304
Views
0
CrossRef citations to date
0
Altmetric
Review

Investigational drugs for the treatment of scleroderma: what’s new?

ORCID Icon, , , &
Pages 601-614 | Received 17 May 2023, Accepted 26 Jul 2023, Published online: 08 Aug 2023

References

  • Denton CP, Khanna D. Systemic sclerosis. Lancet. 2017;390(10103):1685–1699. doi: 10.1016/S0140-6736(17)30933-9
  • Pattanaik D, Brown M, Postlethwaite BC, et al. Pathogenesis of Systemic Sclerosis. Front Immunol. 2015 [cited 2021 May 13]; 6. doi: 10.3389/fimmu.2015.00272
  • Rubio-Rivas M, Royo C, Simeón CP, et al. Mortality and survival in systemic sclerosis: systematic review and meta-analysis. Semin Arthritis Rheum. 2014;44(2):208–219. doi: 10.1016/j.semarthrit.2014.05.010
  • Allanore Y, Simms R, Distler O, et al. Systemic sclerosis. Nat Rev Dis Primer. 2015;1(1):15002. doi: 10.1038/nrdp.2015.2
  • Hughes M, Pauling JD, Armstrong-James L, et al. Gender-related differences in systemic sclerosis. Autoimmun Rev. 2020;19(4):102494. doi: 10.1016/j.autrev.2020.102494
  • Moore DF, Steen VD. Racial disparities in systemic sclerosis. Rheumatol Dis Clin N Am. 2020;46(4):705–712. doi: 10.1016/j.rdc.2020.07.009
  • LeRoy EC, Black C, Fleischmajer R, et al. Scleroderma (systemic sclerosis): classification, subsets and pathogenesis. J Rheumatol. 1988;15:202–205.
  • Walker UA, Tyndall A, Czirjak L, et al. Clinical risk assessment of organ manifestations in systemic sclerosis: a report from the EULAR scleroderma trials and research group database. Ann Rheum Dis. 2007;66(6):754–763. doi: 10.1136/ard.2006.062901
  • Elhai M, Meune C, Boubaya M, et al. Mapping and predicting mortality from systemic sclerosis. Ann Rheum Dis. 2017;76(11):1897–1905. doi: 10.1136/annrheumdis-2017-211448
  • Campochiaro C, Hoffmann-Vold AM, Avouac J, et al. Sex influence on outcomes of patients with systemic sclerosis–associated interstitial lung disease: a EUSTAR database analysis. Rheumatology. 2023 July 5; 62(7):2483–2491. doi: 10.1093/rheumatology/keac660
  • Park EH, Strand V, Oh YJ, et al. Health-related quality of life in systemic sclerosis compared with other rheumatic diseases: a cross-sectional study. Arthritis Res Ther. 2019;21(1):61. doi: 10.1186/s13075-019-1842-x
  • Hudson M, Thombs BD, Steele R, et al. Quality of life in patients with systemic sclerosis compared to the general population and patients with other chronic conditions. J Rheumatol. 2009;36(4):768–772. doi: 10.3899/jrheum.080281
  • Johnson SR, Glaman DD, Schentag CT, et al. Quality of life and functional status in systemic sclerosis compared to other rheumatic diseases. J Rheumatol. 2006;33:1117–1122.
  • Sierakowska M, Doroszkiewicz H, Sierakowska J, et al. Factors associated with quality of life in systemic sclerosis: a cross-sectional study. Qual Life Res. 2019;28(12):3347–3354. doi: 10.1007/s11136-019-02284-9
  • Sierra-Sepúlveda A, Esquinca-González A, Benavides-Suárez SA, et al. Systemic sclerosis pathogenesis and emerging therapies, beyond the fibroblast. Biomed Res Int. 2019;2019:1–15. doi: 10.1155/2019/4569826
  • Truchetet ME, Brembilla NC, Chizzolini C. Current concepts on the pathogenesis of systemic sclerosis. Clin Rev Allergy Immunol. 2021 [[cited 2023 Mar 25];Available from];64(3):262–283. https://link.springer.com/10.1007/s12016-021-08889-8.
