial. Am J Kidney Dis. 2009 01;53(1):26–32.
  • Lv J, Zhang H, Wong MG, et al. Effect of oral methylprednisolone on clinical outcomes in patients with IgA nephropathy: the TESTING randomized clinical trial. JAMA. 2017 july 01;318(5):432–442.
  • Rauen T, Wied S, Fitzner C, et al. After ten years of follow-up, no difference between supportive care plus immunosuppression and supportive care alone in IgA nephropathy. Kidney Int. 2020 Oct;98(4):1044–1052.
  • Lv J, Wong MG, Hladunewich MA, et al. Effect of oral methylprednisolone on decline in kidney function or kidney failure in patients with IgA nephropathy: the TESTING randomized clinical trial. JAMA. 2022 May 17;327(19):1888–1898.
  • Beckwith H, Medjeral-Thomas N, Galliford J, et al. Mycophenolate mofetil therapy in immunoglobulin A nephropathy: histological changes after treatment. Nephrol Dial Transplant. 2017 Jan 01;32(suppl_1):i123–i128.
  • Shen X, Liang S, Chen H, et al. Reversal of active glomerular lesions after immunosuppressive therapy in patients with IgA nephropathy: a repeat-biopsy based observation. J Nephrol. 2015 Aug;28(4):441–449.
  • Coppo R, Troyanov S, Bellur S, et al. Validation of the Oxford classification of IgA nephropathy in cohorts with different presentations and treatments. Kidney Int. 2014 Oct;86(4):828–836.
  • Haas M, Verhave JC, Liu Z, et al. A multicenter study of the predictive value of crescents in IgA nephropathy. J Am Soc Nephrol. 2017 Feb;28(2):691–701.
  • Trimarchi H, Barratt J, Cattran DC, et al. Oxford classification of IgA nephropathy 2016: an update from the IgA nephropathy classification working group. Kidney Int. 2017 May;91(5):1014–1021.
  • Cattran DC, Coppo R, Cook HT, et al. The Oxford classification of IgA nephropathy: rationale, clinicopathological correlations, and classification. Kidney Int. 2009 Sep;76(5):534–545.
  • Selvaskandan H, Dillon M, Barratt J. IgA nephropathy: driving innovation with a rare renal disease registry. Journal of Kidney Care. 2017 July 2; 2(4):205–211.
  • Allison AC. Mechanisms of action of mycophenolate mofetil. Lupus. 2005;14(3_suppl):2–8.
  • Hogg RJ, Bay RC, Jennette JC, et al. Randomized controlled trial of mycophenolate mofetil in children, adolescents, and adults with IgA nephropathy. Am J Kidney Diseases. 2015;66(5):783–791.
  • Hou J, Le W, Chen N, et al. Mycophenolate mofetil combined with prednisone versus full-dose prednisone in IgA nephropathy with active proliferative lesions: a randomized controlled trial. Am J Kidney Diseases. 2017;69(6):788–795.
  • Ahlmann M, Hempel G. The effect of cyclophosphamide on the immune system: implications for clinical cancer therapy. Cancer Chemother Pharmacol. 2016;78(4):661–671.
  • Mejia JC, Basu A, Shapiro R. Chapter 17 - Calcineurin inhibitors. Kidney transplantation. Seventh Edition ed. Philadelphia, USA: Elsevier Inc; 2014. 231–249.
  • Escolano A, Martínez-Martínez S, Alfranca A, et al. Specific calcineurin targeting in macrophages confers resistance to inflammation via MKP-1 and p38. EMBO J. 2014 May 16, 33(10):1117–1133.
  • Heidt S, Roelen DL, Eijsink C, et al. Calcineurin inhibitors affect B cell antibody responses indirectly by interfering with T cell help. Clin Exp Immunol. 2010;159(2):199–207.
  • Kim Y, Chin HJ, Koo HS, et al. Tacrolimus decreases albuminuria in patients with IgA nephropathy and normal blood pressure: a double-blind randomized controlled trial of efficacy of tacrolimus on IgA nephropathy. PLoS ONE. 2013;8(8):e71545.
