3,683
Views
0
CrossRef citations to date
0
Altmetric
Review

Current status and future expectations of nanobodies in oncology trials

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 705-721 | Received 05 Jun 2023, Accepted 16 Aug 2023, Published online: 28 Aug 2023

References

  • Medina KL. Overview of the immune system. Handb Clin Neurol. 2016;133:61–76.
  • Hassanzadeh-Ghassabeh G, Devoogdt N, De Pauw P, et al. Nanobodies and their potential applications. Nanomedicine. 2013;8(6):1013–1026. doi: 10.2217/nnm.13.86
  • Zahavi D, Weiner L. Monoclonal antibodies in cancer therapy. Antibodies (BaseI). 2020;9(3):34. doi: 10.3390/antib9030034
  • Silva APS, Coelho PV, Anazetti M, et al. Targeted therapies for the treatment of non-small-cell lung cancer: monoclonal antibodies and biological inhibitors. Hum Vaccin Immunother. 2017;13(4):843–853. doi: 10.1080/21645515.2016.1249551
  • Berger M, Shankar V, Vafai A. Therapeutic applications of monoclonal antibodies. Am J Med Sci. 2002;324(1):14–30. doi: 10.1097/00000441-200207000-00004
  • Chiu ML, Goulet DR, Teplyakov A, et al. Antibody structure and function: the basis for engineering therapeutics. Antibodies (BaseI). 2019;8(4):55. doi: 10.3390/antib8040055
  • Gill DS, Damle NK. Biopharmaceutical drug discovery using novel protein scaffolds. Curr Opin Biotechnol. 2006;17(6):653–658. doi: 10.1016/j.copbio.2006.10.003
  • Bannas P, Hambach J, Koch-Nolte F. Nanobodies and nanobody-based human heavy chain antibodies as antitumor therapeutics. Front Immunol. 2017;8:1603. doi: 10.3389/fimmu.2017.01603
  • Hamers-Casterman C, Atarhouch T, Muyldermans S, et al. Naturally occurring antibodies devoid of light chains. Nature. 1993;363(6428):446–448. doi: 10.1038/363446a0
  • Barakat S, Berksöz M, Zahedimaram P, et al. Nanobodies as molecular imaging probes. Free Radic Biol Med. 2022;182:260–275. doi: 10.1016/j.freeradbiomed.2022.02.031
  • Zavrtanik U, Lukan J, Loris R, et al. Structural basis of epitope recognition by heavy-chain camelid antibodies. J Mol Biol. 2018;430(21):4369–4386. doi: 10.1016/j.jmb.2018.09.002
  • Salvador J-P, Vilaplana L, Marco M-P. Nanobody: outstanding features for diagnostic and therapeutic applications. Anal Bioanal Chem. 2019;411(9):1703–1713. doi: 10.1007/s00216-019-01633-4
  • Arbabi Ghahroudi M, Desmyter A, Wyns L, et al. Selection and identification of single domain antibody fragments from camel heavy-chain antibodies. FEBS Lett. 1997;414(3):521–526. doi: 10.1016/S0014-5793(97)01062-4
  • Dumoulin M, Conrath K, Van Meirhaeghe A, et al. Single-domain antibody fragments with high conformational stability. Protein Sci. 2002;11(3):500–515. doi: 10.1110/ps.34602
  • Ackaert C, Smiejkowska N, Xavier C, et al. Immunogenicity risk profile of nanobodies. Front Immunol. 2021;12:632687. doi: 10.3389/fimmu.2021.632687
  • Sulea T. Humanization of camelid single-domain antibodies. Methods Mol Biol. 2022;2446:299–312.
