450
Views
0
CrossRef citations to date
0
Altmetric
Special Report

Recent developments for new investigational JAK inhibitors in psoriatic arthritis

ORCID Icon, ORCID Icon, , , , ORCID Icon, ORCID Icon & show all
Pages 361-371 | Received 22 Feb 2023, Accepted 24 Apr 2023, Published online: 03 May 2023

References

  • Chimenti MS, Caso F, Alivernini S, et al. Amplifying the concept of psoriatic arthritis: the role of autoimmunity in systemic psoriatic disease. Autoimmun Rev. 2019;18(6):565–575. DOI:10.1016/j.autrev.2018.11.007
  • Lubrano E, Parsons WJ, Marchesoni A, et al. The definition and measurement of axial psoriatic arthritis. J Rheumatol Suppl. 2015;93:40–42.
  • Scarpa R, Caso F, Costa L, et al. Psoriatic disease: clinical staging. J Rheumatol. 2015;93:24–26.
  • Kehl AS, Corr M, Weisman MH. Review: enthesitis: new insights into pathogenesis, diagnostic modalities, and treatment. Arthritis Rheumatol. 2016;68(2):312–322.
  • Girolimetto N, Costa L, Mancarella L, et al. Symptomatic psoriatic dactylitis is associated with ultrasound determined extra-synovial inflammatory features and shorter disease duration. Clin Rheumatol. 2019;38(3):903–911. DOI:10.1007/s10067-018-4400-z
  • Girolimetto N, MacChioni P, Tinazzi I, et al. Ultrasonographic evidence of predominance of acute extracapsular and chronic intrasynovial patterns in 100 cases of psoriatic hand dactylitis. J Rheumatol. 2020;47(2):227–233. DOI:10.3899/jrheum.190046
  • Napolitano M, Caso F, Scarpa R, et al. Psoriatic arthritis and psoriasis: differential diagnosis. Clin Rheumatol. 2016;35(8):1893–1901. DOI:10.1007/s10067-016-3295-9
  • Chimenti MS, Perricone C, Novelli L, et al. Interaction between microbiome and host genetics in psoriatic arthritis. Autoimmun Rev. 2018;17(3):276–283. DOI:10.1016/j.autrev.2018.01.002
  • Chimenti MS, Triggianese P, Salandri G, et al. A Multimodal eye assessment in psoriatic arthritis patients sine psoriasis: evidence for a potential association with systemic inflammation. J Clin Med. 2020;9(3):719. DOI:10.3390/jcm9030719
  • Navarini L, Sperti M, Currado D, et al. A machine-learning approach to cardiovascular risk prediction in psoriatic arthritis. Rheumatology. 2020;59(7):1767–1769. DOI:10.1093/rheumatology/kez677
  • Costa L, Caso F, D’Elia L, et al. Psoriatic arthritis is associated with increased arterial stiffness in the absence of known cardiovascular risk factors: a case control study. Clin Rheumatol. 2012;31(4):711–715. DOI:10.1007/s10067-011-1892-1
  • Caso F, Navarini L, Carubbi F, et al. Mediterranean diet and Psoriatic Arthritis activity: a multicenter cross-sectional study. Rheumatol Int. 2020;40(6):951–958. DOI:10.1007/s00296-019-04458-7
  • Costa L, Caso F, Ramonda R, et al. Metabolic syndrome and its relationship with the achievement of minimal disease activity state in psoriatic arthritis patients: an observational study. Immunol Res. 2014;61(1–2):147–153. DOI:10.1007/s12026-014-8595-z
  • Caso F, Chimenti MS, Navarini L, et al. Metabolic Syndrome and psoriatic arthritis: considerations for the clinician. Expert Rev Clin Immunol. 2020;16(4):409–420. DOI:10.1080/1744666X.2020.1740593
  • Caso F, Del Puente A, Oliviero F, et al. Metabolic syndrome in psoriatic arthritis: the interplay with cutaneous involvement. Evidences from literature and a recent cross-sectional study. Clin Rheum. 2018;37(3):579–586. DOI:10.1007/s10067-017-3975-0
  • Caso F, Costa L, Chimenti MS, et al. Pathogenesis of psoriatic arthritis. Crit Rev Immunol. 2019;39(5):361–377. DOI:10.1615/CritRevImmunol.2020033243
  • Wiell C, Szkudlarek M, Hasselquist M, et al. Ultrasonography, magnetic resonance imaging, radiography, and clinical assessment of inflammatory and destructive changes in fingers and toes of patients with psoriatic arthritis. Arthritis Res Ther. 2007;9(6):R119. DOI:10.1186/ar2327
  • Sudoł-Szopińska I, Pracoń G. Diagnostyka obrazowa łuszczycowego zapalenia stawów. Część II: rezonans magnetyczny i ultrasonografia. J Ultrason. 2016;16(65):163–174.