  • Breedveld FC, Dayer J. Leflunomide: mode of action in the treatment of rheumatoid arthritis. Ann Rheum Dis. 2000 Nov;59(11):841–849.
  • Barratt J, Bailey EM, Buck KS, et al. Exaggerated systemic antibody response to mucosal Helicobacter pylori infection in IgA nephropathy. Am J Kidney Dis. 1999 06; 33(6): 1049–1057.
  • McCarthy DD, Kujawa J, Wilson C, et al. Mice overexpressing BAFF develop a commensal flora-dependent, IgA-associated nephropathy. J Clin Invest. 2011 Oct;121(10):3991–4002.
  • Chemouny JM, Gleeson PJ, Abbad L, et al. Modulation of the microbiota by oral antibiotics treats immunoglobulin A nephropathy in humanized mice. Nephrol Dial Transplant. 2019 Jul 01;34(7):1135–1144.
  • Di Leo V, Gleeson PJ, Sallustio F, et al. Rifaximin as a potential treatment for IgA nephropathy in a humanized mice model. J Pers Med. 2021 Apr 16 11(4):309.
  • De Angelis M, Montemurno E, Piccolo M, et al. Microbiota and metabolome associated with immunoglobulin A nephropathy (IgAN). PloS one. 2014;9(6):e99006.
  • Kiryluk K, Li Y, Scolari F, et al. Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nat Genet. 2014 11; 46(11): 1187–1196.
  • Mei HE, Frölich D, Giesecke C, et al. Steady-state generation of mucosal IgA+ plasmablasts is not abrogated by B-cell depletion therapy with rituximab. Blood. 2010 December 9 116(24):5181–5190.
  • Smerud HK, Bárány P, Lindström K, et al. New treatment for IgA nephropathy: enteric budesonide targeted to the ileocecal region ameliorates proteinuria. Nephrol Dial Transplant. 2011 10; 26(10): 3237–3242.
  • Molyneux K, Wimbury D, Barratt J. P0344nefecon® (Budesonide) selectively reduces circulating levels of baff (Blys) and soluble bcma and taci in iga nephropathy. Nephrology, dialysis, transplantation. 2020 Jun 1;35(Supplement_3):iii648.
  • Molyneux K, Scionti K, Wolski W, et al. FC050: nefecon®. Selectively Modifies the Composition of Circulating Immune Complexes in IGA Nephropathy. Nephrology, dialysis, transplantation 2022 May 3;37(Supplement_3):i815–i817.
  • Fellström BC, Barratt J, Cook H, et al. Targeted-release budesonide versus placebo in patients with IgA nephropathy (NEFIGAN): a double-blind, randomised, placebo-controlled phase 2b trial. Lancet. 2017 may 27;389(10084):2117–2127.
  • BARRATT J, Stone A, Kristensen J. POS-830 nefecon for the treatment of IgA nephropathy in patients at risk of progressing to end-stage renal disease: the nefigard phase 3 trial results. Kidney Int Rep. 2021 Apr;6(4):S361.
  • Zhao J, Bai M, Yang X, et al. Alleviation of refractory IgA nephropathy by intensive fecal microbiota transplantation: the first case reports. Ren Fail. 2021 Jan 1 43(1):928–933.
  • Zhao N, Hou P, Lv J, et al. The level of galactose-deficient IgA1 in the sera of patients with IgA nephropathy is associated with disease progression. Kidney Int. 2012 Oct 1, 82(7):790–796.
  • Shimozato S, Hiki Y, Odani H, et al. Serum under-galactosylated IgA1 is increased in Japanese patients with IgA nephropathy. Nephrol Dial Transplant. 2008 Jun;23(6):1931–1939.
  • Cerny T, Borisch B, Introna M, et al. Mechanism of action of rituximab. Anticancer Drugs. 2002 Nov;13(2):S3–S10.
  • Fervenza FC, Appel GB, Barbour SJ, et al. Rituximab or cyclosporine in the treatment of membranous nephropathy. N Engl J Med. 2019 Jul 04;381(1):36–46.
  • Rovin BH, Furie R, Latinis K, et al. Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: the lupus nephritis assessment with rituximab study. Arthritis Rheum. 2012 04; 64(4): 1215–1226.
