585
Views
0
CrossRef citations to date
0
Altmetric
Review

Antibody therapies for the treatment of acute myeloid leukemia: exploring current and emerging therapeutic targets

ORCID Icon, , , , , ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 107-125 | Received 05 Dec 2022, Accepted 08 Feb 2023, Published online: 26 Feb 2023

References

  • Juliusson G, Hough R. Leukemia. Prog Tumor Res. 2016;43:87–100.
  • Mastelaro de Rezende M, Ferreira AT, Paredes-Gamero EJ Leukemia stem cell immunophenotyping tool for diagnostic, prognosis, and therapeutics. J Cell Physiol. 2020;235(6):4989–4998.
  • American Cancer Society Cancer Statistics Center. http://cancerstatisticscenter.cancer.org. Cited 2022 Oct 10
  • Gubin MM, Artyomov MN, Mardis ER, et al. Tumor neoantigens: building a framework for personalized cancer immunotherapy. J Clin Invest. 2015;125(9):3413–3421
  • Newsome BW, Ernstoff MS The clinical pharmacology of therapeutic monoclonal antibodies in the treatment of malignancy; have the magic bullets arrived? Br J Clin Pharmacol. 2008;66:6–19
  • Sharma P, Allison JP The future of immune checkpoint therapy. Science. 2015;348:56–61.
  • Bagchi S, Yuan R, Engleman EG Immune Checkpoint Inhibitors for the Treatment of Cancer: Clinical Impact and Mechanisms of Response and Resistance. Annu Rev Pathol. 2021;16:223–249.
  • Iwai Y, Ishida M, Tanaka Y, et al. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. PNAS. 2002;99(19):12293–12297
  • Barsan V, Ramakrishna S, Davis KL Immunotherapy for the Treatment of Acute Lymphoblastic Leukemia. Curr Oncol Rep. 2020;22:11–19.
  • Lichtenegger FS, Krupka C, Köhnke T, et al. Immunotherapy for acute myeloid leukemia. Semin Hematol. 2015;52(3):207–214.
  • Aoki J, Kanamori H, Tanaka M, et al. Impact of age on outcomes of allogeneic hematopoietic stem cell transplantation with reduced intensity conditioning in elderly patients with acute myeloid leukemia. Am J Hematol. 2016;91(3),302–307
  • Takami A Hematopoietic stem cell transplantation for acute myeloid leukemia. Int J Hematol. 2018;107(5):513–518
  • Lessi F, Laurino M, Papayannidis C, et al. Hypomethylating Agents (HMAs) as Salvage Therapy in Relapsed or Refractory AML: An Italian Multicentric Retrospective Study. Biomedicines. 2021;9(8):972
  • DiNardo CD, Jonas BA, Pullarkat V, et al. Azacitidine and Venetoclax in Previously Untreated Acute Myeloid Leukemia. NEJM 2020;383(7):617–629
  • Gupta PB, Chaffer CL, Weinberg RA Cancer stem cells: mirage or reality? Nat Med. 2009;15:1010–1012.
  • Gurska LM, Ames K, Gritsman K Signaling Pathways in Leukemic Stem Cells. Adv Exp Med Biol. 2019;1143:1–39
  • Lipman NS, Jackson LR, Trudel LJ, et al. Monoclonal Versus Polyclonal Antibodies: Distinguishing Characteristics, Applications, and Information Resources. ILAR J. 2005;46(3):258–268
  • Buss NAPS, Henderson SJ, McFarlane M, et al. Monoclonal antibody therapeutics: History and future. Curr Opin Pharmacol. 2012;12(5):615–622.
  • Porter RR Separation and Isolation of Fractions of Rabbit Gamma-Globulin Containing the Antibody and Antigenic Combining Sites. Nat Cell Biol. 1958;182:670–671.
  • Köhler G, Milstein C Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256(5517):495–497
  • Redman JM, Hill EM, AlDeghaither D, et al. Mechanisms of action of therapeutic antibodies for cancer. Mol Immunol. 2015;67(2):28–45
  • Williams BA, Law A, Hunyadkurti J, et al. Antibody therapies for acute myeloid leukemia: Unconjugated, toxin-conjugated, radio-conjugated and multivalent formats. J Clin Med. 2019;8(8):1261.
  • Gorovits B, Krinos-Fiorotti C. Proposed mechanism of off-target toxicity for antibody-drug conjugates driven by mannose receptor uptake. Cancer Immunol Immunother. 2013;62:217–223
  • Kalim M, Chen J, Wang S, et al. Intracellular trafficking of new anticancer therapeutics: antibody-drug conjugates. Drug Des Devel Ther. 2017;11:2265–2276.
  • Walter RB Brief overview of antibody-drug conjugate therapy for acute leukemia. Expert Opin Biol Ther. 2021;21(7):795–799.
  • Czajkowsky DM, Hu J, Shao Z, et al. Fc-fusion proteins: new developments and future perspectives. EMBO Mol Med. 2012;4(10):1015–1028
  • Pelosi E, Castelli G, Testa U Targeting LSCs through membrane antigens selectively or preferentially expressed on these cells. Blood Cells Mol Dis. 2015;55(4):336–346
  • Taylor VC, Buckley CD, Douglas M, et al. The myeloid-specific sialic acid-binding receptor, CD33, associates with the protein-tyrosine phosphatases, SHP-1 and SHP-2. J Biol Chem. 1999;274:11505–11512.
