306
Views
0
CrossRef citations to date
0
Altmetric
Review

DNL151, DNL201, and BIIB094: experimental agents for the treatment of Parkinson’s disease

ORCID Icon
Pages 787-792 | Received 31 Mar 2023, Accepted 22 Sep 2023, Published online: 28 Sep 2023

References

  • Singleton AB, Farrer MJ, Bonifati V. The genetics of Parkinson’s disease: progress and therapeutic implications. Mov Disord. 2013;28(1):14–23. doi: 10.1002/mds.25249
  • Przuntek H, Müller T, Riederer P. Diagnostic staging of Parkinson’s disease: conceptual aspects. J Neural Transm. 2004;111(2):201–216. doi: 10.1007/s00702-003-0102-y
  • Castro-Sanchez S, Zaldivar-Diez J, Luengo E, et al. Cognitive enhancement, TAU phosphorylation reduction, and neuronal protection by the treatment of an LRRK2 inhibitor in a tauopathy mouse model. Neurobiol Aging. 2020;96:148–154. doi: 10.1016/j.neurobiolaging.2020.09.006
  • Chan SL, Tan EK. Targeting LRRK2 in Parkinson’s disease: an update on recent developments. Expert Opin Ther Targets. 2017;21(6):601–610. doi: 10.1080/14728222.2017.1323881
  • Müller T, Kohlhepp W. Hypomethylation in Parkinson’s disease: an epigenetic drug effect? Mov Disord. 2016;31(4):605. doi: 10.1002/mds.26560
  • Müller T. What are the main considerations when prescribing pharmacotherapy for Parkinson’s disease? Expert Opin Pharmacother. 2022;23(7):745–750. doi: 10.1080/14656566.2022.2045275
  • Müller T, Mueller BK, Riederer P. Perspective: treatment for disease modification in chronic neurodegeneration. Cells. 2021;10(4):873. doi: 10.3390/cells10040873
  • Lee KS, Huh S, Lee S, et al. Altered ER-mitochondria contact impacts mitochondria calcium homeostasis and contributes to neurodegeneration in vivo in disease models. Proc Natl Acad Sci USA. 2018;115(38):E8844–E8853. doi: 10.1073/pnas.1721136115
  • Rui Q, Ni H, Li D, et al. The role of LRRK2 in neurodegeneration of Parkinson disease. Curr Neuropharmacol. 2018;16(9):1348–1357. doi: 10.2174/1570159X16666180222165418
  • Hur EM, Jang EH, Jeong GR, et al. LRRK2 and membrane trafficking: nexus of Parkinson’s disease. Bmb Rep. 2019;52(9):533–539. doi: 10.5483/BMBRep.2019.52.9.186
  • Jeong GR, Lee BD. Pathological functions of LRRK2 in Parkinson’s disease. Cells. 2020;9(12):2565. doi: 10.3390/cells9122565
  • Rocha EM, De Miranda BR, Castro S, et al. LRRK2 inhibition prevents endolysosomal deficits seen in human Parkinson’s disease. Neurobiol Dis. 2020;134:104626. doi: 10.1016/j.nbd.2019.104626
  • Abrishamdar M, Jalali MS, Farbood Y. Targeting mitochondria as a therapeutic approach for Parkinson’s disease. Cell Mol Neurobiol. 2022;43(4):1499–1518. doi: 10.1007/s10571-022-01265-w
  • Chan SL, Angeles DC, Tan EK. Targeting leucine-rich repeat kinase 2 in Parkinson’s disease. Expert Opin Ther Targets. 2013;17(12):1471–1482. doi: 10.1517/14728222.2013.842978
  • Bright JM, Carlisle HJ, Toda AMA, et al. Differential inhibition of LRRK2 in Parkinson’s disease patient blood by a G2019S selective LRRK2 inhibitor. Mov Disord. 2021;36(6):1362–1371. doi: 10.1002/mds.28490
