98
Views
0
CrossRef citations to date
0
Altmetric
Original Research

A phase-I randomized euglycemic clamp study to demonstrate the pharmacokinetic and pharmacodynamic equivalence of an insulin degludec biosimilar (B01411) with the reference product in healthy Chinese volunteers

, , , , , , & ORCID Icon show all
Pages 773-781 | Received 15 Nov 2022, Accepted 30 Aug 2023, Published online: 04 Sep 2023

References

  • Kruszynska YT, Home PD, Hanning I, et al. Basal and 24-h C-peptide and insulin secretion rate in normal man. Diabetologia. 1987 Jan;30(1):16–21. doi: 10.1007/BF01788901
  • Polonsky KS, Given BD, Van Cauter E. Twenty-four-hour profiles and pulsatile patterns of insulin secretion in normal and obese subjects. J Clin Invest. 1988 Feb;81(2):442–448. doi: 10.1172/JCI113339
  • Heise T, Mathieu C. Impact of the mode of protraction of basal insulin therapies on their pharmacokinetic and pharmacodynamic properties and resulting clinical outcomes. Diab Obes Metab. 2017 Jan;19(1):3–12. doi: 10.1111/dom.12782
  • Barski L, Brandstaetter E, Sagy I, et al. Basal insulin for the management of diabetic ketoacidosis. Eur J Internal Med. 2018 Jan;47:14–16.
  • Burke KR, Schumacher CA, Harpe SE. SGLT2 inhibitors: a systematic review of diabetic ketoacidosis and related risk factors in the primary literature. Pharmacotherapy. 2017 Feb;37(2):187–194. doi: 10.1002/phar.1881
  • Heise T, Hövelmann U, Nosek L, et al. Comparison of the pharmacokinetic and pharmacodynamic profiles of insulin degludec and insulin glargine. Expert Opin Drug Metab Toxicol. 2015;11(8):1193–1201. doi: 10.1517/17425255.2015.1058779
  • Becker RH, Dahmen R, Bergmann K, et al. New insulin glargine 300 units · mL-1 provides a more even activity profile and prolonged glycemic control at steady state compared with insulin glargine 100 units · mL-1. Diabetes Care. 2015 Apr;38(4):637–643. doi: 10.2337/dc14-0006
  • Jonassen I, Havelund S, Hoeg-Jensen T, et al. Design of the novel protraction mechanism of insulin degludec, an ultra-long-acting basal insulin. Pharm Res. 2012 Aug;29(8):2104–2114. doi: 10.1007/s11095-012-0739-z
  • Kurtzhals P, Heise T, Strauss HM. Multi-hexamer formation is the underlying basis for the ultra-long glucose-lowering effect of insulin degludec. Diabetologia. 2011;54:S426. doi: 10.1007/s00125-011-2203-8
  • Seested T, Havelund S, Jonassen IB, et al. Ultrastructural visualization of insulin degludec multi-hexamers in the subcutaneous depot in vivo supports a unique mechanism of protraction. Can J Diabetes. 2012;36(5):S61–S61. doi: 10.1016/j.jcjd.2012.07.413
  • Haahr H, Heise T. A review of the pharmacological properties of insulin degludec and their clinical relevance. Clin Pharmacokinet. 2014 Sep;53(9):787–800. doi: 10.1007/s40262-014-0165-y
  • Heise T, Hermanski L, Nosek L, et al. Insulin degludec: four times lower pharmacodynamic variability than insulin glargine under steady-state conditions in type 1 diabetes. Diab Obes Metab. 2012 Sep;14(9):859–864. doi: 10.1111/j.1463-1326.2012.01627.x
  • de Valk HW, Feher M, Hansen TK, et al. Switching to degludec is associated with reduced hypoglycaemia, irrespective of definition used or patient characteristics: secondary analysis of the ReFLeCT prospective, observational study. Diabetes Ther. 2020 Sep;11(9):2159–2167. doi: 10.1007/s13300-020-00875-1
  • Soliman AR, Soliman H, Ahmed RM. Effect of insulin degludec versus insulin glargine on glycemic variability in patients with renal transplantation with pre-existing type 2 diabetes mellitus; a 1-year, randomized, treat-to-target pilot trial. Iran J Kidney Dis. 2021 Sep;15(5):385–390.
  • Beran D, Hirsch IB, Yudkin JS. Why are we failing to address the issue of access to insulin? A national and global perspective. Diabetes Care. 2018 Jun;41(6):1125–1131. doi: 10.2337/dc17-2123
  • Beran D, Laing RO, Kaplan W, et al. A perspective on global access to insulin: a descriptive study of the market, trade flows and prices. Diabet Med. 2019 Jun;36(6):726–733. doi: 10.1111/dme.13947