  • Bao G, Tang M, Zhao J, et al. Nanobody: a promising toolkit for molecular imaging and disease therapy. EJNMMI Res. 2021;11(1):6. doi: 10.1186/s13550-021-00750-5
  • Xenaki KT, Dorresteijn B, Muns JA, et al. Homogeneous tumor targeting with a single dose of HER2-targeted albumin-binding domain-fused nanobody-drug conjugates results in long-lasting tumor remission in mice. Theranostics. 2021;11(11):5525–5538. doi: 10.7150/thno.57510
  • Cerci JJ, Tabacchi E, Bogoni M, et al. Comparison of CT and PET/CT for biopsy guidance in oncological patients. Eur J Nucl Med Mol Imaging. 2017;44(8):1269–1274. doi: 10.1007/s00259-017-3658-8
  • Rowe SP, Pomper MG. Molecular imaging in oncology: current impact and future directions. CA Cancer J Clin. 2022;72(4):333–352. doi: 10.3322/caac.21713
  • Berland L, Kim L, Abousaway O, et al. Nanobodies for medical imaging: about ready for prime time? Biomolecules. 2021;11(5):637. doi: 10.3390/biom11050637
  • Liu M, Li L, Jin D, et al. Nanobody—A versatile tool for cancer diagnosis and therapeutics. WIREs Nanomed Nanobiotechnol. 2021;13(4):e1697. doi: 10.1002/wnan.1697
  • Vaneycken I, D’huyvetter M, Hernot S, et al. Immuno-imaging using nanobodies. Curr Opin Biotechnol. 2011;22(6):877–881. doi: 10.1016/j.copbio.2011.06.009
  • Iqbal N, Iqbal N. Human epidermal growth factor receptor 2 (HER2) in cancers: overexpression and therapeutic implications. Mol Biol Int. 2014;2014:852748. doi: 10.1155/2014/852748
  • Pernas S, Tolaney SM. Clinical trial data and emerging strategies: HER2-positive breast cancer. Breast Cancer Res Treat. 2022;193(2):281–291. doi: 10.1007/s10549-022-06575-7
  • Keyaerts M, Xavier C, Heemskerk J, et al. Phase I study of 68Ga-HER2-nanobody for PET/CT assessment of HER2 expression in breast carcinoma. J Nucl Med. 2016;57(1):27–33. doi: 10.2967/jnumed.115.162024
  • Altunay B, Goedicke A, Winz OH, et al. 99mTc‑labeled single-domain antibody for SPECT/CT assessment of HER2 expression in diverse cancer types. Eur J Nucl Med Mol Imaging. 2023;50(4):1005–1013. doi: 10.1007/s00259-022-06066-3
  • Li L, Liu T, Shi L, et al. HER2-targeted dual radiotracer approach with clinical potential for noninvasive imaging of trastuzumab-resistance caused by epitope masking. Theranostics. 2022;12(12):5551–5563. doi: 10.7150/thno.74154
  • Qin X, Guo X, Liu T, et al. High in-vivo stability in preclinical and first-in-human experiments with [18F]AlF-RESCA-MIRC213: a 18F-labeled nanobody as PET radiotracer for diagnosis of HER2-positive cancers. Eur J Nucl Med Mol Imaging. 2023;50(2):302–313. doi: 10.1007/s00259-022-05967-7
  • Kyuno D, Takasawa A, Takasawa K, et al. Claudin-18.2 as a therapeutic target in cancers: cumulative findings from basic research and clinical trials. Tissue Barr. 2022;10(1):1967080. doi: 10.1080/21688370.2021.1967080
  • Velcheti V, Schalper K. Basic overview of current immunotherapy approaches in cancer. Am Soc Clin Oncol Educ Book. 2016;35(36):298–308. doi: 10.1200/EDBK_156572
  • Arnouk S, De Groof TWM, Van Ginderachter JA. Imaging and therapeutic targeting of the tumor immune microenvironment with biologics. Adv Drug Deliv Rev. 2022;184:114239. doi: 10.1016/j.addr.2022.114239
  • Wang X, Teng F, Kong L, et al. PD-L1 expression in human cancers and its association with clinical outcomes. Onco Targets Ther. 2016;9:5023–5039. doi: 10.2147/OTT.S105862
  • Munari E, Zamboni G, Marconi M, et al. PD-L1 expression heterogeneity in non-small cell lung cancer: evaluation of small biopsies reliability. Oncotarget. 2017;8(52):90123–90131. doi: 10.18632/oncotarget.21485
  • Broos K, Lecocq Q, Raes G, et al. Noninvasive imaging of the PD-1: PD-L1 immune checkpoint: embracing nuclear medicine for the benefit of personalized immunotherapy. Theranostics. 2018;8(13):3559–3570. doi: 10.7150/thno.24762
  • Xing Y, Chand G, Liu C, et al. Early phase I study of a 99m Tc-labeled anti–Programmed death ligand-1 (PD-L1) single-domain antibody in SPECT/CT assessment of PD-L1 expression in non–small cell lung cancer. J Nucl Med. 2019;60(9):1213–1220. doi: 10.2967/jnumed.118.224170
  • Hughes D, Chand G, Meszaros L, et al. SPECT/CT using [99mTc]-labeled anti-programmed death-ligand 1 (PD-L1) single-domain antibody (NM-01) to predict response to immune checkpoint inhibition in non-small cell lung cancer: preliminary results from the PD-L1 expression in cancer (PECan) study. J Nucl Med. 2022;63:2594–2594.