  • Howlett EH, Jensen N, Belmonte F, et al. LRRK2 G2019S-induced mitochondrial DNA damage is LRRK2 kinase dependent and inhibition restores mtDNA integrity in Parkinson’s disease. Hum Mol Genet. 2017;26(22):4340–4351. doi: 10.1093/hmg/ddx320
  • Biosa A, Trancikova A, Civiero L, et al. GTPase activity regulates kinase activity and cellular phenotypes of Parkinson’s disease-associated LRRK2. Hum Mol Genet. 2013;22(6):1140–1156. doi: 10.1093/hmg/dds522
  • Lichtenberg M, Mansilla A, Zecchini VR, et al. The Parkinson’s disease protein LRRK2 impairs proteasome substrate clearance without affecting proteasome catalytic activity. Cell Death Dis. 2011;2(8):e196. doi: 10.1038/cddis.2011.81
  • Russo I, Berti G, Plotegher N, et al. Leucine-rich repeat kinase 2 positively regulates inflammation and down-regulates NF-κB p50 signaling in cultured microglia cells. J Neuroinflammation. 2015;12(1):230. doi: 10.1186/s12974-015-0449-7
  • Daher JP, Volpicelli-Daley LA, Blackburn JP, et al. Abrogation of alpha-synuclein-mediated dopaminergic neurodegeneration in LRRK2-deficient rats. Proc Natl Acad Sci USA. 2014;111(25):9289–9294. doi: 10.1073/pnas.1403215111
  • Jennings D, Huntwork-Rodriguez S, Henry AG, et al. Preclinical and clinical evaluation of the LRRK2 inhibitor DNL201 for Parkinson’s disease. Sci Transl Med. 2022;14(648):eabj2658. doi: 10.1126/scitranslmed.abj2658
  • Ho PW, Chang EE, Leung CT, et al. Long-term inhibition of mutant LRRK2 hyper-kinase activity reduced mouse brain alpha-synuclein oligomers without adverse effects. Npj Parkinsons Dis. 2022;8(1):115. doi: 10.1038/s41531-022-00386-9
  • Hu D, Niu JY, Xiong J, et al. LRRK2 G2019S mutation inhibits degradation of alpha-synuclein in an in vitro model of Parkinson’s disease. Curr Med Sci. 2018;38(6):1012–1017. doi: 10.1007/s11596-018-1977-z
  • Lv QK, Tao KX, Wang XB, et al. Role of alpha-synuclein in microglia: autophagy and phagocytosis balance neuroinflammation in Parkinson’s disease. Inflamm Res. 2023;72(3):443–462. doi: 10.1007/s00011-022-01676-x
  • Brzozowski CF, Hijaz BA, Singh V, et al. Inhibition of LRRK2 kinase activity promotes anterograde axonal transport and presynaptic targeting of alpha-synuclein. Acta Neuropathol Commun. 2021;9(1):180. doi: 10.1186/s40478-021-01283-7
  • Daher JP, Abdelmotilib HA, Hu X, et al. Leucine-rich repeat kinase 2 (LRRK2) pharmacological inhibition abates alpha-synuclein gene-induced neurodegeneration. J Biol Chem. 2015;290(32):19433–19444. doi: 10.1074/jbc.M115.660001
  • Kumar S, Behl T, Sehgal A, et al. Exploring the focal role of LRRK2 kinase in Parkinson’s disease. Environ Sci Pollut Res Int. 2022;29(22):32368–32382. doi: 10.1007/s11356-022-19082-5
  • Erb ML, Moore DJ. LRRK2 and the endolysosomal system in Parkinson’s disease. J Parkinsons Dis. 2020;10(4):1271–1291. doi: 10.3233/JPD-202138
  • Lee H, Flynn R, Sharma I, et al. LRRK2 is recruited to phagosomes and co-recruits RAB8 and RAB10 in human pluripotent stem cell-derived macrophages. Stem Cell Rep. 2020;14(5):940–955. doi: 10.1016/j.stemcr.2020.04.001