  • Taha MB, Valero-Elizondo J, Yahya T, et al. Cost-related medication nonadherence in adults with diabetes in the United States: the National Health Interview Survey 2013-2018. Diabetes Care. 2022 Mar 1;45(3):594–603. doi: 10.2337/dc21-1757
  • AlRuthia Y, Bahari OH, Alghnam S, et al. Real-world impact of switching from insulin glargine (Lantus(®)) to Basaglar(®) and potential cost saving in a large public healthcare system in Saudi Arabia. Front Public Health. 2022;10:852721. doi: 10.3389/fpubh.2022.852721
  • Joshi SR, Mittra S, Raj P, et al. Biosimilars and interchangeable biosimilars: facts every prescriber, payor, and patient should know. Expert Opin Biol Ther. 2022 Aug;21:1–12.
  • US Food and Drug Administration. Guidance for industry: bioavailability and bioequivalence studies submitted in NDAs or INDs—general considerations—draft guidance. 2014. Available from: https://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm389370.pdf.
  • China Food and Drug Administration. Technical Guidance of human bioavailability and bioequivalence studies of chemical drugs. 2005; [H]GCL2-1. Available from: https://www.cde.org.cn/zdyz/downloadAtt?idCODE=a5b42ca1e9770de4bd19091f428c436d.
  • Minocha M, Gobburu J. Drug development and potential regulatory paths for insulin biosimilars. J Diabetes Sci Technol. 2014 Jan;8(1):14–19. doi: 10.1177/1932296813516954
  • Heinemann L, Davies M, Home P, et al. Understanding biosimilar insulins - development, manufacturing, and clinical trials. J Diabetes Sci Technol. 2022 Jul 11. doi: 10.1177/19322968221105864
  • Hövelmann U, Raiter Y, Chullikana A, et al. Pharmacokinetic and pharmacodynamic bioequivalence of biosimilar MYL-1601D with US and European insulin aspart in healthy volunteers: a randomized, double-blind, crossover, euglycaemic glucose clamp study. Diab Obes Metab. 2021 Dec;23(12):2670–2678. doi: 10.1111/dom.14519
  • Bailey TS, Pettus J, Roussel R, et al. Morning administration of 0.4U/kg/day insulin glargine 300U/mL provides less fluctuating 24-hour pharmacodynamics and more even pharmacokinetic profiles compared with insulin degludec 100U/mL in type 1 diabetes. Diabetes metab. 2018 Feb;44(1):15–21. doi: 10.1016/j.diabet.2017.10.001
  • Biester T, Blaesig S, Remus K, et al. Insulin degludec’s ultra-long pharmacokinetic properties observed in adults are retained in children and adolescents with type 1 diabetes. Pediatr Diabetes. 2014 Feb;15(1):27–33. doi: 10.1111/pedi.12116
  • US Food and Drug Administration Center for Drug Evaluation and Research (CDER). Guidance for industry. Clinical pharmacology data to support a demonstration of biosimilarity to a reference product; 2016. Available from: https://www.fda.gov/media/88622/download.
  • European Medicines Agency. Guideline on non-clinical and clinical development of similar biological medicinal products containing recombinant human insulin and insulin analogues; 2015. Available from: https://www.ema.europa.eu/en/non-clinical-clinical-development-similar-biologicalmedicinal-products-containing-recombinant-human.
  • Dong ZY, Feng JH, Zhang JF. Efficacy and tolerability of insulin degludec versus other long-acting basal insulin analogues in the treatment of type 1 and type 2 diabetes mellitus: a systematic review and meta-analysis. Clin Ther. 2022 Nov;44(11):1520–1533. doi: 10.1016/j.clinthera.2022.09.012
  • Wu N, Shen H, Liu H, et al. Acute blood glucose fluctuation enhances rat aorta endothelial cell apoptosis, oxidative stress and pro-inflammatory cytokine expression in vivo. Cardiovasc Diabetol. 2016 Aug 5;15(1):109. doi: 10.1186/s12933-016-0427-0
  • Swinnen SG, Holleman F, DeVries JH. The interpretation of glucose clamp studies of long-acting insulin analogues: from physiology to marketing and back. Diabetologia. 2008 Oct;51(10):1790–1795. doi: 10.1007/s00125-008-1098-5
  • Heise T, Zijlstra E, Nosek L, et al. Euglycaemic glucose clamp: what it can and cannot do, and how to do it. Diab Obes Metab. 2016 Oct;18(10):962–972. doi: 10.1111/dom.12703
  • Bhatia A, Tawade S, Mastim M, et al. Comparative evaluation of pharmacokinetics and pharmacodynamics of insulin glargine (Glaritus®) and Lantus® in healthy subjects: a double-blind, randomized clamp study. Acta Diabetol. 2018 May;55(5):461–468. doi: 10.1007/s00592-018-1113-3