  • Yang Y, Wang C, Wang Y, et al. Dose escalation biodistribution, positron emission tomography/computed tomography imaging and dosimetry of a highly specific radionuclide-labeled non-blocking nanobody. EJNMMI Res. 2021;11(1):113. doi: 10.1186/s13550-021-00854-y
  • Li D, Cheng S, Zou S, et al. Immuno-PET imaging of 89 Zr labeled anti-PD-L1 domain antibody. Mol Pharm. 2018;15(4):1674–1681. doi: 10.1021/acs.molpharmaceut.8b00062
  • Raskov H, Orhan A, Christensen JP, et al. Cytotoxic CD8+ T cells in cancer and cancer immunotherapy. Br J Cancer. 2021;124(2):359–367. doi: 10.1038/s41416-020-01048-4
  • Kist de Ruijter L, van de Donk PP, Hooiveld-Noeken JS, et al. Whole-body CD8+ T cell visualization before and during cancer immunotherapy: a phase 1/2 trial. Nat Med. 2022;28(12):2601–2610. doi: 10.1038/s41591-022-02084-8
  • Wang Y, Wang C, Huang M, et al. Pilot study of a novel nanobody 68 Ga-NODAGA-SNA006 for instant PET imaging of CD8+ T cells. Eur J Nucl Med Mol Imaging. 2022;49(13):4394–4405. doi: 10.1007/s00259-022-05903-9
  • Li X, Wang R, Zhang Y, et al. Molecular imaging of tumor-associated macrophages in cancer immunotherapy. Ther Adv Med Oncol. 2022;14:175883592210761. doi: 10.1177/17588359221076194
  • Hourani T, Holden JA, Li W, et al. Tumor associated macrophages: origin, recruitment, phenotypic diversity, and targeting. Front Oncol. 2021;11:788365. doi: 10.3389/fonc.2021.788365
  • Xavier C, Blykers A, Laoui D, et al. Clinical translation of [68Ga]Ga-NOTA-anti-MMR-sdAb for PET/CT imaging of protumorigenic macrophages. Mol Imaging Biol. 2019;21(5):898–906. doi: 10.1007/s11307-018-01302-5
  • Blykers A, Schoonooghe S, Xavier C, et al. PET imaging of macrophage mannose receptor–expressing macrophages in tumor Stroma using 18F-radiolabeled camelid single-domain antibody fragments. J Nucl Med. 2015;56(8):1265–1271. doi: 10.2967/jnumed.115.156828
  • Gondry O, Xavier C, Raes L, et al. Phase I study of [68 Ga]Ga-anti-CD206-sdAb for PET/CT assessment of protumorigenic macrophage presence in solid tumors (MMR phase I). J Nucl Med. 2023;In press:jnumed.122.264853.