  • Rosendahl A, Schönborn K, Krieg T. Pathophysiology of systemic sclerosis (scleroderma). Kaohsiung J Med Sci. 2022;38(3):187–195. doi: 10.1002/kjm2.12505
  • Wohlfahrt T, Usherenko S, Englbrecht M, et al. Type 2 innate lymphoid cell counts are increased in patients with systemic sclerosis and correlate with the extent of fibrosis. Ann Rheum Dis. 2016;75(3):623–626. doi: 10.1136/annrheumdis-2015-207388
  • Truchetet ME, Brembilla NC, Montanari E, et al. Increased frequency of circulating Th22 in addition to Th17 and Th2 lymphocytes in systemic sclerosis: association with interstitial lung disease. Arthritis Res Ther. 2011;13(5):R166. doi: 10.1186/ar3486
  • Cavazzana I, Vojinovic T, Airo’ P, et al. Systemic sclerosis-specific antibodies: novel and classical biomarkers. Clin Rev Allergy Immunol. 2022;64(3):412–430. doi: 10.1007/s12016-022-08946-w
  • Matsushita T, Hasegawa M, Yanaba K, et al. Elevated serum BAFF levels in patients with systemic sclerosis: enhanced BAFF signaling in systemic sclerosis B lymphocytes. Arthritis Rheum. 2006;54(1):192–201. doi: 10.1002/art.21526
  • Bosello S, De Luca G, Tolusso B, et al. B cells in systemic sclerosis: A possible target for therapy. Autoimmun Rev. 2011;10(10):624–630. doi: 10.1016/j.autrev.2011.04.013
  • Kneissl S, Zhou Q, Schwenkert M, et al. CD19 and CD20 targeted vectors induce minimal activation of resting B lymphocytes. Plos One. 2013;8(11):e79047. doi: 10.1371/journal.pone.0079047
  • Romano E, Rosa I, Fioretto BS, et al. New insights into profibrotic myofibroblast formation in systemic sclerosis: when the vascular wall becomes the enemy. Life. 2021;11(7):610. doi: 10.3390/life11070610
  • Distler A, Lang V, Del Vecchio T, et al. Combined inhibition of morphogen pathways demonstrates additive antifibrotic effects and improved tolerability. Ann Rheum Dis. 2014;73(6):1264–1268. doi: 10.1136/annrheumdis-2013-204221
  • Muangchan C, Pope JE. Interleukin 6 in systemic sclerosis and potential implications for targeted therapy. J Rheumatol. 2012;39(6):1120–1124. doi: 10.3899/jrheum.111423
  • Wang W, Bhattacharyya S, Marangoni RG, et al. The JAK/STAT pathway is activated in systemic sclerosis and is effectively targeted by tofacitinib. J Scleroderma Relat Disord. 2020;5(1):40–50. doi: 10.1177/2397198319865367
  • O’Reilly S, Ciechomska M, Cant R, et al. Interleukin-6 (IL-6) trans signaling drives a STAT3-dependent pathway that leads to hyperactive transforming growth factor-β (TGF-β) signaling promoting SMAD3 activation and fibrosis via gremlin protein. J Biol Chem. 2014;289(14):9952–9960. doi: 10.1074/jbc.M113.545822
  • Gao Q, Liang X, Shaikh AS, et al. JAK/STAT Signal Transduction: Promising Attractive Targets for Immune, Inflammatory and Hematopoietic Diseases. Curr Drug Targets. 2018;19(5):487–500. doi: 10.2174/1389450117666161207163054
  • Paolini C, Agarbati S, Benfaremo D, et al. PDGF/PDGFR: a possible molecular target in scleroderma fibrosis. Int J Mol Sci. 2022;23:3904. doi: 10.3390/ijms23073904
  • Kowal-Bielecka O, Fransen J, Avouac J, et al. Update of EULAR recommendations for the treatment of systemic sclerosis. Ann Rheum Dis. 2017;76(8):1327–1339. doi: 10.1136/annrheumdis-2016-209909