  • Giacomelli R, Afeltra A, Alunno A, et al. Guidelines for biomarkers in autoimmune rheumatic diseases - evidence based analysis. Autoimmun Rev. 2019;18(1):93–106. DOI:10.1016/j.autrev.2018.08.003
  • Moll JMH, Wright V. Psoriatic arthritis. Semin Arthritis Rheum. 1973;3(1):55–78.
  • Caso F, Costa L, Atteno M, et al. Simple clinical indicators for early psoriatic arthritis detection. Springerplus. 2014;3(1):1–3. DOI:10.1186/2193-1801-3-759
  • Tillett W, Costa L, Jadon D, et al. The ClASsification for psoriatic ARthritis (CASPAR) criteria – a retrospective feasibility, sensitivity, and specificity study: table 1. J Rheumatol. 2012;39(1):154–156. DOI:10.3899/jrheum.110845
  • Leung YY, Orbai AM, Tillett W, et al. Instruments measuring physical function for psoriatic arthritis endorsed at GRAPPA 2020 annual meeting: updates of the GRAPPA-OMERACT working group. J Rheumatol Suppl. 2021;97:60–63.
  • Tucker LJ, Coates LC, Helliwell PS. Assessing Disease Activity in Psoriatic Arthritis: a Literature Review. Rheumatol Ther. 2019;6(1):23–32.
  • Mease PJ. Measures of psoriatic arthritis: tender and swollen joint assessment, psoriasis area and severity index (PASI), nail psoriasis severity index (NAPSI), modified nail psoriasis severity index (mNAPSI), mander/newcastle enthesitis index (MEI), leeds enthesitis index (LEI), spondyloarthritis research consortium of Canada (SPARCC), maastricht ankylosing spondylitis enthesis score (mases), leeds dactylitis index (ldi), patient global for psoriatic arthritis, dermatology life quality index (DLQI), psoriatic arthritis quality of life (PsAQOL), Functional assessment of chronic illness therapy-fatigue (FACIT-F), psoriatic arthritis response criteria (PsARC), psoriatic arthritis joint activity index (PsAJAI), disease activity in psoriatic arthritis (DAPSA), and composite psoriatic disease activity index (CPDAI). Arthritis Care Res (Hoboken). 2011;63:S64–85.
  • van der Heijde D, Gladman DD, Kavanaugh A, et al. Assessing structural damage progression in psoriatic arthritis and its role as an outcome in research. Arthritis Res Ther. 2020;22(1):18.
  • Ogdie A, Coates LC, Gladman DD. Treatment guidelines in psoriatic arthritis. Rheumatology (Oxford). 2020;59(Supplement_1):i37–46.