  • Fang T, Duarte JN, Ling J, et al. Structurally defined αMHC-II nanobody-drug conjugates: a therapeutic and imaging System for B-Cell lymphoma. Angew Chem Int Ed Engl. 2016;55(7):2416–2420. doi: 10.1002/anie.201509432
  • Chanier T, Chames P. Nanobody engineering: toward Next generation immunotherapies and immunoimaging of cancer. Antibodies (BaseI). 2019;8(1):13. doi: 10.3390/antib8010013
  • Jailkhani N, Ingram JR, Rashidian M, et al. Noninvasive imaging of tumor progression, metastasis, and fibrosis using a nanobody targeting the extracellular matrix. Proc Natl Acad Sci, USA. 2019;116(28):14181–14190. doi: 10.1073/pnas.1817442116
  • Keller L, Bery N, Tardy C, et al. Selection and characterization of a nanobody biosensor of GTP-Bound RHO activities. Antibodies (BaseI). 2019;8(1):8. doi: 10.3390/antib8010008
  • Buchfellner A, Yurlova L, Nüske S, et al. A New nanobody-based biosensor to study endogenous PARP1 in vitro and in Live human cells. PLoS One. 2016;11(3):e0151041. doi: 10.1371/journal.pone.0151041
  • Lwin TM, Hoffman RM, Bouvet M. Unique benefits of tumor-specific nanobodies for fluorescence guided surgery. Biomolecules. 2021;11(2):311. doi: 10.3390/biom11020311
  • Hernot S, van Manen L, Debie P, et al. Latest developments in molecular tracers for fluorescence image-guided cancer surgery. Lancet Oncol. 2019;20(7):e354–e367. doi: 10.1016/S1470-2045(19)30317-1
  • van Leeuwen FWB, Schottelius M, Brouwer OR, et al. Trending: radioactive and fluorescent bimodal/hybrid tracers as multiplexing solutions for surgical guidance. J Nucl Med. 2020;61(1):13–19. doi: 10.2967/jnumed.119.228684
  • Debie P, Devoogdt N, Hernot S. Targeted nanobody-based molecular tracers for nuclear imaging and image-guided surgery. Antibodies (BaseI). 2019;8(1):12. doi: 10.3390/antib8010012
  • Schumacher D, Helma J, Schneider AFL, et al. Nanobodies: chemical functionalization strategies and intracellular applications. Angew Chem Int Ed Engl. 2018;57(9):2314–2333. doi: 10.1002/anie.201708459
  • Massa S, Xavier C, Muyldermans S, et al. Emerging site-specific bioconjugation strategies for radioimmunotracer development. Expert Opin Drug Deliv. 2016;13(8):1149–1163. doi: 10.1080/17425247.2016.1178235
  • Yang EY, Shah K. Nanobodies: next generation of cancer diagnostics and therapeutics. Front Oncol. 2020;10:1182. doi: 10.3389/fonc.2020.01182
  • Steeland S, Vandenbroucke RE, Libert C. Nanobodies as therapeutics: big opportunities for small antibodies. Drug Discov Today. 2016;21(7):1076–1113. doi: 10.1016/j.drudis.2016.04.003
  • Jovčevska I, Muyldermans S. The therapeutic potential of nanobodies. BioDrugs. 2020;34(1):11–26. doi: 10.1007/s40259-019-00392-z
  • Awad RM, Meeus F, Ceuppens H, et al. Emerging applications of nanobodies in cancer therapy. Int Rev Cell Mol Biol. 2022;369:143–199.
  • Scully M, Cataland SR, Peyvandi F, et al. Caplacizumab treatment for acquired thrombotic thrombocytopenic purpura. N Engl J Med. 2019;380(4):335–346. doi: 10.1056/NEJMoa1806311
  • van de Donk N, Delforge M, Agha M, et al. B07: safety and efficacy of ciltacabtagene autoleucel, a chimeric antigen receptor T-cell therapy directed against B-cell maturation antigen in patients with multiple myeloma and early relapse after initial therapy: CARTITUDE-2 results. Hemasphere. 2022;6:9–10. doi: 10.1097/01.HS9.0000829568.10814.bc
  • Cohen YC, Cohen AD, Delforge M, et al. Efficacy and safety of Ciltacabtagene autoleucel (Cilta-cel), a B-Cell maturation antigen (BCMA)-directed chimeric antigen receptor (CAR) T-Cell therapy, in lenalidomide-refractory patients with progressive multiple myeloma after 1-3 prior lines of therapy: updated results from CARTITUDE-2. Blood. 2021;138:3866.