  • Ulyanova T, Blasioli J, Woodford-Thomas TA, et al. The sialoadhesin CD33 is a myeloid-specific inhibitory receptor. Eur J Immunol. 1999;29:3440–3449.
  • Paul SP, Taylor LS, Stansbury EK, et al. Myeloid specific human CD33 is an inhibitory receptor with differential ITIM function in recruiting the phosphatases SHP-1 and SHP-2. Blood. 2000;96:483–490
  • Orr SJ, Morgan NM, Elliott J, et al. CD33 responses are blocked by SOCS3 through accelerated proteasomal-mediated turnover. Blood. 2007;109:1061–1068
  • Crocker PR, Paulson JC, Varki A Siglecs and their roles in the immune system. Nat Rev Immunol. 2007;7(4):255–266.
  • Pearce D, Taussig D, Bonnet D Implications of the Expression of Myeloid Markers on Normal and Leukemic Stem Cells. Cell Cycle. 2006;5(3):271–273
  • Griffin JD, Linch D, Sabbath K, et al. A monoclonal antibody reactive with normal and leukemic human myeloid progenitor cells. Leuk Res. 1984;8(4):521–534
  • Vercauteren S, Zapf R, Sutherland H Primitive AML progenitors from most CD34(+) patients lack CD33 expression but progenitors from many CD34(-) AML patients express CD33. Cytotherapy. 2007;9(2):194–204
  • Selby C, Yacko LR, Glode AE Gemtuzumab Ozogamicin: Back Again. J Adv Pract Oncol. 2019;10(1):68–82
  • Baron J, Wang ES Gemtuzumab ozogamicin for the treatment of acute myeloid leukemia. Expert Rev Clin Pharmacol. 2018;11(6):549–559
  • Bross PF, Beitz J, Chen G, et al. Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res. 2001;7(6):1490–1496
  • Petersdorf SH, Kopecky KJ, Slovak M, et al. A phase 3 study of gemtuzumab ozogamicin during induction and post consolidation therapy in younger patients with acute myeloid leukemia. Blood. 2013;121:4854–4860
  • Gottardi M, Sperotto A, Di Rorà AGL, et al. Gemtuzumab ozogamicin in acute myeloid leukemia: Past, present and future. Minerva Med. 2020;111 (5):395–410.
  • Burnett AK, Hills RK, Milligan D, et al. Identification of Patients with Acute Myeloblastic Leukemia Who Benefit from the Addition of Gemtuzumab Ozogamicin: Results of the MRC AML15 Trial. J Clin oncol. 2011;29(4):369–377
  • Burnett AK, Russell NH, Hills RK, et al. Addition of gemtuzumab ozogamicin to induction chemotherapy improves survival in older patients with acute myeloid leukemia. J Clin oncol. 2012;30(32):3924–3931
  • Lambert J, Pautas C, Terré C, et al. Gemtuzumab ozogamicin for de novo acute myeloid leukemia: Final efficacy and safety updates from the open-label, phase III ALFA-0701 trial. Haematologica. 2019;104(1):113–119
  • Gamis AS, Alonzo TA, Meshinchi S, et al. Gemtuzumab ozogamicin in children and adolescents with de novo acute myeloid leukemia improves event-free survival by reducing relapse risk: results from the randomized phase III Children’s Oncology Group trial AAML0531. J Clin Oncol. 2014;32(27):3021–3032
  • Stein EM, Walter RB, Erba HP, et al. A Phase 1 Trial of Vadastuximab Talirine as Monotherapy in Patients with CD33-positive Acute Myeloid Leukemia. Blood. 2018;131:387–396
  • Sutherland MK, Yu C, Lewis TS, et al. Anti-Leukemic Activity of Lintuzumab (Sgn-33) in Preclinical Models of Acute Myeloid Leukemia. MAbs. 2009;1:481–490
  • Feldman EJ, Brandwein J, Stone R, et al. Phase III Randomized Multicenter Study of a Humanized Anti-CD33 Monoclonal Antibody, Lintuzumab, in Combination with Chemotherapy, Versus Chemotherapy Alone in Patients with Refractory or First-Relapsed Acute Myeloid Leukemia. J Clin Oncol. 2005;23:4110–4116
  • Vasu S, He S, Cheney C Decitabine enhances anti-CD33 monoclonal antibody BI 836858-mediated natural killer ADCC against AML blasts. Blood. 2016;127(23):2879–2889
  • Vasu S, Altman JK, Uy GL, et al. A phase I study of the fully human, fragment crystallizable-engineered, anti-CD-33 monoclonal antibody BI 836858 in patients with previously-treated acute myeloid leukemia. Haematologica. 2022;107(3):770–773
  • Liu K, Zhu M, Huang Y, et al. CD123 and its potential clinical application in leukemias. Life Sci. 2015;122:59–64.