  • Gossec L, Baraliakos X, Kerschbaumer A, et al. EULAR recommend dations for the management of psoriatic arthritis with pharmacological therapies: 2019 update. Ann Rheum Dis. 2020;79(6):700.1–70012. DOI:10.1136/annrheumdis-2020-217159
  • Singh JA, Guyatt G, Ogdie A, et al. Special article: 2018 american college of rheumatology/national psoriasis foundation guideline for the treatment of psoriatic arthritis. Arthritis Care Res. 2019;71(1):2–29. DOI:10.1002/acr.23789
  • Coates LC, Soriano ER, Corp N, et al. GRAPPA Treatment recommendations domain subcommittees. group for research and assessment of psoriasis and psoriatic arthritis (GRAPPA): updated treatment recommendations for psoriatic arthritis 2021. Nat Rev Rheumatol. 2022;18(8):465–479. DOI:10.1038/s41584-022-00798-0
  • Palominos PE, Fernández-Ávila DG, Coates LC, et al. Management of dactylitis in patients with psoriatic arthritis: an updated literature review informing the 2021 GRAPPA treatment recommendations. J Rheumatol. 2022;50(2):265–278. DOI:10.3899/jrheum.220311
  • Helliwell PS, Mease PJ, Kavanaugh A, et al. Impact of clinical domains other than arthritis on composite outcomes in psoriatic arthritis: comparison of treatment effects in the SEAM-PsA trial. RMD Open. 2022;8(2):e002366. DOI:10.1136/rmdopen-2022-002366
  • Hutton J, Mease P, Jadon D. Horizon scan: state-of-the-art therapeutics for psoriatic arthritis. Best Pract Res Clin Rheumatol. 2022;2022:101809.
  • Coates L, Gossec L. The updated GRAPPA and EULAR recommendations for the management of psoriatic arthritis: similarities and differences. Joint Bone Spine. 2022;90(1):105469.
  • Lee YH, Song GG Relative efficacy and safety of Janus kinase inhibitors for the treatment of active psoriatic arthritis: a network meta-analysis. Z Rheumatol. 2021. doi: 10.1007/s00393-021-01119-8
  • Yang F, Lu C, Wang Y, et al. Efficacy and safety of Janus kinase inhibitors in patients with psoriasis and psoriatic arthritis: a systematic review and meta-analysis. Clin Rheumatol. 2023. DOI:10.1007/s10067-023-06529-4
  • Loo WJ, Turchin I, Prajapati VH, et al. Clinical implications of targeting the JAK-STAT pathway in psoriatic disease: emphasis on the TYK2 pathway. J Cutan Med Surg. 2023;27(1_suppl):3S–24S. DOI:10.1177/12034754221141680
  • Fiocco U, Martini V, Accordi B, et al. Ex Vivo signaling protein mapping in T lymphocytes in the psoriatic arthritis joints. J Rheumatol Suppl. 2015;93:48–52.
  • Fiocco U, Martini V, Accordi B, et al. Transcriptional network profile on synovial fluid T cells in psoriatic arthritis. Clin Rheumatol. 2015;34(9):1571–1580. DOI:10.1007/s10067-015-3002-2
  • Fiocco U, Accordi B, Martini V, et al. JAK/STAT/PKCδ molecular pathways in synovial fluid T lymphocytes reflect the in vivo T helper-17 expansion in psoriatic arthritis. Immunol Res. 2014;58(1):61–69. DOI:10.1007/s12026-013-8481-0
  • Caso F, Saviano A, Tasso M, et al. Analysis of rheumatoid- vs psoriatic arthritis synovial fluid reveals differential macrophage (CCR2) and T helper subsets (STAT3/4 and FOXP3) activation. Autoimmun Rev. 2022;21(12):103207. DOI:10.1016/j.autrev.2022.103207
  • Caso F, Costa L, Nucera V, et al. From autoinflammation to autoimmunity: old and recent findings. Clin Rheumatol. 2018;37(9):2305–2321. DOI:10.1007/s10067-018-4209-9
  • Martin G. Novel therapies in plaque psoriasis: a review of tyrosine kinase 2 inhibitors. Dermatol Ther (Heidelb). 2023;13(2):417–435.