  • Agha ME, van de Donk NW, Cohen AD, et al. S185: CARTITUDE-2 COHORT B: updated clinical data and biological correlative analyses of ciltacabtagene autoleucel in patients with multiple myeloma and early relapse after initial therapy. Hemasphere. 2022;6:86–87. doi: 10.1097/01.HS9.0000843632.57974.e8
  • Einsele H, Cohen A, Delforge M, et al. P08: CARTITUDE-2 UPDATE: ciltacabtagene autoleucel, a B-Cell maturation antigen – directed chimeric antigen receptor T-Cell therapy, in lenalidomide-refractory patients with progressive multiple myeloma after 1-3 prior lines of therapy. Hemasphere. 2022;6:15–15. doi: 10.1097/01.HS9.0000829604.35383.e8
  • Li J, Deng Y, Zhang W, et al. Subcutaneous envafolimab monotherapy in patients with advanced defective mismatch repair/microsatellite instability high solid tumors. J Hematol Oncol. 2021;14(1):95. doi: 10.1186/s13045-021-01095-1
  • Keam SJ. Ozoralizumab: first approval. Drugs. 2023;83(1):87–92. doi: 10.1007/s40265-022-01821-0
  • Shi Y, Riese DJ, Shen J. The role of the CXCL12/CXCR4/CXCR7 chemokine Axis in cancer. Front Pharmacol. 2020;11:574667. doi: 10.3389/fphar.2020.574667
  • Chatterjee S, Behnam Azad B, Nimmagadda S. The intricate role of CXCR4 in cancer. Adv Cancer Res. 2014;124:31–82.
  • Hutchings CJ, Koglin M, Marshall FH. Therapeutic antibodies directed at G protein-coupled receptors. MAbs. 2010;2(6):594–606. doi: 10.4161/mabs.2.6.13420
  • Sun S-Y. Understanding the role of the death receptor 5/FADD/caspase-8 death signaling in cancer metastasis. Mol Cell Pharmacol. 2011;3(1):31–34.
  • Yuan X, Gajan A, Chu Q, et al. Developing TRAIL/TRAIL death receptor-based cancer therapies. Cancer Metastasis Rev. 2018;37(4):733–748. doi: 10.1007/s10555-018-9728-y
  • Papadopoulos KP, Isaacs R, Bilic S, et al. Unexpected hepatotoxicity in a phase I study of TAS266, a novel tetravalent agonistic nanobody® targeting the DR5 receptor. Cancer Chemother Pharmacol. 2015;75(5):887–895. doi: 10.1007/s00280-015-2712-0
  • Wang X, Zhang C-S, Dong X-Y, et al. Claudin 18.2 is a potential therapeutic target for zolbetuximab in pancreatic ductal adenocarcinoma. World J Gastrointest Oncol. 2022;14(7):1252–1264. doi: 10.4251/wjgo.v14.i7.1252
  • Cao W, Xing H, Li Y, et al. Claudin18.2 is a novel molecular biomarker for tumor-targeted immunotherapy. Biomark Res. 2022;10(1):38. doi: 10.1186/s40364-022-00385-1
  • Singh P, Toom S, Huang Y. Anti-claudin 18.2 antibody as new targeted therapy for advanced gastric cancer. J Hematol Oncol. 2017;10(1):105. doi: 10.1186/s13045-017-0473-4
  • Fang Y, Yao G, Zhong W, et al. Abstract 2857: DR30303, a SMART-VHHBody powered anti-CLDN18.2 VHH-Fc with enhanced ADCC activity for the treatment of gastric and pancreatic cancers. Cancer Res. 2022;82(12_Supplement):2857. doi: 10.1158/1538-7445.AM2022-2857
  • Rahma OE, Hodi FS. The intersection between tumor angiogenesis and immune suppression. Clin Cancer Res. 2019;25(18):5449–5457. doi: 10.1158/1078-0432.CCR-18-1543
  • Isambert N, Elez E, Zanetta S, et al. A phase I, open-label dose-escalation trial of weekly (qw) BI 836880, a vascular endothelial growth factor (Vegf)/angiopoietin-2 (Ang-2)-blocking nanobody, in patients (pts) with advanced/metastatic solid tumors. J Clin Oncol. 2018;36(15_suppl):e24013. doi: 10.1200/JCO.2018.36.15_suppl.e24013
  • Le Tourneau C, Claus R, Ricci F, et al. First-in-human phase I trial of BI 836880, a vascular endothelial growth factor (Vegf)/angiopoietin-2 (Ang-2)-blocking nanobody, given every 3 weeks (q3w) in patients (pts) with advanced/metastatic solid tumors. J Clin Oncol. 2018;36(15_suppl):12024–12024. doi: 10.1200/JCO.2018.36.15_suppl.12024