  • Stone JH, Merkel PA, Spiera R, et al. Rituximab versus cyclophosphamide for ANCA-associated vasculitis. N Engl J Med. 2010 Jul 15;363(3):221–232.
  • Lafayette RA, Canetta PA, Rovin BH, et al. A randomized, controlled trial of rituximab in IgA nephropathy with proteinuria and renal dysfunction. JASN. 2017;28(4):1306–1313. -04-01 00:00:00.
  • Dwivedi S, Rendón-Huerta EP, Ortiz-Navarrete V, et al. CD38 and regulation of the immune response cells in cancer. J Oncol. 2021 Feb 27;2021:6630295–11.
  • Rovin BH, Boxhammer R, Thakur A, et al. Immunologic responses after COVID-19 vaccination in patients with membranous nephropathy receiving anti–CD38 felzartamab therapy: results from the phase 1b/2a M-PLACE study. Kidney Int Rep. 2022 Sep;7(9):2086–2090.
  • Tian M, Luan J, Jiao C, et al. Co-occurrence of IgA nephropathy and IgG4-tubulointersitial nephritis effectively treated with tacrolimus: a case report. BMC Nephrol. 2021 Aug 12, 22(1):279.
  • Wang Y, Zhang L, Zhao P, et al. Functional implications of regulatory B cells in human IgA nephropathy. Scand J Immunol. 2014 Jan;79(1):51–60.
  • Zachova K, Jemelkova J, Kosztyu P, et al. Galactose-deficient IgA1 B cells in the circulation of IgA nephropathy patients carry preferentially lambda light chains and mucosal homing receptors. J Am Soc Nephrol. 2022 Feb 3 33(5):908–917.
  • Raab MS, Engelhardt M, Blank A, et al. MOR202, a novel anti-CD38 monoclonal antibody, in patients with relapsed or refractory multiple myeloma: a first-in-human, multicentre, phase 1–2a trial. Lancet Haematol. 2020 May;7(5):e381–e394.
  • Abadier M, Estevam J, Berg D, et al. Mezagitamab induces immunomodulatory effect in patients with relapsed/refractory multiple myeloma (RRMM). Blood. 2020 Nov 5; 136(Supplement 1):9.
  • MacLennan I, Vinuesa C. Dendritic cells, BAFF, and april: innate players in adaptive antibody responses. Immunity. 2002 09;17(3):235–238.
  • Litinskiy MB, Nardelli B, Hilbert DM, et al. DCs induce CD40-independent immunoglobulin class switching through BLyS and April. Nat Immunol. 2002 09; 3(9): 822–829.
  • Stavnezer J, Guikema JEJ, Schrader CE. Mechanism and regulation of class switch recombination. Annu Rev Immunol. 2008;26(1):261–292.
  • Xin G, Shi W, Xu L, et al. Serum BAFF is elevated in patients with IgA nephropathy and associated with clinical and histopathological features. J Nephrol. 2013 Jul;26(4):683–690.
  • Sallustio F, Curci C, Chaoul N, et al. High levels of gut-homing immunoglobulin A+ B lymphocytes support the pathogenic role of intestinal mucosal hyperresponsiveness in immunoglobulin A nephropathy patients. Nephrology, dialysis, transplantation. 2021 Feb 20,;36(3):452–464.
  • Zhai Y, Zhu L, Shi S, et al. Increased april expression induces IgA1 aberrant glycosylation in IgA nephropathy. Medicine (Baltimore). 2016 Mar;95(11):e3099.
  • McCarthy DD, Chiu S, Gao Y, et al. BAFF induces a hyper-IgA syndrome in the intestinal lamina propria concomitant with IgA deposition in the kidney independent of LIGHT. Cell Immunol. 2006 Jun;241(2):85–94.
  • Myette JR, Kano T, Suzuki H, et al. A proliferation inducing ligand (April) targeted antibody is a safe and effective treatment of murine IgA nephropathy. Kidney Int. 2019 07; 96(1): 104–116.
  • Lenert A, Niewold TB, Lenert P. Spotlight on blisibimod and its potential in the treatment of systemic lupus erythematosus: evidence to date. Drug Des Devel Ther. 2017;11:747–757.