  • Barry SC, Korpelainen E, Sun Q, et al. Roles of the N and C terminal domains of the interleukin-3 receptor α chain in receptor function. Blood. 1997;89(3):842–852
  • Testa U, Pelosi E, Frankel A CD 123 is a membrane biomarker and a therapeutic target in hematologic malignancies. Biomark Res. 2014;2(1):4
  • Muñoz L, Nomdedeu JF, López O, et al. Interleukin-3 receptor alpha chain (CD123) is widely expressed in hematologic malignancies. Haematologica. 2001;86:1261–1269
  • Haubner S, Perna F, Köhnke T, et al. Coexpression profile of leukemic stem cell markers for combinatorial targeted therapy in AML. Leukemia. 2019;33(1):64–74
  • Busfield SJ, Biondo M, Wong M, et al. Targeting of acute myeloid leukemia in vitro and in vivo with an anti-CD123 mAb engineered for optimal ADCC. Leukemia. 2014;28:2213–2221
  • Montesinos P, Roboz GJ, Bulabois CE, et al. Safety and efficacy of talacotuzumab plus decitabine or decitabine alone in patients with acute myeloid leukemia not eligible for chemotherapy: results from a multicenter, randomized, phase 2/3 study. Leukemia. 2021;35(1):62–74
  • Smith BD, Roboz GJ, Walter RB, et al. First-in Man, Phase 1 Study of CSL362 (Anti-IL3Rα / Anti-CD123 Monoclonal Antibody) in Patients with CD123+ Acute Myeloid Leukemia (AML) in CR at High Risk for Early Relapse. Blood. 2014;124(21):120
  • Kovtun Y, Jones GE, Adams S, et al. A CD123-targeting antibody-drug conjugate, IMGN632, designed to eradicate AML while sparing normal bone marrow cells. Blood Adv. 2018;2(8):848–858
  • Daver NG, Sweet KL, Montesinos P, et al. A Phase 1b/2 Study of IMGN632, a CD123-Targeting Antibody-Drug Conjugate (ADC), As Monotherapy or in Combination with Venetoclax and/or Azacitidine for Patients with CD123-Positive Acute Myeloid Leukemia. Blood. 2020;136(Supplement 1):50–51
  • Pemmaraju N, Lane AA, Sweet KL, et al. Tagraxofusp in blastic plasmacytoid dendritic-cell neoplasm. NEJM. 2019;380(17):1628–1637
  • Togami K, Pastika T, Stephansky J, et al. DNA methyltransferase inhibition overcomes diphthamide pathway deficiencies underlying CD123-targeted treatment resistance. J Clin Invest. 2019;129(11):5005–5019
  • Montero J, Stephansky J, Cai T, et al. Blastic Plasmacytoid Dendritic Cell Neoplasm Is Dependent on BCL2 and Sensitive to Venetoclax. Cancer Discov. 2017;7(2):156–164
  • Lane AA, Stein AS, Garcia JS, et al. Safety and Efficacy of Combining Tagraxofusp (SL-401) with Azacitidine or Azacitidine and Venetoclax in a Phase 1b Study for CD123 Positive AML, MDS, or BPDCN. Blood. 2021;138(Supplement 1):2346
  • Jaiswal S, Jamieson CH, Pang WW, et al. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell. 2009;138(2):271–285.
  • Chao MP, Weissman IL, Majeti R The CD47-SIRPalpha pathway in cancer immune evasion and potential therapeutic implications. Curr Opin Immunol. 2012;24:225–232
  • Chao MP, Takimoto CH, Feng DD, et al. Therapeutic Targeting of the Macrophage Immune Checkpoint CD47 in Myeloid Malignancies. Front Oncol. 2020;9:1380.
  • Liu J, Wang L, Zhao F, et al. Pre-clinical development of a humanized anti-CD47 antibody with anti-cancer therapeutic potential. PLoS One. 2015;10:e0137345
  • Vyas P, Knapper S, Kelly R, et al. Initial phase 1 results of the first-in-class anti-CD47 antibody HU5F9-G4 in relapsed/refractory acute myeloid leukemia patients. Eur Hematol Assoc Meeting. 2018;23(Abstract):232
  • Daver NG, Vyas P, Kambhampati S, et al. S132: Tolerability And Efficacy Of The First-In-Class Anti-Cd47 Antibody Magrolimab Combined With Azacitidine In Frontline Patients With Tp53-Mutated Acute Myeloid Leukemia: Phase 1b Results. Hemasphere. 2022;6(Suppl):33–34
  • Oronsky B, Carter C, Reid T, et al. Just eat it: A review of CD47 and SIRP-α antagonism. Semin Oncol. 2020;47(2):117–124.
  • Petrova PS, Viller NN, Wong M, et al. TTI-621 (SIRPalphaFc): A CD47-Blocking Innate Immune Checkpoint Inhibitor with Broad Antitumor Activity and Minimal Erythrocyte Binding. Clin Cancer Res. 2017;23:1068–79
  • Daver NG, Maris M, Ramchandren R, et al. Pb1820: Cd47-Blocker Tti-622 Combined With Azacitidine In Patients With Tp53-Mutated Acute Myeloid Leukemia (Aml) And With Azacitidine + Venetoclax In Elderly Or Unfit Patients With Tp53-Wildtype Aml. Hemasphere. 2022;6(Suppl.):1700–1701.
