3,464
Views
1
CrossRef citations to date
0
Altmetric
Review

Metformin: evidence from preclinical and clinical studies for potential novel applications in cardiovascular disease

, , , & ORCID Icon
Pages 291-299 | Received 09 Jan 2023, Accepted 23 Mar 2023, Published online: 03 Apr 2023

References

  • American Diabetes A. 9. pharmacologic approaches to glycemic treatment: standards of medical care in diabetes-2020. Diabetes Care. 2020;43(Suppl 1):S98–110.
  • Marín-Peñalver JJ, Martín-Timón I, Sevillano-Collantes C, et al. Update on the treatment of type 2 diabetes mellitus. World J Diabetes. 2016;7(17):354–395. DOI:10.4239/wjd.v7.i17.354
  • Younis A, Eskenazi D, Goldkorn R, et al. The addition of vildagliptin to metformin prevents the elevation of interleukin 1ss in patients with type 2 diabetes and coronary artery disease: a prospective, randomized, open-label study. Cardiovasc Diabetol. 2017;16(1):69. DOI:10.1186/s12933-017-0551-5
  • Loi H, Boal F, Tronchere H, et al. Metformin protects the heart against hypertrophic and apoptotic remodeling after myocardial infarction. Front Pharmacol. 2019;10:154.
  • Varjabedian L, Bourji M, Pourafkari L, et al. Cardioprotection by metformin: beneficial effects beyond glucose reduction. Am J Cardiovasc Drugs. 2018;18(3):181–193. DOI:10.1007/s40256-018-0266-3
  • Griffin SJ, Leaver JK, Irving GJ. Impact of metformin on cardiovascular disease: a meta-analysis of randomised trials among people with type 2 diabetes. Diabetologia. 2017;60(9):1620–1629.
  • Rena G, Lang CC. Repurposing metformin for cardiovascular disease. Circulation. 2018;137(5):422–424.
  • Sattar N, Lee MMY, Kristensen SL, et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of randomised trials. Lancet Diabetes Endocrinol. 2021;9(10):653–662. DOI:10.1016/S2213-8587(21)00203-5
  • McGuire DK, Shih WJ, Cosentino F, et al. Association of SGLT2 inhibitors with cardiovascular and kidney outcomes in patients with type 2 diabetes: a meta-analysis. JAMA Cardiol. 2021;6(2):148–158. DOI:10.1001/jamacardio.2020.4511
  • Davies MJ, D’alessio DA, Fradkin J, et al. Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia. 2018;61(12):2461–2498. DOI:10.1007/s00125-018-4729-5
  • Cosentino F, Grant PJ, Aboyans V, et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2020;41(2):255–323. DOI:10.1093/eurheartj/ehz486
  • Davies MJ, Aroda VR, Collins BS, et al. Management of hyperglycemia in type 2 diabetes, 2022. a consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2022;45(11):2753–2786. DOI:10.2337/dci22-0034
  • Davies MJ, Aroda VR, Collins BS, et al. Management of hyperglycaemia in type 2 diabetes, 2022. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia. 2022;65(12):1925–1966. DOI:10.1007/s00125-022-05787-2
  • Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabetologia. 2017;60(9):1577–1585.
  • Zhang C-S Metformin activates AMPK through the lysosomal pathway.