  • Huang SP, Snedecor SJ, Nanji S, et al. Real-world effectiveness of belimumab in systemic lupus erythematosus: a systematic literature review. Rheumatol Ther. 2022 May 21, 9(4):975–991.
  • Furie R, Rovin BH, Houssiau F, et al. Two-year, randomized, controlled trial of belimumab in lupus nephritis. N Engl J Med. 2020 Sep 17, 383(12):1117–1128.
  • Barrett C, Willcocks LC, Jones RB, et al. Effect of belimumab on proteinuria and anti-phospholipase A2 receptor autoantibody in primary membranous nephropathy. Nephrol Dialysis Transplantation. 2020 Apr 1, 35(4):599–606.
  • Furie RA, Leon G, Thomas M, et al. A phase 2, randomised, placebo-controlled clinical trial of blisibimod, an inhibitor of B cell activating factor, in patients with moderate-to-severe systemic lupus erythematosus, the PEARL-SC study. Ann Rheum Dis. 2015 Sep;74(9):1667–1675.
  • Merrill JT, Shanahan WR, Scheinberg M, et al. Phase III trial results with blisibimod, a selective inhibitor of B-cell activating factor, in subjects with systemic lupus erythematosus (SLE): results from a randomised, double-blind, placebo-controlled trial. Ann Rheum Dis. 2018 Jun;77(6):883–889.
  • Cogollo E, Cogollo E, Silva MA, et al. Profile of atacicept and its potential in the treatment of systemic lupus erythematosus. Drug Des Devel Ther. 2015;9:1331–1339.
  • Isenberg D, Gordon C, Licu D, et al. Efficacy and safety of atacicept for prevention of flares in patients with moderate-to-severe systemic lupus erythematosus (SLE): 52-week data (April-SLE randomised trial). Ann Rheum Dis. 2015 Nov;74(11):2006–2015.
  • Ginzler EM, Wax S, Rajeswaran A, et al. Atacicept in combination with MMF and corticosteroids in lupus nephritis: results of a prematurely terminated trial. Arthritis Res Ther. 2012 Feb 7 14(1):R33.
  • Merrill JT, Wallace DJ, Wax S, et al. Efficacy and safety of atacicept in patients with systemic lupus erythematosus: results of a twenty-four-week, multicenter, randomized, double-blind, placebo-controlled, parallel-arm, phase IIb study. Arthritis Rheumatol. 2018 Feb;70(2):266–276.
  • Kaegi C, Steiner UC, Wuest B, et al. Systematic review of safety and efficacy of atacicept in treating immune-mediated disorders. Front Immunol. 2020;11:433.
  • Barratt J, Tumlin J, Suzuki Y, et al. Randomized Phase II JANUS study of atacicept in patients With IgA nephropathy and persistent proteinuria. Kidney Int Rep. 2022 May 26;7(8):1831–1841.
  • Dhillon S. Telitacicept: first Approval. Drugs. 2021 Aug 31,; 81(14):1671–1675.
  • Chen X, Zhao Q, Hou Y, et al. Pharmacokinetics, pharmacodynamics, short term efficacy and safety of RCT‐18, a novel BLyS/April fusion protein, in patients with rheumatoid arthritis. Br J Clin Pharmacol. 2016 Jul;82(1):41–52.
  • Suzuki Y, Mathur M, Barratt J, et al. Mo258safety, Tolerability, Pharmacokinetics And Pharmacodynamics Of Vis649, An April-Neutralizing IGG2 Monoclonal Antibody, In Healthy Volunteers: Phase 1, Randomized, Double-Blind, Placebo-Controlled, Single Ascending Dose Study. Nephrology Dialysis Transplantation. 2021 May;36(Supplement_1):i205–i206.
  • Barratt J, Hour B, Sibley C, et al. FC 040interim results of Phase 1 and 2 trials to investigate the safety, tolerability, pharmacokinetics, pharmacodynamics, and clinical activity of bion-1301 in patients with iga nephropathy. Nephrol Dialysis Transplantation. 2021 May;36(Supplement_1):i27–i28.
  • Vignesh P, Rawat A, Sharma M, et al. Complement in autoimmune diseases. Clin Chim Acta. 2017 02;465:123–130.