  • Wollin L, Wex E, Pautsch A, et al. Mode of action of nintedanib in the treatment of idiopathic pulmonary fibrosis. Eur Respir J. 2015;45(5):1434–1445. doi: 10.1183/09031936.00174914
  • Distler O, Highland KB, Gahlemann M, et al. Nintedanib for systemic sclerosis-associated interstitial lung disease. N Engl J Med. 2019;380:2518–2528. DOI:10.1056/NEJMoa1903076
  • Highland KB, Distler O, Kuwana M, et al. Efficacy and safety of nintedanib in patients with systemic sclerosis-associated interstitial lung disease treated with mycophenolate: a subgroup analysis of the SENSCIS trial. Lancet Respir Med. 2021;9(1):96–106. doi: 10.1016/S2213-2600(20)30330-1
  • Volkmann ER, Kreuter M, Hoffmann-Vold AM, et al. Dyspnoea and cough in patients with systemic sclerosis–associated interstitial lung disease in the SENSCIS trial. Rheumatology. 2022;61(11):4397–4408. doi: 10.1093/rheumatology/keac091
  • Maher TM, Mayes MD, Kreuter M, et al. Effect of nintedanib on lung function in patients with systemic sclerosis−associated interstitial lung disease: further analyses of a randomized, double‐blind, placebo‐controlled trial. Arthritis & Rheumat. 2021;73(4):671–676. doi: 10.1002/art.41576
  • Khanna D, Lin CJF, Furst DE, et al. Tocilizumab in systemic sclerosis: a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Respir Med. 2020;8(10):963–974. doi: 10.1016/S2213-2600(20)30318-0
  • Roofeh D, Lin CJF, Goldin J, et al. Tocilizumab prevents progression of early systemic sclerosis–associated interstitial lung disease. Arthritis & Rheumat. 2021;73(7):1301–1310. doi: 10.1002/art.41668
  • Ebata S, Yoshizaki A, Oba K, et al. Safety and efficacy of rituximab in systemic sclerosis (DESIRES): a double-blind, investigator-initiated, randomised, placebo-controlled trial. Lancet Rheumatol. 2021;3(7):e489–97. doi: 10.1016/S2665-9913(21)00107-7
  • Ebata S, Yoshizaki A, Oba K, et al. Safety and efficacy of rituximab in systemic sclerosis (DESIRES): open-label extension of a double-blind, investigators-initiated, randomised, placebo-controlled trial. Lancet Rheumatol. 2022;4(8):e546–55. doi: 10.1016/S2665-9913(22)00131-X
  • Xing NS, Fan GZ, Yan F, et al. Safety and efficacy of rituximab in connective tissue disease-associated interstitial lung disease: A systematic review and meta-analysis. Int Immunopharmacol. 2021;95:107524. doi: 10.1016/j.intimp.2021.107524
  • Castelino FV, Bain G, Pace VA, et al. AN autotaxin/lysophosphatidic acid/interleukin-6 amplification loop drives scleroderma fibrosis: ATX/LPA/IL-6 AMPLIFICATION LOOP in SSc. Arthritis & rheumat. 2016;68(12):2964–2974. doi: 10.1002/art.39797
  • Zhang Y, Summa L, Heckmann B, et al. OP0242 EFFECTS of the AUTOTAXIN INHIBITOR ZIRITAXESTAT on SKIN and LUNG FIBROSIS in a MURINE GRAFT-VERSUS-HOST DISEASE MODEL of SYSTEMIC SCLEROSIS. Ann Rheum Dis. 2021;80(Suppl 1):148.1–149. doi: 10.1136/annrheumdis-2021-eular.1839
  • de Almeida AR, Dantas AT, Pereira MC, et al. Increased levels of the soluble oncostatin M receptor (sOSMR) and glycoprotein 130 (sgp130) in systemic sclerosis patients and associations with clinical parameters. Immunobiology. 2020;225:151964. doi: 10.1016/j.imbio.2020.151964