  • Yamamoto N, Koyama T, Shimizu T, et al. Phase I study of the VEGF/Ang-2 inhibitor BI 836880 alone or combined with the anti-programmed cell death protein-1 antibody Ezabenlimab in Japanese patients with advanced solid tumors. Cancer Chemother Pharmacol. 2023;91(6):469–480. doi: 10.1007/s00280-023-04527-6
  • Shimizu T, Nakajima TE, Yamamoto N, et al. Phase I study of Envafolimab (KN035), a novel subcutaneous single-domain anti-PD-L1 monoclonal antibody, in Japanese patients with advanced solid tumors. Invest New Drugs. 2022;40(5):1021–1031. doi: 10.1007/s10637-022-01287-7
  • Zhang F, Wei H, Wang X, et al. Structural basis of a novel PD-L1 nanobody for immune checkpoint blockade. Cell Discov. 2017;3(1):17004. doi: 10.1038/celldisc.2017.4
  • Papadopoulos KP, Harb W, Peer CJ, et al. First-in-human phase I study of Envafolimab, a novel subcutaneous single-domain anti-PD-L1 antibody, in patients with advanced solid tumors. Oncology. 2021;26(9):e1514–e1525. doi: 10.1002/onco.13817
  • Markham A. Envafolimab: first approval. Drugs. 2022;82(2):235–240. doi: 10.1007/s40265-022-01671-w
  • Lin B, Du H, Fan J, et al. Radioimmunotherapy combined with low-intensity ultrasound and microbubbles: a potential novel strategy for treatment of solid tumors. Front Oncol. 2021;11:750741. doi: 10.3389/fonc.2021.750741
  • Fu Z, Li S, Han S, et al. Antibody drug conjugate: the “biological missile” for targeted cancer therapy. Signal Transduct Target Ther. 2022;7(1):93. doi: 10.1038/s41392-022-00947-7
  • D’Huyvetter M, De Vos J, Xavier C, et al. 131I-labeled anti-HER2 camelid sdAb as a theranostic tool in cancer treatment. Clin Cancer Research. 2017;23(21):6616–6628. doi: 10.1158/1078-0432.CCR-17-0310
  • D’Huyvetter M, De Vos J, Caveliers V, et al. Phase I trial of 131 I-GMIB-Anti-HER2-VHH1, a New promising candidate for HER2-targeted radionuclide therapy in breast cancer patients. J Nucl Med. 2021;62(8):1097–1105. doi: 10.2967/jnumed.120.255679
  • Tian B, Wong WY, Hegmann E, et al. Production and characterization of a camelid single domain antibody–urease enzyme conjugate for the treatment of cancer. Bioconjug Chem. 2015;26(6):1144–1155. doi: 10.1021/acs.bioconjchem.5b00237
  • Blumenthal RD, Leon E, Hansen HJ, et al. Expression patterns of CEACAM5 and CEACAM6 in primary and metastatic cancers. BMC Cancer. 2007;7(1):2. doi: 10.1186/1471-2407-7-2
  • Ramlau R, Kowalski D, Szczylik C, et al. P2.06-006 phase I/II dose escalation study of L-DOS47 as a monotherapy in non-squamous non-small cell lung cancer patients. J Thorac Oncol. 2017;12(1):S1071–S1072. doi: 10.1016/j.jtho.2016.11.1499
  • Piha-Paul S, Simon G, Belani CP, et al. A phase 1, open-label, dose-escalation study of L-DOS47 in combination with pemetrexed plus carboplatin in patients with stage iv recurrent or metastatic nonsquamous NSCLC. JTO Clin Res Rep. 2022;3(11):100408. doi: 10.1016/j.jtocrr.2022.100408
  • Goebeler M-E, Bargou RC. T cell-engaging therapies — BiTEs and beyond. Nat Rev Clin Oncol. 2020;17(7):418–434. doi: 10.1038/s41571-020-0347-5
  • Kantarjian H, Stein A, Gökbuget N, et al. Blinatumomab versus chemotherapy for advanced Acute lymphoblastic leukemia. N Engl J Med. 2017;376(9):836–847. doi: 10.1056/NEJMoa1609783
  • Hanssens H, Meeus F, De Veirman K, et al. The antigen‐binding moiety in the driver’s seat of CARs. Med Res Rev. 2022;42(1):306–342. doi: 10.1002/med.21818
  • Cilta-cel OK’d for Multiple Myeloma. Cancer Discov. 2022;12(5):1176. doi: 10.1158/2159-8290.CD-NB2022-0019