  • Zhang CS, Jiang B, Li M, et al. The lysosomal v-ATPase-Ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism. Cell Metab. 2014;20(3):526–540. DOI:10.1016/j.cmet.2014.06.014
  • Van Nostrand JL, Hellberg K, Luo EC, et al. AMPK regulation of Raptor and TSC2 mediate metformin effects on transcriptional control of anabolism and inflammation. Genes Dev. 2020;34(19–20):1330–1344. DOI:10.1101/gad.339895.120
  • Zhang CX, Pan SN, Meng RS, et al. Metformin attenuates ventricular hypertrophy by activating the AMP-activated protein kinase-endothelial nitric oxide synthase pathway in rats. Clin Exp Pharmacol Physiol. 2011;38(1):55–62. DOI:10.1111/j.1440-1681.2010.05461.x
  • Takashima M, Ogawa W, Hayashi K, et al. Role of KLF15 in regulation of hepatic gluconeogenesis and metformin action. Diabetes. 2010;59(7):1608–1615. DOI:10.2337/db09-1679
  • Vettor R, Valerio A, Ragni M, et al. Exercise training boosts eNOS-dependent mitochondrial biogenesis in mouse heart: role in adaptation of glucose metabolism. Am J Physiol Endocrinol Metab. 2014;306(5):E519–28. DOI:10.1152/ajpendo.00617.2013
  • Gundewar S, Calvert JW, Jha S, et al. Activation of AMP-activated protein kinase by metformin improves left ventricular function and survival in heart failure. Circ Res. 2009;104(3):403–411. DOI:10.1161/CIRCRESAHA.108.190918
  • Wang XF, Zhang JY, Li L, et al. Metformin improves cardiac function in rats via activation of AMP-activated protein kinase. Clin Exp Pharmacol Physiol. 2011;38(2):94–101. DOI:10.1111/j.1440-1681.2010.05470.x
  • Gormsen LC, Sundelin EI, Jensen JB, et al. In Vivo imaging of human 11C-Metformin in peripheral organs: dosimetry, biodistribution, and kinetic analyses. J Nucl Med. 2016;57(12):1920–1926. DOI:10.2967/jnumed.116.177774
  • Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377(12):1119–1131. DOI:10.1056/NEJMoa1707914
  • Tardif JC, Kouz S, Waters DD, et al. Efficacy and safety of low-dose colchicine after myocardial infarction. N Engl J Med. 2019;381(26):2497–2505. DOI:10.1056/NEJMoa1912388
  • Nidorf SM, Fiolet ATL, Mosterd A, et al. Colchicine in patients with chronic coronary disease. N Engl J Med. 2020;383(19):1838–1847. DOI:10.1056/NEJMoa2021372
  • Cameron AR, Morrison VL, Levin D, et al. Anti-inflammatory effects of metformin irrespective of diabetes status. Circ Res. 2016;119(5):652–665.
  • Vasamsetti SB, Karnewar S, Kanugula AK, et al. Metformin inhibits monocyte-to-macrophage differentiation via AMPK-mediated inhibition of STAT3 activation: potential role in atherosclerosis. Diabetes. 2015;64(6):2028–2041. DOI:10.2337/db14-1225
  • Gopoju R, Panangipalli S, Kotamraju S. Metformin treatment prevents SREBP2-mediated cholesterol uptake and improves lipid homeostasis during oxidative stress-induced atherosclerosis. Free Radical Biology & Medicine. 2018;118:85–97.
  • Yang Q, Yuan H, Chen M, et al. Metformin ameliorates the progression of atherosclerosis via suppressing macrophage infiltration and inflammatory responses in rabbits. Life Sci. 2018;198:56–64.
  • Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352(9131):854–865.
  • Schernthaner G, Brand K, Bailey CJ. Metformin and the heart: update on mechanisms of cardiovascular protection with special reference to comorbid type 2 diabetes and heart failure. Metabolism. 2022;130:155160.
  • Group C. Intensive glucose control and macrovascular outcomes in type 2 diabetes. reply to Emanuele NV [letter] and Yudkin JS, Richter B [letter]. Diabetologia. 2010;53(1):218.
  • Giugliano D, Bellastella G, Longo M, et al. Relationship between improvement of glycaemic control and reduction of major cardiovascular events in 15 cardiovascular outcome trials: a meta-analysis with meta-regression. Diab Obes Metab. 2020;22(8):1397–1405. DOI:10.1111/dom.14047
  • Mohsin AA, Chen Q, Quan N, et al. Mitochondrial complex i inhibition by metformin limits reperfusion injury. J Pharmacol Exp Ther. 2019;369(2):282–290. DOI:10.1124/jpet.118.254300
  • Weng S, Luo Y, Zhang Z, et al. Effects of metformin on blood lipid profiles in nondiabetic adults: a meta-analysis of randomized controlled trials. Endocrine. 2020;67(2):305–317. DOI:10.1007/s12020-020-02190-y
  • Golay A. Metformin and body weight. Int J Obes (Lond). 2008;32(1):61–72.