  • Chan H, Trout C, Mikolon D, et al. Discovery and Preclinical Characterization of CC-95251, an Anti-SIRPα Antibody That Enhances Macrophage-Mediated Phagocytosis of Non-Hodgkin Lymphoma (NHL) Cells When Combined with Rituximab. Blood. 2021;138:2271.
  • Narla RK, Modi H, Bauer D, et al. Modulation of CD47-SIRPα innate immune checkpoint axis with Fc-function detuned anti-CD47 therapeutic antibody. Cancer Immunol Immunother. 2022;71:473–89
  • Hintzen RQ, Lens SM, Beckmann MP, et al. Characterization of the human CD27 ligand, a novel member of the TNF gene family. J Immunol. 1994;152(4):1762–1773.
  • Wajant H Therapeutic targeting of CD70 and CD27. Expert Opin Ther Targets. 2016;20(8):959–973.
  • Riether C, Schürch CM, Bührer ED, et al. CD70/CD27 signaling promotes blast stemness and is a viable therapeutic target in acute myeloid leukemia. J Exp Med. 2017;214(2):359–380.
  • Riether C, Pabst T, Höpner S, et al. Targeting CD70 with cusatuzumab eliminates acute myeloid leukemia stem cells in patients treated with hypomethylating agents. Nat Med. 2020;26(9):1459–1467.
  • Roboz GJ, Pabst T, Aribi A, et al. Safety and Efficacy of Cusatuzumab in Combination with Venetoclax and Azacitidine (CVA) in Patients with Previously Untreated Acute Myeloid Leukemia (AML) Who Are Not Eligible for Intensive Chemotherapy; An Open-Label, Multicenter, Phase 1b Study. Blood. 2021;138(Supplement 1):369.
  • Chiffoleau E C-type lectin-like receptors as emerging orchestrators of sterile inflammation represent potential therapeutic targets. Front Immunol. 2018;9:227
  • Neumann K, Castineiras-Vilarino M, Hockendorf U, et al. Clec12a is an inhibitory receptor for uric acid crystals that regulates inflammation in response to cell death. Immunity. 2014;40:389–99
  • Bakker AB, van den Oudenrijn S, Bakker AQ, et al. C-type lectin-like molecule-1: a novel myeloid cell surface marker associated with acute myeloid leukemia. Cancer Res. 2004;64:8443–50
  • Marshall AS, Willment JA, Lin HH, et al. Identification and characterization of a novel human myeloid inhibitory C-type lectin-like receptor (MICL) that is predominantly expressed on granulocytes and monocytes. J Biol Chem. 2004;279:14792–802.
  • Darwish NH, Sudha T, Godugu K, et al. Acute myeloid leukemia stem cell markers in prognosis and targeted therapy: potential impact of BMI-1, TIM-3 and CLL-1. Oncotarget. 2016;7:57811–57820.
  • Chen CH, Floyd H, Olson NE, et al. Dendritic-cell-associated C-type lectin 2 (DCAL-2) alters dendritic-cell maturation and cytokine production. Blood. 2006;107:1459–67.
  • Bill M, van Kooten Niekerk PB, Woll PS, et al. Mapping the CLEC12A expression on myeloid progenitors in normal bone marrow; implications for understanding CLEC 12A-related cancer stem cell biology. J Cell Mol Med. 2018;22:2311–8.
  • Zheng B, Yu SF, Rosario G, et al. An anti–CLL-1 antibody–drug conjugate for the treatment of acute myeloid leukemia. Clin Cancer Res. 2019;25(4):1358–1368.
  • Matthews DC, Appelbaum FR, Eary JF, et al. Phase I study of (131) I-anti-CD45antibody plus cyclophosphamide and total body irradiation for advanced acute leukemia and myelodysplastic syndrome. Blood. 1999;94(4):1237–1247.
  • Gyurkocza B, Nath R, Seropian SE, et al. High Rates of Transplantation in the Phase III Sierra Trial Utilizing Anti-CD45 (Iodine) 131I-Apamistamab (Iomab-B) Conditioning with Successful Engraftment and Tolerability in Relapsed/Refractory (R/R) Acute Myeloid Leukemia (AML) Patients after Lack of Response to Conventional Care and Targeted Therapies. Tandem Meetings of ASTCT and CIBMTR, Salt Lake City, UT. 2022;22(Abstract):40.
  • Monney L, Sabatos C, Gaglia J, et al. Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature. 2002;415:536–41
  • Sabatos C, Chakravarti S, Cha E, et al. Interaction of Tim-3 and Tim-3 ligand regulates T helper type 1 responses and induction of peripheral tolerance. Nat Immunol. 2003;4:1102–10.
  • Tan J, Huang S, Huang J, et al. Increasing Tim-3+CD244+, Tim-3+CD57+, and Tim-3+PD-1+ T Cells in Patients with Acute Myeloid Leukemia. Asia Pac J Clin Oncol. 2020;16(3):137–141.
  • Kikushige Y, Miyamoto T, Yuda J, et al. A TIM-3/Galectin-9 Autocrine Stimulatory Loop Drives Self-Renewal of Human Myeloid Leukemia Stem Cells and Leukemia Progression. Cell Stem Cell. 2016;17:341–52.