  • Tanaka Y, Luo Y, O’Shea JJ, et al. Janus kinase-targeting therapies in rheumatology: a mechanisms-based approach. Nat Rev Rheumatol. 2022;18(3):133–145.
  • Benucci M, Bernardini P, Coccia C, et al. JAK inhibitors and autoimmune rheumatic diseases. Autoimmun Rev. 2023;22(4):103276. DOI:10.1016/j.autrev.2023.103276
  • Navarini L, Currado D, Costa L, et al. Experimental and investigational pharmacotherapy for psoriatic arthritis: drugs of the future. J Exp Pharmacol. 2020;12:487–502.
  • Caso F, Navarini L, Ruscitti P, et al. Targeted synthetic pharmacotherapy for psoriatic arthritis: state of the art. Expert Opin Pharmacother. 2020;21(7):785–796. DOI:10.1080/14656566.2020.1726317
  • Costa L, Del Puente A, Peluso R, et al. Small molecule therapy for managing moderate to severe psoriatic arthritis. Expert Opin Pharmacother. 2017;18(15):1557–1567. DOI:10.1080/14656566.2017.1378343
  • Paik J, Deeks ED. Tofacitinib: a review in psoriatic arthritis. Drugs. 2019;79(6):655–663.
  • Jamilloux Y, El Jammal T, Vuitton L, et al. JAK inhibitors for the treatment of autoimmune and inflammatory diseases. Autoimmun Rev. 2019;18(11):102390. DOI:10.1016/j.autrev.2019.102390
  • Song GG, Lee YH. Comparison of the efficacy and safety of tofacitinib and apremilast in patients with active psoriatic arthritis: a bayesian network meta-analysis of randomized controlled trials. Clin Drug Investig. 2019;39(5):421–428.
  • Mease P, Hall S, FitzGerald O, et al. Tofacitinib or adalimumab versus placebo for psoriatic arthritis. N Engl J Med. 2017;377(16):1537–1550. DOI:10.1056/NEJMoa1615975
  • Gladman D, Rigby W, Azevedo VF, et al. Tofacitinib for psoriatic arthritis in patients with an inadequate response to TNF inhibitors. N Engl J Med. 2017;377(16):1525–1536. DOI:10.1056/NEJMoa1615977
  • Nash P, Coates LC, Fleishaker D, et al. Safety and efficacy of tofacitinib up to 48 months in patients with active psoriatic arthritis: final analysis of the OPAL balance long-term extension study. Lancet Rheumatol. 2021;3(4):E270–83. DOI:10.1016/S2665-9913(21)00010-2
  • Strand V, De Vlam K, Covarrubias-Cobos JA, et al. Effect of tofacitinib on patient-reported outcomes in patients with active psoriatic arthritis and an inadequate response to tumour necrosis factor inhibitors in the Phase III, randomised controlled trial: oPAL beyond. RMD Open. 2019;5(1):1. DOI:10.1136/rmdopen-2018-000808
  • Nash P, Coates LC, Fleischmann R, et al. Efficacy of tofacitinib for the treatment of psoriatic arthritis: pooled analysis of two phase 3 studies. Rheumatol Ther. 2018;5(2):567–582. DOI:10.1007/s40744-018-0131-5
  • Strand V, De Vlam K, Covarrubias-Cobos JA, et al. Tofacitinib or adalimumab versus placebo: patient-reported outcomes from OPAL Broaden—a phase III study of active psoriatic arthritis in patients with an inadequate response to conventional synthetic disease-modifying antirheumatic drugs. RMD Open. 2019;5(1):1. DOI:10.1136/rmdopen-2018-000806
  • Van Der Heij de D, Gladman DD, FitzGerald O, et al. Radiographic progression according to baseline C-reactive protein levels and other risk factors in psoriatic arthritis treated with tofacitinib or adalimumab. J Rheumatol. 2019;46(9):1089–1096. DOI:10.3899/jrheum.180971