  • Little PJ, Askew CD, Xu S, et al. Endothelial dysfunction and cardiovascular disease: history and analysis of the clinical utility of the relationship. Biomedicines. 2021;9(6):699. DOI:10.3390/biomedicines9060699
  • Mone P, Gambardella J, Pansini A, et al. Cognitive impairment in frail hypertensive elderly patients: role of hyperglycemia. Cells. 2021;10(8):2115. DOI:10.3390/cells10082115
  • Sardu C, Paolisso P, Sacra C, et al. Effects of metformin therapy on coronary endothelial dysfunction in patients with prediabetes with stable angina and nonobstructive coronary artery stenosis: the codyce multicenter prospective study. Diabetes Care. 2019;42(10):1946–1955. DOI:10.2337/dc18-2356
  • Kataoka Y, Nicholls SJ, Andrews J, et al. Plaque microstructures during metformin therapy in type 2 diabetic subjects with coronary artery disease: optical coherence tomography analysis. Cardiovasc Diagn Ther. 2022;12(1):77–87. DOI:10.21037/cdt-21-346
  • Petrie JR, Chaturvedi N, Ford I, et al. Cardiovascular and metabolic effects of metformin in patients with type 1 diabetes (REMOVAL): a double-blind, randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 2017;5(8):597–609. DOI:10.1016/S2213-8587(17)30194-8
  • Preiss D, Lloyd SM, Ford I, et al. Metformin for non-diabetic patients with coronary heart disease (the CAMERA study): a randomised controlled trial. Lancet Diabetes Endocrinol. 2014;2(2):116–124. DOI:10.1016/S2213-8587(13)70152-9
  • Lexis CP, van der Horst IC, Lipsic E, et al. Effect of metformin on left ventricular function after acute myocardial infarction in patients without diabetes: the GIPS-III randomized clinical trial. JAMA. 2014;311(15):1526–1535. DOI:10.1001/jama.2014.3315
  • Top WMC, Lehert P, Schalkwijk CG, et al. Metformin and N-terminal pro B-type natriuretic peptide in type 2 diabetes patients, a post-hoc analysis of a randomized controlled trial. PLoS ONE. 2021;16(4):e0247939. DOI:10.1371/journal.pone.0247939
  • Stultiens JMG, Top WMC, Kimenai DM, et al. Metformin and high-sensitivity cardiac troponin I and T trajectories in type 2 diabetes patients: a post-hoc analysis of a randomized controlled trial. Cardiovasc Diabetol. 2022;21(1):49. DOI:10.1186/s12933-022-01482-z
  • Lamanna C, Monami M, Marchionni N, et al. Effect of metformin on cardiovascular events and mortality: a meta-analysis of randomized clinical trials. Diab Obes Metab. 2011;13(3):221–228. DOI:10.1111/j.1463-1326.2010.01349.x
  • Goldberg RB, Orchard TJ, Crandall JP, et al. Effects of long-term metformin and lifestyle interventions on cardiovascular events in the diabetes prevention program and its outcome study. Circulation. 2022;145(22):1632–1641. DOI:10.1161/CIRCULATIONAHA.121.056756
  • Bergmark BA, Bhatt DL, McGuire DK, et al. Metformin use and clinical outcomes among patients with diabetes mellitus with or without heart failure or kidney dysfunction: observations from the SAVOR-TIMI 53 trial. Circulation. 2019;140(12):1004–1014.
  • Lorell BH, Carabello BA. Left ventricular hypertrophy: pathogenesis, detection, and prognosis. Circulation. 2000;102(4):470–479.
  • Okin PM, Devereux RB, Jern S, et al. Regression of electrocardiographic left ventricular hypertrophy during antihypertensive treatment and the prediction of major cardiovascular events. JAMA. 2004;292(19):2343–2349. DOI:10.1001/jama.292.19.2343
  • Fagard RH, Celis H, Thijs L, et al. Regression of left ventricular mass by antihypertensive treatment: a meta-analysis of randomized comparative studies. Hypertension. 2009;54(5):1084–1091. DOI:10.1161/HYPERTENSIONAHA.109.136655
  • Xiao H, Ma X, Feng W, et al. Metformin attenuates cardiac fibrosis by inhibiting the TGFbeta1-Smad3 signalling pathway. Cardiovasc Res. 2010;87(3):504–513. DOI:10.1093/cvr/cvq066
  • Bujak M, Ren G, Kweon HJ, et al. Essential role of Smad3 in infarct healing and in the pathogenesis of cardiac remodeling. Circulation. 2007;116(19):2127–2138. DOI:10.1161/CIRCULATIONAHA.107.704197
  • Patel SK, Wai B, Lang CC, et al. Genetic variation in kruppel like factor 15 is associated with left ventricular hypertrophy in patients with type 2 diabetes: discovery and replication cohorts. EBioMedicine. 2017;18:171–178.