  • Denton CP, Del Galdo F, Khanna D, et al. Biological and clinical insights from a randomized phase 2 study of an anti-oncostatin M monoclonal antibody in systemic sclerosis. Rheumatology. 2022;62(1):234–242. doi: 10.1093/rheumatology/keac300
  • Allanore Y, Wung P, Soubrane C, et al. A randomised, double-blind, placebo-controlled, 24-week, phase II, proof-of-concept study of romilkimab (SAR156597) in early diffuse cutaneous systemic sclerosis. Ann Rheum Dis. 2020;79(12):1600–1607. doi: 10.1136/annrheumdis-2020-218447
  • Gasparini G, Cozzani E, Parodi A. Interleukin-4 and interleukin-13 as possible therapeutic targets in systemic sclerosis. Cytokine. 2020;125:154799. doi: 10.1016/j.cyto.2019.154799
  • Fuschiotti P. Role of IL-13 in systemic sclerosis. Cytokine. 2011;56(3):544–549. doi: 10.1016/j.cyto.2011.08.030
  • Herrick AL, Batta R, Overbeck K, et al. A phase 2 trial investigating the effects of the angiotensin II type 2 receptor agonist C21 in systemic sclerosis-related Raynaud’s. Rheumatology. 2023;62(2):824–828. doi: 10.1093/rheumatology/keac426
  • Kotyla P, Gumkowska-Sroka O, Wnuk B, et al. Jak inhibitors for treatment of autoimmune diseases: lessons from systemic sclerosis and systemic lupus erythematosus. Pharmaceuticals. 2022;15(8):936. doi: 10.3390/ph15080936
  • Zhang Y, Liang R, Chen CW, et al. JAK1-dependent transphosphorylation of JAK2 limits the antifibrotic effects of selective JAK2 inhibitors on long-term treatment. Ann Rheum Dis. 2017;76(8):1467–1475. doi: 10.1136/annrheumdis-2016-210911
  • Pedroza M, To S, Assassi S, et al. Role of STAT3 in skin fibrosis and transforming growth factor beta signalling. Rheumatology. 2018;57(10):1838–1850. doi: 10.1093/rheumatology/kex347
  • Getting SJ. Targeting melanocortin receptors as potential novel therapeutics. Pharmacol Ther. 2006;111(1):1–15. doi: 10.1016/j.pharmthera.2005.06.022
  • Brzoska T, Luger TA, Maaser C, et al. α-melanocyte-stimulating hormone and related tripeptides: biochemistry, antiinflammatory and protective effects in vitro and in vivo, and future perspectives for the treatment of immune-mediated inflammatory diseases. Endocr Rev. 2008;29:581–602. doi: 10.1210/er.2007-0027
  • Kondo M, Suzuki T, Kawano Y, et al. Dersimelagon, a novel oral melanocortin 1 receptor agonist, demonstrates disease-modifying effects in preclinical models of systemic sclerosis. Arthritis Res Ther. 2022;24(1):210. doi: 10.1186/s13075-022-02899-3
  • Xu W, Su L, Qing P, et al. Elevated levels of TL1A are associated with disease activity in patients with systemic sclerosis. Clin Rheumatol. 2017;36(6):1317–1324. doi: 10.1007/s10067-017-3612-y
  • Herro R, Miki H, Sethi GS, et al. TL1A promotes lung tissue fibrosis and airway remodeling. J Immunol. 2020;205:2414–2422. doi: 10.4049/jimmunol.2000665
  • Li H, Song J, Niu G, et al. TL1A blocking ameliorates intestinal fibrosis in the T cell transfer model of chronic colitis in mice. Pathol - Res Pract. 2018;214(2):217–227. doi: 10.1016/j.prp.2017.11.017
  • Kuzumi A, Yoshizaki A, Matsuda KM, et al. Interleukin-31 promotes fibrosis and T helper 2 polarization in systemic sclerosis. Nat Commun. 2021;12(1):5947. doi: 10.1038/s41467-021-26099-w