  • Goncalves Silva I, Ruegg L, Gibbs BF, et al. The Immune Receptor Tim-3 Acts as a Trafficker in a Tim-3/Galectin-9 Autocrine Loop in Human Myeloid Leukemia Cells. Oncoimmunology. 2016;5(7):e1195535.
  • Goncalves Silva I, Yasinska IM, Sakhnevych SS, et al. The Tim-3-Galectin-9 Secretory Pathway is Involved in the Immune Escape of Human Acute Myeloid Leukemia Cells. EBioMedicine. 2017;22:44–57
  • Schwartz S, Patel N, Longmire T, et al. Characterization of sabatolimab, a novel immunotherapy with immuno-myeloid activity directed against TIM-3 receptor. Immunother Adv. 2022;2(1):ltac019.
  • Brunner AM, Esteve J, Porkka K, et al. Efficacy and safety of sabatolimab (MBG453) in combination with hypomethylating agents (HMAs) in patients (Pts) with very high/high-risk myelodysplastic syndrome (vHR/HR-MDS) and acute myeloid leukemia (AML): final analysis from a phase Ib study. Blood. 2021;138(Supplement 1):244.
  • Zeidan AM, Westermann J, Kovacsovics T, et al. AML-484 First Results of a Phase II Study (STIMULUS-AML1) Investigating Sabatolimab + Azacitidine + Venetoclax in Patients with Newly Diagnosed Acute Myeloid Leukemia (ND AML). Clin Lymphoma Myeloma Leuk. 2022;22(Supplement 2):S255.
  • Farber M, Chen Y, Arnold L, et al. Targeting CD38 in acute myeloid leukemia interferes with leukemia trafficking and induces phagocytosis. Sci Rep. 2021;11:22062
  • Zhu C, Song Z, Wang A, et al. Isatuximab Acts Through Fc-Dependent, Independent, and Direct Pathways to Kill Multiple Myeloma Cells. Frontiers in Immunology. 2020;11:1771.
  • Rosnet O, Bühring HJ, Marchetto S, et al. Human FLT3/FLK2 receptor tyrosine kinase is expressed at the surface of normal and malignant hematopoietic cells. Leukemia. 1996;10(2):238–248.
  • Daver NG, Schlenk RF, Russell NH, et al. Targeting FLT3 mutations in AML: review of current knowledge and evidence. Leukemia. 2019;33(2):299–312.
  • Perl AE, Martinelli G, Cortes JE, et al. Gilteritinib or Chemotherapy for Relapsed or Refractory FLT3 -Mutated AML. NEJM. 2019;381(18):1728–1740.
  • Hofmann M, Große-Hovest L, Nübling T, et al. Generation, selection and preclinical characterization of an Fc-optimized FLT3 antibody for the treatment of myeloid leukemia. Leukemia. 2012;26(6):1228–1237.
  • Heitmann JS, Dörfel D, Kayser S, et al. First-in-human phase I dose escalation and expansion study evaluating the Fc optimized FLT3 antibody Flysyn in acute myeloid leukemia patients with minimal residual disease. Blood. 2020;136:(Supplement 1):8–9.
  • Morone S, Augeri S, Cuccioloni M, et al. Binding of CD157 protein to fibronectin regulates cell adhesion and spreading. Journal of Biological Chemistry. 2014;289(22):15588–15601.
  • Yakymiv Y, Augeri S, Bracci C, et al. CD157 signaling promotes survival of acute myeloid leukemia cells and modulates sensitivity to cytarabine through regulation of anti-apoptotic Mcl-1. Scientific Reports. 2021;11(1). DOI:10.1038/s41598-021-00733-5
  • Krupka C, Lichtenegger FS, Kohnke T, et al. Targeting CD157 in AML using a novel, Fc-engineered antibody construct. Oncotarget. 2017;8(22):35707–35717.
  • Yakymiv Y, Augeri S, Fissolo G, et al. CD157: From Myeloid Cell Differentiation Marker to Therapeutic Target in Acute Myeloid Leukemia. Cells. 2019;8(12):1580.
  • Gorczynski RM CD200:CD200R-Mediated Regulation of Immunity. ISRN Immunology 2012;2012:682168.
  • Ho JM, Dobson SM, Voisin V, et al. CD200 expression marks leukemia stem cells in human AML. Blood Advances. 2020;4(21):5402–5413.
  • Kretz-Rommel A, Qin F, Dakappagari N, et al. Blockade of CD200 in the Presence or Absence of Antibody Effector Function: Implications for Anti-CD200 Therapy. The Journal of Immunology. 2008;180(2):699–705.
  • Herbrich S, Baran N, Cai T, et al. Overexpression of CD200 is a stem cell-specific mechanism of immune evasion in AML. J Immunother Cancer. 2021;9(7):e002968.
  • Liu J, Wu Q, Shi J, et al. LILRB4, from the immune system to the disease target. Am J Transl Res. 2020;12(7):3149–3166.
  • Colonna M, Navarro F, Bellón T, et al. A Common Inhibitory Receptor for Major Histocompatibility Complex Class I Molecules on Human Lymphoid and Myelomonocytic Cells. Journal of Experimental Medicine. 1997;186(11):1809–1818.