  • Zhang J, Jiang L, Liu G, et al. Levels of urinary complement factor H in patients with IgA nephropathy are closely associated with disease activity. Scand J Immunol. 2009 05; 69(5): 457–464.
  • Nam KH, Joo YS, Lee C, et al. Predictive value of mesangial C3 and C4d deposition in IgA nephropathy. Clin Immunol. 2020 February 1;211:108331.
  • Maeng Y, Kim M, Park J, et al. Glomerular and tubular C4d depositions in IgA nephropathy: relations with histopathology and with albuminuria. Int J Clin Exp Pathol. 2013;6(5):904–910.
  • Jennette JC. The immunohistology of IgA nephropathy. Am J Kidney Diseases. 1988 November 1; 12(5):348–352.
  • Roos A, Rastaldi MP, Calvaresi N, et al. Glomerular activation of the lectin pathway of complement in IgA nephropathy is associated with more severe renal disease. J Am Soc Nephrol. 2006 Jun;17(6):1724–1734.
  • Espinosa M, Ortega R, Sánchez M, et al. Association of C4d deposition with clinical outcomes in IgA nephropathy. Clin J Am Soc Nephrol. 2014 05; 9(5): 897–904.
  • Dubois EA, Cohen AF. Eculizumab. Br J Clin Pharmacol. 2009 Sep;68(3):318–319.
  • Kulasekararaj AG, Hill A, Rottinghaus ST, et al. Ravulizumab (ALXN1210) vs eculizumab in C5-inhibitor–experienced adult patients with PNH: the 302 study. Blood. 2019 Feb 7, 133(6):540–549.
  • Rosenblad T, Rebetz J, Johansson M, et al. Eculizumab treatment for rescue of renal function in IgA nephropathy. Pediatr Nephrol. 2014 Jun 13 29(11):2225–2228.
  • Ring T, Pedersen BB, Salkus G, et al. Use of eculizumab in crescentic IgA nephropathy: proof of principle and conundrum? Clin Kidney J. 2015 Oct;8(5):489–491.
  • Lafayette RA, Rovin BH, Reich HN, et al. Safety, tolerability and efficacy of narsoplimab, a novel MASP-2 inhibitor for the treatment of IgA nephropathy. Kidney Int Rep. 2020 Nov;5(11):2032–2041.
  • Barratt J, Carroll K, Lafayette R. POS-107 long-term Phase 2 efficacy of the Masp-2 inhibitor narsoplimab for treatment of severe iga nephropathy. Kidney Int Rep. 2022 Feb;7(2):S45.
  • Liu L, Zhang Y, Duan X, et al. C3a, C5a renal expression and their receptors are correlated to severity of IgA nephropathy. J Clin Immunol. 2014 Feb;34(2):224–232.
  • Jayne DRW, Bruchfeld AN, Harper L, et al. Randomized trial of C5a receptor inhibitor avacopan in ANCA-associated vasculitis. J Am Soc Nephrol. 2017 Sep;28(9):2756–2767.
  • Bruchfeld A, Nachman P, Parikh S, et al. TO012C5A receptor inhibitor avacopan in iga nephropathy study. Nephrology, dialysis, transplantation. 2017 May 1,;32(suppl_3):iii82.
  • Hoy SM. Pegcetacoplan: first approval. Drugs. 2021 Aug 3; 81(12):1423–1430.
  • Gupta V, Bhavanasi S, Quadir M, et al. Protein PEGylation for cancer therapy: bench to bedside. J Cell Commun Signal. 2018 Nov 29 13(3):319–330.
  • Bomback AS, Kavanagh D, Vivarelli M, et al. Alternative complement pathway inhibition with iptacopan for the treatment of C3 glomerulopathy-study design of the APPEAR-C3G trial. Kidney Int Rep. 2022 Oct 1 7(10):2150–2159.
  • Risitano AM, Röth A, Soret J, et al. Addition of iptacopan, an oral factor B inhibitor, to eculizumab in patients with paroxysmal nocturnal haemoglobinuria and active haemolysis: an open-label, single-arm, phase 2, proof-of-concept trial. Lancet Haematol. 2021 May;8(5):e344–e354.