  • Shi K, Jiang J, Ma T, et al. Pathogenesis pathways of idiopathic pulmonary fibrosis in bleomycin-induced lung injury model in mice. Respir Physiol Neurobiol. 2014;190:113–117. doi: 10.1016/j.resp.2013.09.011
  • Yaseen B, Lopez H, Taki Z, et al. Interleukin-31 promotes pathogenic mechanisms underlying skin and lung fibrosis in scleroderma. Rheumatology. 2020;59(9):2625–2636. doi: 10.1093/rheumatology/keaa195
  • Liu T, Li S, Ying S, et al. The IL-23/IL-17 pathway in inflammatory skin diseases: from bench to bedside. Front Immunol. 2020;11:594735. doi: 10.3389/fimmu.2020.594735
  • Komura K, Fujimoto M, Hasegawa M, et al. Increased serum interleukin 23 in patients with systemic sclerosis. J Rheumatol. 2008;35:120–125. doi: 10.3899/jrheum.080120
  • Mease PJ, Rahman P, Gottlieb AB, et al. Guselkumab in biologic-naive patients with active psoriatic arthritis (DISCOVER-2): a double-blind, randomised, placebo-controlled phase 3 trial. Lancet. 2020;395(10230):1126–1136. doi: 10.1016/S0140-6736(20)30263-4
  • Gu Z, Yan Y, Yao H, et al. Targeting the LPA1 signaling pathway for fibrosis therapy: a patent review (2010-present). Expert Opin Ther Pat. 2022;32:1097–1122. doi: 10.1080/13543776.2022.2130753
  • Geraldo LHM, de S ST, Do AR, et al. Role of lysophosphatidic acid and its receptors in health and disease: novel therapeutic strategies. Signal Transduct Target Ther. 2021;6:45. doi: 10.1038/s41392-020-00367-5
  • Swaney J, Chapman C, Correa L, et al. A novel, orally active LPA 1 receptor antagonist inhibits lung fibrosis in the mouse bleomycin model. Br J Pharmacol. 2010;160(7):1699–1713. doi: 10.1111/j.1476-5381.2010.00828.x
  • Ledein L, Léger B, Dees C, et al. Translational engagement of lysophosphatidic acid receptor 1 in skin fibrosis: from dermal fibroblasts of patients with scleroderma to tight skin 1 mouse. Br J Pharmacol. 2020;177(18):4296–4309. doi: 10.1111/bph.15190
  • Higashioka K, Kikushige Y, Ayano M, et al. Generation of a novel CD30+ B cell subset producing GM-CSF and its possible link to the pathogenesis of systemic sclerosis. Clin Exp Immunol. 2020;201(3):233–243. doi: 10.1111/cei.13477
  • Zanin-Zhorov A, Weiss JM, Nyuydzefe MS, et al. Selective oral ROCK2 inhibitor down-regulates IL-21 and IL-17 secretion in human T cells via STAT3-dependent mechanism. Proc Natl Acad Sci. 2014;111(47):16814–16819. doi: 10.1073/pnas.1414189111
  • Knipe RS, Tager AM, Liao JK, et al. The rho kinases: critical mediators of multiple profibrotic processes and rational targets for new therapies for pulmonary fibrosis. Pharmacol Rev. 2015;67(1):103–117. doi: 10.1124/pr.114.009381
  • Nalkurthi C, Schroder WA, Melino M, et al. ROCK2 inhibition attenuates profibrogenic immune cell function to reverse thioacetamide-induced liver fibrosis. JHEP Rep. 2022;4(1):100386. doi: 10.1016/j.jhepr.2021.100386
  • Blair HA. Belumosudil: first approval. Drugs. 2021;81:1677–1682. doi: 10.1007/s40265-021-01593-z
  • Egerer K, Kuckelkorn U, Rudolph PE, et al. Circulating proteasomes are markers of cell damage and immunologic activity in autoimmune diseases. J Rheumatol. 2002;29:2045–2052.