  • Gladman DD, Coates LC, Wu J, et al. Time to response for clinical and patient-reported outcomes in patients with psoriatic arthritis treated with tofacitinib, adalimumab, or placebo. Arthritis Res Ther. 2022;24(1):40. DOI:10.1186/s13075-022-02721-0
  • Nash P, Coates LC, Kivitz AJ, et al. Safety and efficacy of tofacitinib in patients with active psoriatic arthritis: interim analysis of OPAL balance, an open-label, long-term extension study. Rheumatol Ther. 2020;7(3):553–580. DOI:10.1007/s40744-020-00209-4
  • Burmester GR, Nash P, Sands BE, et al. Adverse events of special interest in clinical trials of rheumatoid arthritis, psoriatic arthritis, ulcerative colitis and psoriasis with 37 066 patient-years of tofacitinib exposure. RMD Open. 2021;7(2):e001595. DOI:10.1136/rmdopen-2021-001595
  • Ytterberg SR, Bhatt DL, Mikuls TR, et al. Cardiovascular and cancer risk with tofacitinib in rheumatoid arthritis. N Engl J Med. 2022;386(4):316–326. DOI:10.1056/NEJMoa2109927
  • Winthrop KL, Cohen SB. Oral surveillance and JAK inhibitor safety: the theory of relativity. Nat Rev Rheumatol. 2022;18(5):301–304.
  • McInnes IB, Anderson JK, Magrey M, et al. Trial of upadacitinib and adalimumab for psoriatic arthritis. N Engl J Med. 2021;384(13):1227–1239. DOI:10.1056/NEJMoa2022516
  • Mease PJ, Lertratanakul A, Anderson JK, et al. Upadacitinib for psoriatic arthritis refractory to biologics: sELECT-PsA 2. Ann Rheum Dis. 2021;80(3):312–320. DOI:10.1136/annrheumdis-2020-218870
  • McInnes IB, Kato K, Magrey M, et al. Upadacitinib in patients with psoriatic arthritis and an inadequate response to non- biological therapy: 56-week data from the phase 3 SELECT-PsA 1 study. RMD Open. 2021;7(3):e001838. DOI:10.1136/rmdopen-2021-001838
  • McInnes IB, Kato K, Magrey M, et al. Efficacy and safety of upadacitinib in patients with psoriatic arthritis: 2-year results from the phase 3 SELECT-PsA 1 Study. Rheumatol Ther. 2022;10:275–292.
  • Mease PJ, Lertratanakul A, Papp KA, et al. Upadacitinib in patients with psoriatic arthritis and inadequate response to biologics: 56-week data from the randomized controlled phase 3 SELECT-PsA 2 Study. Rheumatol Ther. 2021;8(2):903–919. DOI:10.1007/s40744-021-00305-z
  • Strand V, Mease PJ, Soriano ER, et al. Improvement in patient-reported outcomes in patients with psoriatic arthritis treated with upadacitinib versus placebo or adalimumab: results from SELECT-PsA 1. Rheumatol Ther. 2021;8(4):1789–1808. DOI:10.1007/s40744-021-00379-9
  • Strand V, Van den Bosch F, Ranza R, et al. Patient-reported outcomes in psoriatic arthritis patients with an inadequate response to biologic disease-modifying antirheumatic drugs: sELECT-PsA 2. Rheumatol Ther. 2021;8(4):1827–1844. DOI:10.1007/s40744-021-00377-x
  • Mease P, Kavanaugh A, Gladman D, et al. Disease control with upadacitinib in patients with psoriatic arthritis: a post hoc analysis of the randomized, placebo-controlled SELECT-PsA 1 and 2 phase 3 trials. Rheumatol Ther. 2022;9(4):1181–1191. DOI:10.1007/s40744-022-00449-6
  • Braun J, Kiltz U, Baraliakos X. Emerging therapies for the treatment of spondyloarthritides with focus on axial spondyloarthritis. Expert Opin Biol Ther. 2023;23(2):1–12.