  • Mohan M, Al-Talabany S, McKinnie A, et al. A randomized controlled trial of metformin on left ventricular hypertrophy in patients with coronary artery disease without diabetes: the MET-REMODEL trial. Eur Heart J. 2019;40(41):3409–3417.
  • Kamel AM, Sabry N, Farid S. Effect of metformin on left ventricular mass and functional parameters in non-diabetic patients: a meta-analysis of randomized clinical trials. BMC Cardiovasc Disord. 2022;22(1):405.
  • Benes J, Kotrc M, Kroupova K, et al. Metformin treatment is associated with improved outcome in patients with diabetes and advanced heart failure (HFrEF). Sci Rep. 2022;12(1):13038. DOI:10.1038/s41598-022-17327-4
  • Halabi A, Sen J, Huynh Q, et al. Metformin treatment in heart failure with preserved ejection fraction: a systematic review and meta-regression analysis. Cardiovasc Diabetol. 2020;19(1):124. DOI:10.1186/s12933-020-01100-w
  • Khan MS, Solomon N, DeVore AD, et al. Clinical outcomes with metformin and sulfonylurea therapies among patients with heart failure and diabetes. JACC Heart Fail. 2022;10(3):198–210. DOI:10.1016/j.jchf.2021.11.001
  • Wiggers H, Kober L, Gislason G, et al. The DANish randomized, double-blind, placebo controlled trial in patients with chronic HEART failure (DANHEART): a 2 x 2 factorial trial of hydralazine-isosorbide dinitrate in patients with chronic heart failure (H-Heft) and metformin in patients with chronic heart failure and diabetes or prediabetes (Met-HeFT). Am Heart J. 2021;231:137–146.
  • Docherty KF, Jhund PS, Bengtsson O, et al. Effect of Dapagliflozin in DAPA-HF according to background glucose-lowering therapy. Diabetes Care. 2020;43(11):2878–2881. DOI:10.2337/dc20-1402
  • Larsen AH, Jessen N, Norrelund H, et al. A randomised, double-blind, placebo-controlled trial of metformin on myocardial efficiency in insulin-resistant chronic heart failure patients without diabetes. Eur J Heart Fail. 2020;22(9):1628–1637. DOI:10.1002/ejhf.1656
  • Larsen AH, Wiggers H, Dollerup OL, et al. Metformin lowers body weight but fails to increase insulin sensitivity in chronic heart failure patients without diabetes: a randomized, double-blind, placebo-controlled study. Cardiovasc Drugs Ther. 2021;35(3):491–503. DOI:10.1007/s10557-020-07050-5
  • Wong AK, Symon R, AlZadjali MA, et al. The effect of metformin on insulin resistance and exercise parameters in patients with heart failure. Eur J Heart Fail. 2012;14(11):1303–1310. DOI:10.1093/eurjhf/hfs106
  • Kersten C, Knottnerus ILH, Heijmans E, et al. Effect of metformin on outcome after acute ischemic stroke in patients with type 2 diabetes mellitus. J Stroke Cerebrovasc Dis. 2022;31(9):106648. DOI:10.1016/j.jstrokecerebrovasdis.2022.106648
  • Mima Y, Kuwashiro T, Yasaka M, et al. Impact of metformin on the severity and outcomes of acute ischemic stroke in patients with type 2 diabetes mellitus. J Stroke Cerebrovasc Dis. 2016;25(2):436–446. DOI:10.1016/j.jstrokecerebrovasdis.2015.10.016
  • Bellastella G, Maiorino MI, Longo M, et al. Glucagon-like peptide-1 receptor agonists and prevention of stroke systematic review of cardiovascular outcome trials with meta-analysis. Stroke. 2020;51(2):666–669. DOI:10.1161/STROKEAHA.119.027557
  • Mary A, Hartemann A, Liabeuf S, et al. Association between metformin use and below-the-knee arterial calcification score in type 2 diabetic patients. Cardiovasc Diabetol. 2017;16(1):24. DOI:10.1186/s12933-017-0509-7
  • Sirtori CR, Franceschini G, Gianfranceschi G, et al. Metformin improves peripheral vascular flow in nonhyperlipidemic patients with arterial disease. J Cardiovasc Pharmacol. 1984;6(5):914–923. DOI:10.1097/00005344-198409000-00027
  • Khan SZ, Rivero M, Nader ND, et al. Metformin is associated with improved survival and decreased cardiac events with no impact on patency and limb salvage after revascularization for peripheral arterial disease. Ann Vasc Surg. 2019;55:63–77.