  • Barratt J, Rovin B, Zhang H, et al. POS-546 efficacy and safety of iptacopan in IgA nephropathy: results of a randomized double-blind placebo-controlled PHASE 2 study at 6 months. Kidney Int Rep. 2022 Feb;7(2):S236.
  • Hendrickson DG, Hogan DJ, McCullough HL, et al. Concordant regulation of translation and mRNA abundance for hundreds of targets of a human microRNA. PLoS Biol. 2009 Nov;7(11):e1000238.
  • Springer AD, Dowdy SF. GalNAc-siRNA conjugates: leading the way for delivery of RNAi therapeutics. Nucleic Acid Ther. 2018 Jun 1;28(3):19–118.
  • Janas MM, Harbison CE, Perry VK, et al. The nonclinical safety profile of GalNAc-conjugated RNAi therapeutics in subacute studies. Toxicol Pathol. 2018 Oct;46(7):735–745.
  • Kim MJ, McDaid JP, McAdoo SP, et al. Spleen tyrosine kinase is important in the production of proinflammatory cytokines and cell proliferation in human mesangial cells following stimulation with IgA1 isolated from IgA nephropathy patients. J Immunol. 2012 Oct 01, 189(7):3751–3758.
  • McAdoo SP, Bhangal G, Page T, et al. Correlation of disease activity in proliferative glomerulonephritis with glomerular spleen tyrosine kinase expression. Kidney Int. 2015 Jul;88(1):52–60.
  • Kunwar S, Devkota AR, Ghimire DKC. Fostamatinib, an oral spleen tyrosine kinase inhibitor, in the treatment of rheumatoid arthritis: a meta-analysis of randomized controlled trials. Rheumatol Int. 2016 Apr 25; 36(8):1077–1087.
  • Kang Y, Jiang X, Qin D, et al. Efficacy and safety of multiple dosages of fostamatinib in adult patients with rheumatoid arthritis: a systematic review and meta-analysis. Front Pharmacol. 2019;10:897.
  • Braselmann S, Taylor V, Zhao H, et al. R406, an orally available spleen tyrosine kinase inhibitor blocks Fc receptor signaling and reduces immune complex-mediated inflammation. J Pharmacol Exp Ther. 2006 Dec 1;319(3):998–1008.
  • Baluom M, Grossbard EB, Mant T, et al. Pharmacokinetics of fostamatinib, a spleen tyrosine kinase (SYK) inhibitor, in healthy human subjects following single and multiple oral dosing in three phase I studies. Br J Clin Pharmacol. 2013 Jul;76(1):78–88.
  • F TWK, Tumlin J, Barratt J, et al. SUN-036 spleen tyrosine kinase (syk) inhibition in iga nephropathy: a global, Phase II, randomised placebo-controlled trial of fostamatinib. Kidney Int Rep. 2019 Jul;4(7):S168.
  • Simonson MS, Shiang WANN, Mene P, et al. Endothelin stimulates phospholipase C, Na+/H+ exchange, c-fos expression, and mitogenesis in rat mesangial cells. J Clin Invest. 1989;83(2):708–712.
  • Ohta K, Hirata Y, Shichiri M, et al. Urinary excretion of endothelin-1 in normal subjects and patients with renal disease. Kidney Int. 1991 Feb;39(2):307–311.
  • Chen HC, Guh JY, Chang JM, et al. Differential effects of FMLP-activated neutrophils from patients with IgA nephropathy enhanced endothelin 1 production of glomerular mesangial cells. Nephron. 2001;89(3):274–279.
  • Nakamura T, Ebihara I, Shirato I, et al. Endothelin-1 mRNA expression by peripheral blood monocytes in IgA nephropathy. Lancet. 1993 Nov 6;342(8880):1147–1148. (British edition).
  • Maixnerová D, Merta M, Reiterová J, et al. The influence of three endothelin-1 polymorphisms on the progression of IgA nephropathy. Folia Biol (Praha). 2007;53(1):27–32.
  • Tycová I, Hrubá P, Maixnerová D, et al. Molecular profiling in IgA nephropathy and focal and segmental glomerulosclerosis. Physiol Res. 2018 Mar 16, 67(1):93–105.