  • Baker TA, Romero J, Gamelli RL, et al. Lung 26S and 20S proteasomes are increased in patients with end-stage idiopathic pulmonary fibrosis. J Am Coll Surg. 2011;213(3):S40–1. doi: 10.1016/j.jamcollsurg.2011.06.082
  • McCann MR, Monemdjou R, Ghassemi-Kakroodi P, et al. Mpges-1 null mice are resistant to bleomycin-induced skin fibrosis. Arthritis Res Ther. 2011;13(1):R6. doi: 10.1186/ar3226
  • Edenius C, Ekström G, Kolmert J, et al. SAT0315 INHIBITION of MICROSOMAL PROSTAGLANDIN E SYNTHASE-1 (MPGES-1) by GS-248 REDUCES PROSTAGLANDIN E2 BIOSYNTHESIS WHILE INCREASING PROSTACYCLIN in HUMAN SUBJECTS. Ann Rheum Dis. 2020;79(Suppl 1):1103.2–1103. doi: 10.1136/annrheumdis-2020-eular.5503
  • Ghofrani HA, Grimminger F. Soluble guanylate cyclase stimulation: an emerging option in pulmonary hypertension therapy. Eur Respir Rev. 2009;18(111):35–41. doi: 10.1183/09059180.00011112
  • Tobin JV, Zimmer DP, Shea C, et al. Pharmacological characterization of IW-1973, a novel soluble guanylate cyclase stimulator with extensive tissue distribution, antihypertensive, anti-inflammatory, and antifibrotic effects in preclinical models of disease. J Pharmacol Exp Ther. 2018;365(3):664–675. doi: 10.1124/jpet.117.247429
  • Khanna D, Allanore Y, Denton CP, et al. Riociguat in patients with early diffuse cutaneous systemic sclerosis (RISE-SSc): randomised, double-blind, placebo-controlled multicentre trial. Ann Rheum Dis. 2020;79(5):618–625. doi: 10.1136/annrheumdis-2019-216823
  • Susol E. Association of markers for TGFbeta3, TGFbeta2 and TIMP1 with systemic sclerosis. Rheumatology. 2000;39(12):1332–1336. doi: 10.1093/rheumatology/39.12.1332
  • Mouawad JE, Feghali-Bostwick C. The molecular mechanisms of systemic sclerosis-associated lung fibrosis. Int J Mol Sci. 2023;24(3):2963. doi: 10.3390/ijms24032963
  • Rice LM, Padilla CM, McLaughlin SR, et al. Fresolimumab treatment decreases biomarkers and improves clinical symptoms in systemic sclerosis patients. J Clin Invest. 2015;125(7):2795–2807. doi: 10.1172/JCI77958
  • Zhang Y, Edgley AJ, Cox AJ, et al. FT011, a new anti‐fibrotic drug, attenuates fibrosis and chronic heart failure in experimental diabetic cardiomyopathy. Eur J Heart Fail. 2012;14(5):549–562. doi: 10.1093/eurjhf/hfs011
  • Wei L, Abraham D, Ong V. The yin and yang of IL-17 in systemic sclerosis. Front Immunol. 2022;13:885609. doi: 10.3389/fimmu.2022.885609
  • Dufour AM, Borowczyk-Michalowska J, Alvarez M, et al. IL-17A dissociates inflammation from fibrogenesis in systemic sclerosis. J Invest Dermatol. 2020;140(1):103–112.e8. doi: 10.1016/j.jid.2019.05.026
  • Fukasawa T, Yoshizaki A, Kagebayashi H, et al. POS0857 PHARMACOKINETICS, SAFETY, and EFFICACY of SUBCUTANEOUS BRODALUMAB for SYSTEMIC SCLEROSIS with MODERATE-TO-SEVERE SKIN THICKENING: A SINGLE-ARM, OPEN-LABEL, MULTI-DOSE, PHASE 1 TRIAL. Ann Rheum Dis. 2022;81(Suppl 1):722.2–723. doi: 10.1136/annrheumdis-2022-eular.1196