  • Kirchhof P, Benussi S, Kotecha D, et al. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J. 2016;37(38):2893–2962. DOI:10.1093/eurheartj/ehw210
  • Harada M, Tadevosyan A, Qi X, et al. Atrial fibrillation activates AMP-Dependent protein kinase and its regulation of cellular calcium handling: potential role in metabolic adaptation and prevention of progression. J Am Coll Cardiol. 2015;66(1):47–58. DOI:10.1016/j.jacc.2015.04.056
  • Ostropolets A, Elias PA, Reyes MV, et al. Metformin is associated with a lower risk of atrial fibrillation and ventricular arrhythmias compared with sulfonylureas: an observational study. Circ Arrhythm Electrophysiol. 2021;14(3):e009115. DOI:10.1161/CIRCEP.120.009115
  • Chang SH, Wu LS, Chiou MJ, et al. Association of metformin with lower atrial fibrillation risk among patients with type 2 diabetes mellitus: a population-based dynamic cohort and in vitro studies. Cardiovasc Diabetol. 2014;13(1):123. DOI:10.1186/s12933-014-0123-x
  • Cheng YY, Leu HB, Chen TJ, et al. Metformin-inclusive therapy reduces the risk of stroke in patients with diabetes: a 4-year follow-up study. J Stroke Cerebrovasc Dis. 2014;23(2):e99–105. DOI:10.1016/j.jstrokecerebrovasdis.2013.09.001
  • Lal JC, Mao C, Zhou Y, et al. Transcriptomics-based network medicine approach identifies metformin as a repurposable drug for atrial fibrillation. Cell Rep Med. 2022;3(10):100749. DOI:10.1016/j.xcrm.2022.100749
  • Xu T, Brandmaier S, Messias AC, et al. Effects of metformin on metabolite profiles and LDL cholesterol in patients with type 2 diabetes. Diabetes Care. 2015;38(10):1858–1867. DOI:10.2337/dc15-0658
  • Goldberg RB, Temprosa M, Mele L, et al. Change in adiponectin explains most of the change in HDL particles induced by lifestyle intervention but not metformin treatment in the Diabetes Prevention Program. Metabolism. 2016;65(5):764–775. DOI:10.1016/j.metabol.2015.11.011
  • Kooy A, de Jager J, Lehert P, et al. Long-term effects of metformin on metabolism and microvascular and macrovascular disease in patients with type 2 diabetes mellitus. Arch Intern Med. 2009;169(6):616–625. DOI:10.1001/archinternmed.2009.20
  • Hong J, Zhang Y, Lai S, et al. Effects of metformin versus glipizide on cardiovascular outcomes in patients with type 2 diabetes and coronary artery disease. Diabetes Care. 2013;36(5):1304–1311. DOI:10.2337/dc12-0719
  • Jadhav S, Ferrell W, Greer IA, et al. Effects of metformin on microvascular function and exercise tolerance in women with angina and normal coronary arteries: a randomized, double-blind, placebo-controlled study. J Am Coll Cardiol. 2006;48(5):956–963. DOI:10.1016/j.jacc.2006.04.088
  • Yu X, Jiang D, Wang J, et al. Metformin prescription and aortic aneurysm: systematic review and meta-analysis. Heart. 2019;105(17):1351–1357. DOI:10.1136/heartjnl-2018-314639
  • Golledge J, Arnott C, Moxon J, et al. Protocol for the Metformin Aneurysm Trial (MAT): a placebo-controlled randomised trial testing whether metformin reduces the risk of serious complications of abdominal aortic aneurysm. Trials. 2021;22(1):962. DOI:10.1186/s13063-021-05915-0
  • Sundstrom J, Kristofi R, Ostlund O, et al. A registry-based randomised trial comparing an SGLT2 inhibitor and metformin as standard treatment of early stage type 2 diabetes (SMARTEST): rationale, design and protocol. J Diabetes Complications. 2021;35(10):107996. DOI:10.1016/j.jdiacomp.2021.107996