  • Borges L, Hsu ML, Fanger N, et al. A family of human lymphoid and myeloid Ig-like receptors, some of which bind to MHC class I molecules. The Journal of Immunology. 1997;159(11):5192–5196.
  • Abdallah F, Coindre S, Gardet M, et al. Leukocyte Immunoglobulin-Like Receptors in Regulating the Immune Response in Infectious Diseases: A Window of Opportunity to Pathogen Persistence and a Sound Target in Therapeutics. Frontiers in Immunology. 2021;12:717998. 10.3389/fimmu.2021.717998
  • Kang X, Kim J, Deng M, et al. Inhibitory leukocyte immunoglobulin-like receptors: Immune checkpoint proteins and tumor sustaining factors. Cell Cycle. 2016;15(1):25–40.
  • Shaw AS, Timson LK, Zhu Y Interactions of TCR tyrosine based activation motifs with tyrosine kinases. Semin Immunol. 1995;7(1):13–20.
  • Isakov N Immunoreceptor tyrosine-based activation motif (ITAM), a unique module linking antigen and Fc receptors to their signaling cascades. Journal of Leukocyte Biology. 1997;61(1):6–16.
  • van der Touw W, Chen H-M, Pan P-Y, et al. LILRB receptor-mediated regulation of myeloid cell maturation and function. Cancer Immunology, Immunotherapy. 2017;66(8):1079–1087.
  • Daeron M, Latour S, Malbec O, et al. The same tyrosine-based inhibition motif, in the intra-cytoplasmic domain of FcγRIIB, regulates negatively BCR-, TCR-, and FcR-dependent cell activation. Immunity. 1995;3(5):635–646.
  • Cella M, Döhring C, Samaridis J, et al. A novel inhibitory receptor (ILT3) expressed on monocytes, macrophages, and dendritic cells involved in antigen processing. Journal of Experimental Medicine. 1997;185(10):1743–1751.
  • Katz HR Inhibition of inflammatory responses by leukocyte Ig-like receptors. Adv Immunol. 2006;91:251–72.
  • Kim-Schulze S, Seki T, Vlad G, et al. Regulation of ILT3 gene expression by processing of precursor transcripts in human endothelial cells. American Journal of Transplantation. 2006;6(1):76–82.
  • Barkal AA, Weiskopf K, Kao KS, et al. Engagement of MHC class I by the inhibitory receptor LILRB1 suppresses macrophages and is a target of cancer immunotherapy. Nature Immunology. 2018;19(1):76–84.
  • Deng M, Chen H, Liu X, et al. Leukocyte immunoglobulin-like receptor subfamily B: therapeutic targets in cancer. Antib Therap. 2021;4(1):16–33.
  • Fleming V, Hu X, Weber R, et al. Targeting Myeloid-Derived Suppressor Cells to Bypass Tumor-Induced Immunosuppression. Front Immunol. 2018;9:398.
  • Deng M, Gui X, Kim J, et al. LILRB4 signalling in leukaemia cells mediates T cell suppression and tumour infiltration. Nature. 2018;562(7728):605–609.
  • Tedla N, Lee CW, Borges L, et al. Differential expression of leukocyte immunoglobulin-like receptors on cord-blood-derived human mast cell progenitors and mature mast cells. J Leukoc Biol. 2008;83:334–43
  • Inui M, Hirota S, Hirano K, et al. Human CD43+ B cells are closely related not only to memory B cells phenotypically but also to plasmablasts developmentally in healthy individuals. Int Immunol. 2015;27:345–55.
  • Ulges A, Klein M, Reuter S, et al. Protein kinase CK2 enables regulatory T cells to suppress excessive TH2 responses in vivo. Nat Immunol. 2015;16:267–75.
  • Mori Y, Tsuji S, Inui M, et al. Inhibitory immunoglobulin-like receptors LILRB and PIR-B negatively regulate osteoclast development. J Immunol. 2008;181(7):4742–4751.
  • Cheng H, Mohammed F, Nam G, et al. Crystal structure of leukocyte Ig-like receptor LILRB4 (ILT3/LIR-5/CD85k): a myeloid inhibitory receptor involved in immune tolerance. J Biol Chem. 2011;286(20):18013–18025.
  • Su MT, Inui M, Wong YL, et al. Blockade of checkpoint ILT3/LILRB4/gp49B binding to fibronectin ameliorates autoimmune disease in BXSB/Yaa mice. Int Immunol. 2021;33:447–58.
  • Lu HK, Rentero C, Raftery MJ, et al. Leukocyte Ig-like receptor B4 (LILRB4) is a potent inhibitor of FcgammaRI-mediated monocyte activation via dephosphorylation of multiple kinases. J Biol Chem. 2009;284:34839–48.
  • Park M, Raftery MJ, Thomas PS, et al. Leukocyte immunoglobulin-like receptor B4 regulates key signalling molecules involved in FcgammaRI-mediated clathrin-dependent endocytosis and phagocytosis. Sci Rep. 2016;6:35085.