  • Lameris R, Shahine A, Pellicci DG, et al. A single-domain bispecific antibody targeting CD1d and the NKT T-cell receptor induces a potent antitumor response. Nat Cancer. 2020;1(11):1054–1065. doi: 10.1038/s43018-020-00111-6
  • Kater AP, Van De Donk NWCJ, Rodríguez-Otero P, et al. LAVA-051, a novel bispecific gamma-Delta T-Cell engager (Gammabody), in Relapsed/refractory MM and CLL: pharmacodynamic and early clinical data. Blood. 2022;140(Supplement 1):4608–4609. doi: 10.1182/blood-2022-166851
  • Mehra N, Robbrecht D, Voortman J, et al. Early dose escalation of LAVA-1207, a novel bispecific gamma-delta T-cell engager (Gammabody), in patients with metastatic castration-resistant prostate cancer (mCRPC). J Clin Oncol. 2023;41(6_suppl):153–153. doi: 10.1200/JCO.2023.41.6_suppl.153
  • Shimizu Y, Suzuki T, Yoshikawa T, et al. Next-generation cancer immunotherapy targeting glypican-3. Front Oncol. 2019;9:248. doi: 10.3389/fonc.2019.00248
  • Chekol Abebe E, Yibeltal Shiferaw M, Tadele Admasu F, et al. Ciltacabtagene autoleucel: the second anti-BCMA CAR T-cell therapeutic armamentarium of relapsed or refractory multiple myeloma. Front Immunol. 2022;13:991092. doi: 10.3389/fimmu.2022.991092
  • Zhao W-H, Wang B-Y, Chen L-J, et al. Four-year follow-up of LCAR-B38M in relapsed or refractory multiple myeloma: a phase 1, single-arm, open-label, multicenter study in China (LEGEND-2). J Hematol Oncol. 2022;15(1):86. doi: 10.1186/s13045-022-01301-8
  • Martin T, Usmani SZ, Berdeja JG, et al. Updated results from CARTITUDE-1: phase 1b/2Study of Ciltacabtagene autoleucel, a B-Cell maturation antigen-directed chimeric antigen receptor T cell therapy, in patients with Relapsed/refractory multiple myeloma. Blood. 2021;138(Supplement 1):549–549. doi: 10.1182/blood-2021-146060
  • Berdeja JG, Madduri D, Usmani SZ, et al. Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): a phase 1b/2 open-label study. Lancet. 2021;398(10297):314–324. doi: 10.1016/S0140-6736(21)00933-8
  • Ding J, Guyette S, Schrand B, et al. Mesothelin-targeting T cells bearing a novel T cell receptor fusion construct (TRuC) exhibit potent antitumor efficacy against solid tumors. Oncoimmunology. 2023;12(1):2182058. doi: 10.1080/2162402X.2023.2182058
  • Pastan I, Hassan R. Discovery of mesothelin and exploiting it as a target for immunotherapy. Cancer Res. 2014;74(11):2907–2912. doi: 10.1158/0008-5472.CAN-14-0337
  • Fan J, Zhuang X, Yang X, et al. A multivalent biparatopic EGFR-targeting nanobody drug conjugate displays potent anticancer activity in solid tumor models. Signal Transduct Target Ther. 2021;6(1):320. doi: 10.1038/s41392-021-00666-5
  • Bolli E, Scherger M, Arnouk SM, et al. Targeted repolarization of tumor‐associated macrophages via imidazoquinoline‐linked nanobodies. Adv Sci. 2021;8(10):2004574. doi: 10.1002/advs.202004574
  • van Straten D, Mashayekhi V, de Bruijn H, et al. Oncologic photodynamic therapy: basic principles, Current clinical status and future directions. Cancers (Basel). 2017;9(12):19. doi: 10.3390/cancers9020019
  • De Groof TWM, Mashayekhi V, Fan TS, et al. Nanobody-targeted photodynamic therapy selectively kills viral GPCR-Expressing glioblastoma cells. Mol Pharm. 2019;16(7):3145–3156. doi: 10.1021/acs.molpharmaceut.9b00360
  • Heukers R, Mashayekhi V, Ramirez-Escudero M, et al. VHH-photosensitizer conjugates for targeted photodynamic therapy of Met-overexpressing tumor cells. Antibodies (BaseI). 2019;8(2):26. doi: 10.3390/antib8020026