  • Mease P, Coates LC, Helliwell PS, et al. Efficacy and safety of filgotinib, a selective Janus kinase 1 inhibitor, in patients with active psoriatic arthritis (EQUATOR): results from a randomised, placebo-controlled, phase 2 trial. Lancet. 2018;392(10162):2367–2377. DOI:10.1016/S0140-6736(18)32483-8
  • Orbai AM, Ogdie A, Gossec L, et al. Effect of filgotinib on health- related quality of life in active psoriatic arthritis: a randomized phase 2 trial (EQUATOR). Rheumatology (Oxford). 2020;59(7):1495–1504. DOI:10.1093/rheumatology/kez408
  • Mease P, Helliwell P, Silwinska-Stanczyk P, et al. Efficacy and safety of brepocitinib (tyrosine kinase 2/janus kinase 1 inhibitor) for the treatment of active psoriatic arthritis: results from a phase 2b randomized controlled trial [abstract]. Arthr Rheumatol. 2021;73:1009–1011.
  • Mease PJ, Deodhar AA, van der Heijde D, et al. Efficacy and safety of selective TYK2 inhibitor, deucravacitinib, in a phase II trial in psoriatic arthritis. Ann Rheum Dis. 2022;81(6):815–822. DOI:10.1136/annrheumdis-2021-221664
  • ClinicalTrials.gov. Identifier: NCT04115748
  • ClinicalTrials.gov. Identifier: NCT04115839
  • https://www.gilead.com/news-and-press/press-room/press-releases/2020/12/gilead-and-galapagos-announce-new-commercialization-and-development-agreement-for-jyseleca-filgotinib
  • Zhao Y, Zhang L, Ding Y, et al. Efficacy and safety of SHR0302, a highly selective janus kinase 1 inhibitor, in patients with moderate to severe atopic dermatitis: a phase II randomized clinical trial. Am J Clin Dermatol. 2021;22(6):877–889. DOI:10.1007/s40257-021-00627-2
  • Chen B, Zhong J, Li X, et al. Efficacy and safety of ivarmacitinib in patients with moderate-to-severe, active, ulcerative colitis: a phase II study. Gastroenterology. 2022;163(6):1555–1568. DOI:10.1053/j.gastro.2022.08.007
  • Sen R, Caplan L. Current treatment and molecular targets for axial spondyloarthritis: evidence from randomized controlled trials. Curr Opin Pharmacol. 2022;67:102307.
  • Wu H, Yan S, Chen J, et al. JAK1-STAT3 blockade by JAK inhibitor SHR0302 attenuates inflammatory responses of adjuvant-induced arthritis rats and decreases Th17 and total B cells. Joint Bone Spine. 2016;83(5):525–532. DOI:10.1016/j.jbspin.2015.09.002
  • https://clinicaltrials.gov/ct2/show/NCT04957550
  • https://clinicaltrials.gov/ct2/show/NCT05153148
  • Chimenti MS, Triggianese P, De Martino E, et al. An update on pathogenesis of psoriatic arthritis and potential therapeutic targets. Expert Rev Clin Immunol. 2019;15(8):823–836. DOI:10.1080/1744666X.2019.1627876
  • Page KM, Suarez-Farinas M, Suprun M, et al. Molecular and cellular responses to the TYK2/JAK1 Inhibitor PF-06700841 reveal reduction of skin inflammation in plaque psoriasis. J Invest Dermatol. 2020;140(8):1546–55.e4. DOI:10.1016/j.jid.2019.11.027
  • Forman SB, Pariser DM, Poulin Y, et al. TYK2/JAK1 Inhibitor PF-06700841 in patients with plaque psoriasis: phase IIa, randomized, double-blind, placebo- controlled trial. J Invest Dermatol. 2020;140(12):2359–2370.e5. DOI:10.1016/j.jid.2020.03.962
  • Banfield C, Scaramozza M, Zhang W, et al. The safety, tolerability, pharmacokinetics, and pharmacodynamics of a TYK2/JAK1 Inhibitor (PF-06700841) in healthy subjects and patients with plaque psoriasis. J Clin Pharmacol. 2018;58(4):434–447. DOI:10.1002/jcph.1046
  • Burke JR, Cheng L, Gillooly KM, et al. Autoimmune pathways in mice and humans are blocked by pharmacological stabilization of the TYK2 pseudokinase domain. Sci Transl Med. 2019;11(502):eaaw1736. DOI:10.1126/scitranslmed.aaw1736
  • Velazquez L, Fellous M, Stark GR, et al. A protein tyrosine kinase in the interferon αβ signaling pathway. Cell. 1992;70(2):313–322. DOI:10.1016/0092-8674(92)90105-L
  • Karaghiosoff M, Steinborn R, Kovarik P, et al. Central role for type I interferons and Tyk2 in lipopolysaccharide-induced endotoxin shock. Nat Immunol. 2003;4(5):471–477. DOI:10.1038/ni910
  • Lé AM, Puig L, Torres T. Deucravacitinib for the Treatment of Psoriatic Disease. Am J Clin Dermatol. 2022;23(6):813–822.