  • Manavalan JS, Kim-Schulze S, Scotto L, et al. Alloantigen specific CD8+CD28- FOXP3+ T suppressor cells induce ILT3+ ILT4+ tolerogenic endothelial cells, inhibiting alloreactivity. Int Immunol. 2004;16:1055–1068.
  • Chang CC, Liu Z, Vlad G, et al. Ig-like transcript 3 regulates expression of proinflammatory cytokines and migration of activated T cells. J Immunol. 2009;182(9):5208–5216.
  • Li Z, Deng M, Huang F, et al. LILRB4 ITIMs mediate the T cell suppression and infiltration of acute myeloid leukemia cells. Cell Mol Immunol. 2020;17(3):272–282.
  • Paavola KJ, Roda JM, Lin VY, et al. The fibronectin-ILT3 interaction functions as a stromal checkpoint that suppresses myeloid cells. Cancer Immunol Res. 2021;9:1283–97.
  • Gui X, Deng M, Song H, et al. Disrupting LILRB4/APOE Interaction by an Efficacious Humanized Antibody Reverses T-cell Suppression and Blocks AML Development. Cancer Immunol Res. 2019;7(8):1244–1257.
  • John S, Chen H, Deng M, et al. A novel anti-LILRB4 CAR-T cell for the treatment of monocytic AML. Mol Ther. 2018;26:2487–95.
  • Anami Y, Deng M, Gui X, et al. LILRB4-targeting antibody-drug conjugates for the treatment of acute myeloid leukemia. Mol Cancer Ther. 2020;19:2330–9.
  • DiNardo CD, Pollyea DA, Konopleva M, et al. A First-in-human (FIH) phase 1 study of the anti-LILRB4 antibody IO-202 in relapsed/refractory (R/R) myelomonocytic and monocytic acute myeloid leukemia (AML) and R/R chronic myelomonocytic leukemia (CMML). Blood. 2020;136(Supplement 1):19–20.
  • Godal R, Bachanova V, Gleason M, et al. Natural killer cell killing of acute myelogenous leukemia and acute lymphoblastic leukemia blasts by killer cell immunoglobulin-like receptor-negative natural killer cells after NKG2A and LIR-1 blockade. Biol Blood Marrow Transplant. 2010;16:612–21.
  • Wu G, Xu Y, Schultz RD, et al. LILRB3 supports acute myeloid leukemia development and regulates T-cell antitumor immune responses through the TRAF2-cFLIP-NF-κB signaling axis. Nat Cancer. 2021;2(11):1170–1184.
  • Kontermann RE, Brinkmann U Bispecific antibodies. Drug Discov Today. 2015;20(7):838–847.
  • Brinkmann U, Kontermann RE The making of bispecific antibodies. mAbs. 2017;9(2):182–212.
  • Krishnamurthy A, Jimeno A Bispecific antibodies for cancer therapy: A review. Pharmacol Ther. 2018;185:122–34.
  • Labrijn AF, Janmaat ML, Reichert JM, et al. Bispecific antibodies: a mechanistic review of the pipeline. Nat Rev Drug Discov. 2019;18:585–608.
  • De Gast GC, Van Houten AA, Haagen IA, et al. Clinical experience with CD3 x CD19 bispecific antibodies in patients with B cell malignancies. J Hematother. 1995;4(5):433–437.
  • Jen EY, Xu Q, Schetter A, et al. FDA Approval: Blinatumomab for Patients with B-cell Precursor Acute Lymphoblastic Leukemia in Morphologic Remission with Minimal Residual Disease. Clin Cancer Res. 2019;25(2):473–477.
  • Laszlo GS, Gudgeon CJ, Harrington KH, et al. Cellular determinants for preclinical activity of a novel CD33/CD3 bispecific T-cell engager (BiTE) antibody, AMG 330, against human AML. Blood. 2014;123(4):554–561.
  • Aigner M, Feulner J, Schaffer S, et al. T lymphocytes can be effectively recruited for ex vivo and in vivo lysis of AML blasts by a novel CD33/CD3-bispecific BiTE antibody construct. Leukemia. 2013;27(5):1107–1115.
  • Daver NG, Alotaibi AS, Bücklein V, et al. T-cell-based immunotherapy of acute myeloid leukemia: current concepts and future developments. Leukemia. 2021;35(7):1843–1863.
  • Ravandi F, Walter RB, Subklewe M, et al. Updated Results from Phase I Dose-Escalation Study of AMG 330, a Bispecific T-Cell Engager Molecule, in Patients with Relapsed/Refractory Acute Myeloid Leukemia (R/R AML). J Clin Oncol. 2020;38:7508.
  • Clark MC, Stein A CD33 directed bispecific antibodies in acute myeloid leukemia. Best Pract Res Clin Haematol. 2020;33(4):101224.
  • Subklewe M, Stein A, Walter RB, et al. Preliminary Results from a Phase 1 First-in-Human Study of AMG 673, a Novel Half-Life Extended (HLE) Anti-CD33/CD3 BiTE (Bispecific T-Cell Engager) in Patients with Relapsed/Refractory (R/R) Acute Myeloid Leukemia (AML). Blood. 2019;134:833.
  • Westervelt P, Roboz GJ, Cortes JE, et al. Phase 1 first-in-human Trial of AMV564, a bivalent bispecific (2x2) CD33/CD3 T-cell engager, in patients with relapsed/refractory acute myeloid leukemia (AML). Blood. 2018;132(Supplement 1):1455.