  • Fukasawa T, Yoshizaki A, Kagebayashi H, et al. POS0881 EFFICACY and SAFETY of SUBCUTANEOUS BRODALUMAB, a FULLY HUMAN ANTI–IL-17RA MONOCLONAL ANTIBODY, for SYSTEMIC SCLEROSIS with MODERATE-TO-SEVERE SKIN THICKENING: A MULTICENTER, RANDOMIZED, PLACEBO-CONTROLLED, DOUBLE-BLIND PHASE 3 STUDY. Ann Rheum Dis. 2022;81(Suppl 1):736–736. doi: 10.1136/annrheumdis-2022-eular.2519
  • Ward E, Mittereder N, Kuta E, et al. A glycoengineered anti-CD19 antibody with potent antibody-dependent cellular cytotoxicity activity in vitro and lymphoma growth inhibition in vivo: MEDI-551, a Glycoengineered Anti-CD19 Antibody. Br J Haematol. 2011;155(4):426–437. doi: 10.1111/j.1365-2141.2011.08857.x
  • Yoshizaki A. B lymphocytes in systemic sclerosis: Abnormalities and therapeutic targets. J Dermatol. 2016;43(1):39–45. doi: 10.1111/1346-8138.13184
  • Schiopu E, Chatterjee S, Hsu V, et al. Safety and tolerability of an anti-CD19 monoclonal antibody, MEDI-551, in subjects with systemic sclerosis: a phase I, randomized, placebo-controlled, escalating single-dose study. Arthritis Res Ther. 2016;18(1):131. doi: 10.1186/s13075-016-1021-2
  • Ebata S, Yoshizaki-Ogawa A, Sato S, et al. New era in systemic sclerosis treatment: recently approved therapeutics. J Clin Med. 2022;11(15):4631. doi: 10.3390/jcm11154631
  • Spiera R, Hummers L, Chung L, et al. Safety and efficacy of lenabasum in a phase II, randomized, placebo‐controlled trial in adults with systemic sclerosis. Arthritis & Rheumat. 2020;72(8):1350–1360. doi: 10.1002/art.41294
  • Spiera R, Khanna D, Kuwana M, et al. A randomised, double-blind, placebo-controlled phase 3 study of lenabasum in diffuse cutaneous systemic sclerosis: RESOLVE-1 design and rationale. Clin Exp Rheumatol. 2021;39(131):124–133. doi: 10.55563/clinexprheumatol/i80zh7
  • Spiera R, Kuwana M, Khanna D, et al. Op0171 phase 3 trial of lenabasum, a cb2 agonist, for the treatment of diffuse cutaneous systemic sclerosis (dcssc). Ann Rheum Dis. 2021;80(Suppl 1):102–103. doi: 10.1136/annrheumdis-2021-eular.1795
  • Campochiaro C, Allanore Y. An update on targeted therapies in systemic sclerosis based on a systematic review from the last 3 years. Arthritis Res Ther. 2021;23(1):155. doi: 10.1186/s13075-021-02536-5
  • Rein P, Mueller RB. Treatment with biologicals in rheumatoid arthritis: an overview. Rheumatol Ther. 2017;4(2):247–261. doi: 10.1007/s40744-017-0073-3
  • Ralli M, Campo F, Angeletti D, et al. Pathophysiology and therapy of systemic vasculitides. Excli J. 2020;19:817–854. doi: 10.17179/excli2020-1512
  • Murphy G, Isenberg DA. Biologic therapies for systemic lupus erythematosus: where are we now? Curr Opin Rheumatol. 2020;32(6):597–608. doi: 10.1097/BOR.0000000000000736
  • Humbert M, Kovacs G, Hoeper MM, et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Respir J. 2023;61:2200879. doi: 10.1183/13993003.00879-2022
  • Khanna D, Spino C, Bernstein E, et al. SLS III Investigators O.Combination therapy of mycophenolate mofetil and pirfenidone vs. mycophenolate alone: results from scleroderma lung Study III (abstract). Arthritis Rheumatol. 2022;74(S9); 0520.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.