  • Deken MM, Kijanka MM, Beltrán Hernández I, et al. Nanobody-targeted photodynamic therapy induces significant tumor regression of trastuzumab-resistant HER2-positive breast cancer, after a single treatment session. J Control Release. 2020;323:269–281. doi: 10.1016/j.jconrel.2020.04.030
  • de Bruijn, HS, Mashayekhi V, Schreurs TJL, et al. Acute cellular and vascular responses to photodynamic therapy using EGFR-targeted nanobody-photosensitizer conjugates studied with intravital optical imaging and magnetic resonance imaging. Theranostics. 2020;10(5):2436–2452. doi: 10.7150/thno.37949
  • van Driel PBAA, Boonstra MC, Slooter MD, et al. EGFR targeted nanobody–photosensitizer conjugates for photodynamic therapy in a pre-clinical model of head and neck cancer. J Control Release. 2016;229:93–105. doi: 10.1016/j.jconrel.2016.03.014
  • Maruoka Y, Wakiyama H, Choyke PL, et al. Near infrared photoimmunotherapy for cancers: a translational perspective. EBioMedicine. 2021;70:103501. doi: 10.1016/j.ebiom.2021.103501
  • List T, Neri D. Immunocytokines: a review of molecules in clinical development for cancer therapy. Clin Pharmacol. 2013;5:29–45. doi: 10.2147/CPAA.S49231
  • Cauwels A, Van Lint S, Garcin G, et al. A safe and highly efficient tumor-targeted type I interferon immunotherapy depends on the tumor microenvironment. Oncoimmunology. 2017;7(3):e1398876. doi: 10.1080/2162402X.2017.1398876
  • Cauwels A, Van Lint S, Paul F, et al. Delivering type I interferon to dendritic cells empowers tumor eradication and immune combination treatments. Cancer Res. 2018;78(2):463–474. doi: 10.1158/0008-5472.CAN-17-1980
  • Van Den Eeckhout B, Huyghe L, Van Lint S, et al. Selective IL-1 activity on CD8 + T cells empowers antitumor immunity and synergizes with neovasculature-targeted TNF for full tumor eradication. J Immunother Cancer. 2021;9(11):e003293. doi: 10.1136/jitc-2021-003293
  • De Groof TWM, Bobkov V, Heukers R, et al. Nanobodies: new avenues for imaging, stabilizing and modulating GPCRs. Mol Cell Endocrinol. 2019;484:15–24. doi: 10.1016/j.mce.2019.01.021
  • Van Campenhout R, Muyldermans S, Vinken M, et al. Therapeutic nanobodies targeting cell plasma membrane transport proteins: A high-risk/high-gain endeavor. Biomolecules. 2021;11(1):63. doi: 10.3390/biom11010063
  • Erreni M, D’Autilia F, Avigni R, et al. Size-advantage of monovalent nanobodies against the macrophage mannose receptor for deep tumor penetration and tumor-associated macrophage targeting. Theranostics. 2023;13(1):355–373. doi: 10.7150/thno.77560
  • Zhu L, Yang X, Zhong D, et al. Single-domain antibody-based TCR-Like CAR-T: a potential cancer therapy. J Immunol Res. 2020;2020:2454907. doi: 10.1155/2020/2454907
  • Zhang G, Wang L, Cui H, et al. Anti-melanoma activity of T cells redirected with a TCR-like chimeric antigen receptor. Sci Rep. 2014;4(1):3571. doi: 10.1038/srep03571
  • Klarenbeek A, Mazouari KE, Desmyter A, et al. Camelid Ig V genes reveal significant human homology not seen in therapeutic target genes, providing for a powerful therapeutic antibody platform. MAbs. 2015;7(4):693–706. doi: 10.1080/19420862.2015.1046648
  • Rossotti MA, Bélanger K, Henry KA, et al. Immunogenicity and humanization of single‐domain antibodies. FEBS J. 2022;289(14):4304–4327. doi: 10.1111/febs.15809
  • Holland MC, Wurthner JU, Morley PJ, et al. Autoantibodies to variable heavy (VH) chain Ig sequences in humans impact the safety and clinical pharmacology of a VH domain antibody antagonist of TNF-α receptor 1. J Clin Immunol. 2013;33(7):1192–1203. doi: 10.1007/s10875-013-9915-0