  • Guy DG, Uy GL Bispecific Antibodies for the Treatment of Acute Myeloid Leukemia. Curr Hematol Malig Rep. 2018;13(6):417–425.
  • Nair-Gupta P, Diem M, Reeves D, et al. A novel C2 domain binding CD33xCD3 bispecific antibody with potent T-cell redirection activity against acute myeloid leukemia. Blood Adv. 2020;4(5):906–919.
  • Ravandi F, Bashey A, Stock W, et al. Complete Responses in Relapsed/Refractory Acute Myeloid Leukemia (AML) Patients on a Weekly Dosing Schedule of Vibecotamab (XMAB14045), a CD123 x CD3 T Cell-Engaging Bispecific Antibody; Initial Results of a Phase 1 Study. Blood. 2020;136(Supplement 1):4–5.
  • Moore PA, Zhang W, Rainey GJ, et al. Application of dual affinity retargeting molecules to achieve optimal redirected T-cell killing of B-cell lymphoma. Blood. 2011;117:4542–51.
  • Isidori A, Cerchione C, Daver NG, et al. Immunotherapy in Acute Myeloid Leukemia: Where We Stand. Front Oncol. 2021;11:656218.
  • Uy GL, Aldoss I, Foster MC, et al. Flotetuzumab as salvage immunotherapy for refractory acute myeloid leukemia. Blood. 2021;137(6):751–762.
  • Alderson RF, Huang L, Zhang X, et al. Combinatorial Anti-Tumor Activity in Animal Models of a Novel CD123 x CD3 Bispecific Dart® Molecule (MGD024) with Cytarabine, Venetoclax or Azacitidine Supports Combination Therapy in Acute Myeloid Leukemia. Blood. 2021;138(Supplement 1):1165.
  • Comeau MR, Miller RE, Bader R, et al. APVO436, a bispecific anti-CD123 x anti-CD3 ADAPTIR™ molecule for redirected T-cell cytotoxicity, induces potent T-cell activation, proliferation and cytotoxicity with limited cytokine release. Cancer Res. 2018;78(13_Supplement):Abstract 1786.
  • Watts J, Lin TL, Mims A, et al. Post-hoc Analysis of Pharmacodynamics and Single-Agent Activity of CD3xCD123 Bispecific Antibody APVO436 in Relapsed/Refractory AML and MDS Resistant to HMA or Venetoclax Plus HMA. Front Oncol. 2022;11:806243.
  • de Silva S, Fromm G, Shuptrine CW, et al. CD40 Enhances Type I Interferon Responses Downstream of CD47 Blockade, Bridging Innate and Adaptive Immunity. Cancer Immunol Res. 2010;8(2):230–245.
  • Cendrowicz E, Jacob L, Greenwald S, et al. DSP107 combines inhibition of CD47/SIRPα axis with activation of 4-1BB to trigger anticancer immunity. J Exp Clin Cancer Res. 2022;41(1):97.
  • Leong SR, Sukumaran S, Hristopoulos M, et al. An anti-CD3/anti-CLL-1 bispecific antibody for the treatment of acute myeloid leukemia. Blood. 2017;129(5):609–618.
  • van Loo PF, Hangalapura BN, Thordardottir S, et al. MCLA-117, a CLEC12AxCD3 bispecific antibody targeting a leukemic stem cell antigen, induces T cell-mediated AML blast lysis. Expert Opin Biol Ther. 2019;19(7):721–733.
  • Mascarenhas J, Huls G, Venditti A, et al. Update from the ongoing phase I multinational study of MCLA-117, a bispecific CLEC12A x CD3 T-cell engager, in patients (pts) with acute myelogenous leukemia (AML). Eur Hematol Assoc Meeting. 2020;25:538.
  • Lim Y, Lee E, Lee S, et al. A Novel Asymmetrical Anti-CLL-1×CD3 Bispecific Antibody, ABL602, Induces Potent CLL1-Specific Antitumor Activity with Minimized Sensitization of Pro-Inflammatory Cytokines. Blood. 2021;138(Supplement 1):2234.
  • Brauchle B, Goldstein RL, Karbowski CM, et al. Characterization of a novel FLT3 BiTE molecule for the treatment of acute myeloid leukemia. Mol Cancer Ther. 2020;19:1875–88.
  • Mehta NK, Pfluegler M, Meetze K, et al. A novel IgG-based FLT3xCD3 bispecific antibody for the treatment of AML and B-ALL. J Immunother Cancer. 2022;10(e003882).
  • Surveillance, Epidemiology, and End Results (SEER) SEER*Stat Database: Acute Myeloid Leukemia — Cancer Stat Facts. U. S. National Institutes of Health, National Cancer Institute. Cited 2022 Nov 29. https://seer.cancer.gov
  • Vallera DA, Felices M, McElmurry R, et al. IL15 Trispecific Killer Engagers (TriKE) Make Natural Killer Cells Specific to CD33+ Targets While Also Inducing Persistence, In Vivo Expansion, and Enhanced Function. Clin Cancer Res. 2016;22(14):3440–3450.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.