  • Linnebjerg H, Lam EC, Seger ME, et al. Comparison of the pharmacokinetics and pharmacodynamics of LY2963016 insulin glargine and EU- and US-approved versions of lantus insulin glargine in healthy subjects: three randomized euglycemic clamp studies. Diabetes Care. 2015 Dec;38(12):2226–2233. doi: 10.2337/dc14-2623
  • Wang Y, Zhou Y, Ding J, et al. Pharmacokinetic and pharmacodynamic similarity evaluation between an insulin glargine biosimilar product and Lantus® in healthy subjects: pharmacokinetic parameters of both parent insulin glargine and M1 were used as endpoints. Front Pharmacol. 2022 Aug 26;13:962201. doi: 10.3389/fphar.2022.962201
  • Crutchlow MF, Palcza JS, Mostoller KM, et al. Single-dose euglycaemic clamp studies demonstrating pharmacokinetic and pharmacodynamic similarity between MK-1293 insulin glargine and originator insulin glargine (Lantus) in subjects with type 1 diabetes and healthy subjects. Diab Obes Metab. 2018 Feb;20(2):400–408. doi: 10.1111/dom.13084
  • Feng W, Chen W, Jiang S, et al. Efficacy and safety of LY2963016 insulin glargine versus insulin glargine (Lantus) in Chinese adults with type 2 diabetes: a phase III, randomized, open-label, controlled trial. Diab Obes Metab. 2021 Aug;23(8):1786–1794. doi: 10.1111/dom.14392
  • Gwizdala KL, Ferguson DP, Kovan J, et al. Placebo controlled phase II clinical trial: safety and efficacy of combining intranasal insulin & acute exercise. Metab Brain Dis. 2021 Aug;36(6):1289–1303. doi: 10.1007/s11011-021-00727-2
  • Thomas A, Schänzer W, Thevis M. Determination of human insulin and its analogues in human blood using liquid chromatography coupled to ion mobility mass spectrometry (LC-IM-MS). Drug Test Anal. 2014 Nov;6(11–12):1125–1132. doi: 10.1002/dta.1710
  • Blackburn M. Advances in the quantitation of therapeutic insulin analogues by LC-MS/MS. Bioanalysis. 2013 Dec;5(23):2933–2946. doi: 10.4155/bio.13.257
  • Thomas A, Thevis M. Analysis of insulin and insulin analogs from dried blood spots by means of liquid chromatography-high resolution mass spectrometry. Drug Test Anal. 2018 Nov;10(11–12):1761–1768. doi: 10.1002/dta.2518
  • Nosek L, Coester HV, Roepstorff C, et al. Glucose-lowering effect of insulin degludec is independent of subcutaneous injection region. Clin Drug Investig. 2014 Sep;34(9):673–679. doi: 10.1007/s40261-014-0218-x
  • Li T, Liu H, Yu H, et al. Interindividual variability in the pharmacodynamic and pharmacokinetic characteristics of recombinant human insulin and insulin aspart. Clin Ther. 2021 Mar;43(3):594–601.e1. doi: 10.1016/j.clinthera.2021.01.008
  • Korsatko S, Deller S, Koehler G, et al. A comparison of the steady-state pharmacokinetic and pharmacodynamic profiles of 100 and 200 U/mL formulations of ultra-long-acting insulin degludec. Clin Drug Investig. 2013 Jul;33(7):515–521. doi: 10.1007/s40261-013-0096-7
  • Martin, Zhou Y, Takagi T, et al. Safety, efficacy, and cost-effectiveness of insulin degludec U100 versus insulin glargine U300 in adults with type 1 diabetes: a systematic review and indirect treatment comparison. Int J Clin Pharm. 2022 Jun;44(3):587–598. doi: 10.1007/s11096-022-01410-x
  • Brøsen JMB, Agesen RM, Kristensen PL, et al. Effect of insulin degludec versus insulin glargine U100 on nocturnal glycaemia assessed by plasma glucose profiles in people with type 1 diabetes prone to nocturnal severe hypoglycaemia. Diab Obes Metab. 2023 Jun;25(6):1557–1565. doi: 10.1111/dom.15003
  • Facciorusso A. The influence of diabetes in the pathogenesis and the clinical course of hepatocellular carcinoma: recent findings and new perspectives. Curr Diabetes Rev. 2013 Sep;9(5):382–386. doi: 10.2174/15733998113099990068
  • Ramai D, Singh J, Lester J, et al. Systematic review with meta-analysis: bariatric surgery reduces the incidence of hepatocellular carcinoma. Aliment Pharmacol Ther. 2021 May;53(9):977–984. doi: 10.1111/apt.16335
  • Plaz Torres MC, Jaffe A, Perry R, et al. Diabetes medications and risk of HCC. Hepatology. 2022 Dec;76(6):1880–1897. doi: 10.1002/hep.32439

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.