  • Armstrong AW, Gooderham M, Warren RB, et al. Deucravacitinib versus placebo and apremilast in moderate to severe plaque psoriasis: efficacy and safety results from the 52-week, randomized, double-blinded, placebo-controlled phase 3 POETYK PSO-1 trial. J Am Acad Dermatol. 2023;88(1):29–39. DOI:10.1016/j.jaad.2022.07.002
  • Kavanaugh A, Coates L, Merola JF, et al. POS1039 DEUCRAVACITINIB, an ORAL, SELECTIVE TYROSINE KINASE 2 INHIBITOR, in a PHASE 2 TRIAL in PSORIATIC ARTHRITIS: aCHIEVEMENT of MINIMAL DISEASE ACTIVITY and ITS COMPONENTS FREE ann rheum dis. 2022;81(Suppl 1):835. DOI:10.1136/annrheumdis-2022-eular.1849.
  • Gossec L, Coates LC, Ogdie A, et al. AB0560 EFFECT of DEUCRAVACITINIB on the PSORIATIC ARTHRITIS IMPACT of DISEASE (PsAID) QUESTIONNAIRES 12 and 9: aNALYSIS of a PHASE 2 STUDY of ACTIVE PSORIATIC ARTHRITIS FREE. Ann Rheum Dis. 2021;80(Suppl 1):1316–1317. DOI:10.1136/annrheumdis-2021-eular.2709
  • Strand V, Mease PJ, Deodhar A,Y, et al. AB0886 the impact of deucravacitinib on health-related quality of life measured by the short form health survey 36-item questionnaire: analysis of a phase 2 trial in patients with active psoriatic arthritis. Ann Rheum Dis. 2022;81(Suppl 1):1567. DOI:10.1136/annrheumdis-2022-eular.1283
  • Mease PJ, Deodhar A, Van der Heijde D, et al. OP0227 efficacy of deucravacitinib, an oral, selective tyrosine kinase 2 inhibitor, in musculoskeletal manifestations of active psoriatic arthritis in a phase 2, randomized, double-blind, placebo-controlled trial. Ann Rheum Dis. 2022;80(Suppl 1):137–138. DOI:10.1136/annrheumdis-2021-eular.2653
  • Mease PJ, Deodhar A, Van der Heijde D, et al. Pos1048 safety and efficacy of deucravacitinib, an oral, selective tyrosine kinase 2 inhibitor, in patients with psoriatic arthritis: 52-week results from a randomised phase 2 trial free. Ann Rheum Dis. 2022;81(Suppl 1):842–843. DOI:10.1136/annrheumdis-2022-eular.2456
  • Deodhar A, Nowak M, Ye J, et al. AB0891 deucravacitinib efficacy in psoriatic arthritis by baseline DMARD Use: exploratory analysis from a phase 2 study. Ann Rheum Dis. 2022;81(Suppl 1):1571–1572. DOI:10.1136/annrheumdis-2022-eular.1391
  • Fitzgerald O, Gladman DD, Mease PJ, et al. Pos0005 baseline biomarkers predict better responses to deucravacitinib, an oral, selective tyrosine kinase 2 (tyk2) inhibitor, in a phase 2 trial in psoriatic arthritis free. Ann Rheum Dis. 2022;81(Suppl 1):215–216.