  • Lehrke I, WALDHERR R, Ritz E, et al. Renal endothelin-1 and endothelin receptor type B expression in glomerular diseases with proteinuria. J Am Soc Nephrol. 2001;12(11):2321–2329.
  • Nakamura T, Ebihara I, Fukui M, et al. Effect of a specific endothelin receptor a antagonist on glomerulonephritis of ddY mice with IgA nephropathy. Nephron. 1996;72(3):454–460.
  • Trachtman H, Nelson P, Adler S, et al. DUET: a Phase 2 study evaluating the efficacy and safety of sparsentan in patients with FSGS. J Am Soc Nephrol. 2018 Nov;29(11):2745–2754.
  • Komers R, Diva U, Inrig JK, et al. Study design of the Phase 3 sparsentan versus irbesartan (DUPLEX) study in patients with focal segmental glomerulosclerosis. Kidney Int Rep. 2020 Apr;5(4):494–502.
  • Perkovic V, Santos J, Fraenkel M, et al. Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): a double-blind, randomised, placebo-controlled trial. Lancet. 2019 May 11,;393(10184):1937–1947. (British edition).
  • Wenzel RR, Littke T, Kuranoff S, et al. Avosentan reduces albumin excretion in diabetics with macroalbuminuria. J Am Soc Nephrol. 2009;20(3):655–664.
  • Kim S, Vo N, Lee S, et al. FC052: atrasentan for the treatment of IGA nephropathy: interim results from the affinity study. Nephrology, dialysis, transplantation. 2022 May;37:(Supplement_3).
  • Kanai Y, WEN-SEN LEE, Guofeng YOU, et al. The human kidney low affinity Na+/glucose cotransporter SGLT2. Delineation of the major renal reabsorptive mechanism for d-glucose. J Clin Invest. 1994;93(1):397–404.
  • Salvatore T, Galiero R, Caturano A, et al. An overview of the cardiorenal protective mechanisms of SGLT2 inhibitors. Int J Mol Sci. 2022 Mar 26, 23(7):3651.
  • Heerspink HJL, Stefánsson BV, Correa-Rotter R, et al. Dapagliflozin in patients with chronic kidney disease. N Engl J Med. 2020 Oct 8, 383(15):1436–1446.
  • Wheeler DC, Toto RD, Stefánsson BV, et al. A pre-specified analysis of the DAPA-CKD trial demonstrates the effects of dapagliflozin on major adverse kidney events in patients with IgA nephropathy. Kidney Int. 2021 07; 100(1): 215–224.
  • Barratt J, Floege J. SGLT-2 inhibition in IgA nephropathy: the new standard of care? Kidney Int. 2021 07;100(1):24–26.
  • Collaborative Group EK, Herrington WG, Staplin N, et al. Empagliflozin in Patients with Chronic Kidney Disease N Engl J Med. 2022 Nov 4.
  • Herrington WG, Wanner C, Green JB. The EMPA-KIDNEY collaborative group. design, recruitment, and baseline characteristics of the EMPA-KIDNEY trial. Nephrology, dialysis, transplantation, 2022 Mar 3,;37(7):1317–1329.
  • Baigent C, Emberson J, Haynes R, et al. Impact of diabetes on the effects of sodium glucose co-transporter-2 inhibitors on kidney outcomes: collaborative meta-analysis of large placebo-controlled trials. Lancet. 2022 Nov 19;400(10365):1788–1801. (British edition).
  • Yellin MJ, D’Agati V, Parkinson G, et al. Immunohistologic analysis of renal CD40 and CD40L expression in lupus nephritis and other glomerulonephritides. Arthritis Rheumatism. 1997 Jan;40(1):124–134.
  • Zhang DW, Qiu H, Mei YM, et al. repair effects of umbilical cord mesenchymal stem cells on podocyte damage of IgA nephropathy. J Biol Regul Homeost Agents. 2015 Jul;29(3):609–617.
  • Cueto I. ‘A golden age’: long neglected in medicine, rare kidney diseases see a surge in research. 2022; Available at: https://www.statnews.com/2022/08/23/rare-kidney-disease-research-igan/. Cited 8 August 2022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.