  • Tehlirian C, Singh RSP, Pradhan V, et al. Oral tyrosine kinase 2 inhibitor PF-06826647 demonstrates efficacy and an acceptable safety profile in participants with moderate-to-severe plaque psoriasis in a phase 2b, randomized, double-blind, placebo-controlled study. J Am Acad Dermatol. 2022;87(2):333–342. DOI:10.1016/j.jaad.2022.03.059
  • https://clinicaltrials.gov/ct2/show/NCT05600036
  • Caso F, Lubrano E, Del Puente A, et al. Progress in understanding and utilizing TNF-α inhibition for the treatment of psoriatic arthritis. Expert Rev Clin Immunol. 2016;12(3):315–331. DOI:10.1586/1744666X.2016.1117941
  • Conigliaro P, Chimenti MS, Ascolani M, et al. Impact of a multidisciplinary approach in enteropathic spondyloarthritis patients. Autoimmun Rev. 2016;15(2):184–190. DOI:10.1016/j.autrev.2015.11.002
  • Chimenti MS, Perricone C, Conigliaro P, et al. Tackling the autoimmune side in Spondyloarthritis: a systematic review. Autoimmun Rev. 2020;19(10):102648. DOI:10.1016/j.autrev.2020.102648
  • Costa L, Perricone C, Chimenti MS, et al. Switching between biological treatments in psoriatic arthritis: a review of the evidence. Drugs in R&D. 2017;17(4):509–522. DOI:10.1007/s40268-017-0215-7
  • Chiricozzi A, Faleri S, Saraceno R, et al. Tofacitinib for the treatment of moderate-to-severe psoriasis. Expert Rev Clin Immunol. 2015;11(4):443–455. DOI:10.1586/1744666X.2015.1013534
  • Akpabio A, Adebajo A. Evaluating upadacitinib for the treatment of psoriatic arthritis. Expert Opin Pharmacother. 2022;23(2):169–173.
  • Caso F, Del Puente A, Peluso R, et al. Emerging drugs for psoriatic arthritis. Expert Opin Emerg Drugs. 2016;21(1):69–79. DOI:10.1517/14728214.2016.1146679
  • Chiricozzi A, Saraceno R, Novelli L, et al. Small molecules and antibodies for the treatment of psoriasis: a patent review (2010–2015). Expert Opin Ther Pat. 2016;26(7):757–766. DOI:10.1080/13543776.2016.1192129
  • Mahore A, Kamboj P, Kaleem M, et al. Therapeutic management of arthritis: a review on structural and target-based approaches. Arch Pharm (Weinheim). 2022;355(11):e2200182. DOI:10.1002/ardp.202200182
  • Krueger JG, McInnes IB, Blauvelt A. Tyrosine kinase 2 and Janus kinase‒signal transducer and activator of transcription signaling and inhibition in plaque psoriasis. J Am Acad Dermatol. 2022;86(1):148–157.
  • Megna M, Balato A, Napolitano M, et al. Psoriatic disease treatment nowadays: unmet needs among the “jungle of biologic drugs and small molecules”. Clin Rheumatol. 2018;37(7):1739–1741. DOI:10.1007/s10067-018-4090-6
  • Harkins P, Burke E, Swales C, et al. Are Janus kinase inhibitors safe and effective in treating the key clinical domains of psoriatic arthritis? A systematic review and meta-analysis. Int J Rheum Dis. 2023;26(1):31–42. DOI:10.1111/1756-185X.14447

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.