  • Moehle MS, Webber PJ, Tse T, et al. LRRK2 inhibition attenuates microglial inflammatory responses. J Neurosci. 2012;32(5):1602–1611. doi: 10.1523/JNEUROSCI.5601-11.2012
  • Puccini JM, Marker DF, Fitzgerald T, et al. Leucine-rich repeat kinase 2 modulates neuroinflammation and neurotoxicity in models of human immunodeficiency virus 1-associated neurocognitive disorders. J Neurosci. 2015;35([13):5271–5283. doi: 10.1523/JNEUROSCI.0650-14.2015
  • Li T, He X, Thomas JM, et al. A novel GTP-binding inhibitor, FX2149, attenuates LRRK2 toxicity in Parkinson’s disease models. PLoS One. 2015;10(3):e0122461. doi: 10.1371/journal.pone.0122461
  • Liu M, Dobson B, Glicksman MA, et al. Kinetic mechanistic studies of wild-type leucine-rich repeat kinase 2: characterization of the kinase and GTPase activities. Biochemistry. 2010;49(9):2008–2017. doi: 10.1021/bi901851y
  • Liu Q, Bautista-Gomez J, Higgins DA, et al. Dysregulation of the AP2M1 phosphorylation cycle by LRRK2 impairs endocytosis and leads to dopaminergic neurodegeneration. Sci Signal. 2021;14(693): doi: 10.1126/scisignal.abg3555
  • Kim C, Beilina A, Smith N, et al. LRRK2 mediates microglial neurotoxicity via NFATc2 in rodent models of synucleinopathies. Sci Transl Med. 2020;12(565): doi: 10.1126/scitranslmed.aay0399
  • Kim J, Jeong YH, Lee EJ, et al. Suppression of neuroinflammation by matrix metalloproteinase-8 inhibitor in aged normal and LRRK2 G2019S Parkinson’s disease model mice challenged with lipopolysaccharide. Biochem Biophys Res Commun. 2017;493(2):879–886. doi: 10.1016/j.bbrc.2017.09.129
  • Mani S, Sevanan M, Krishnamoorthy A, et al. A systematic review of molecular approaches that link mitochondrial dysfunction and neuroinflammation in Parkinson’s disease. Neurol Sci. 2021;42(11):4459–4469. doi: 10.1007/s10072-021-05551-1
  • Rosenbusch KE, Oun A, Sanislav O, et al. A conserved role for LRRK2 and Roco proteins in the regulation of mitochondrial activity. Front Cell Dev Biol. 2021;9:734554. doi: 10.3389/fcell.2021.734554
  • Ye H, Robak LA, Yu M, et al. Genetics and pathogenesis of Parkinson’s syndrome. Annu Rev Pathol. 2023;18:95–121. doi: 10.1146/annurev-pathmechdis-031521-034145
  • Jennings D, Huntwork-Rodriguez S, MFJM V, et al. LRRK2 inhibition by BIIB122 in healthy participants and patients with Parkinson’s disease. Mov Disord. 2023;38(3):386–398. doi: 10.1002/mds.29297
  • Zhao HT, John N, Delic V, et al. LRRK2 antisense oligonucleotides ameliorate alpha-synuclein inclusion formation in a Parkinson’s disease mouse model. Mol Ther Nucleic Acids. 2017;8:508–519. doi: 10.1016/j.omtn.2017.08.002
  • Galasko D, Simuni T. Lack of benefit of iron chelation in early Parkinson’s disease. N Engl J Med. 2022;387(22):2087–2088. doi: 10.1056/NEJMe2213120
  • Jost ST, Kaldenbach MA, Antonini A, et al. Levodopa dose equivalency in Parkinson’s disease: updated systematic review and proposals. Mov Disord. 2023;38(7):1236–1252. doi: 10.1002/mds.29410
  • Ninds Net-PD Investigators. A randomized clinical trial of coenzyme Q10 and GPI-1485 in early Parkinson disease. Neurology. 2007;68(1):20–28. doi: 10.1212/01.wnl.0000250355.28474.8e
  • Jimenez-Jimenez FJ, Onso-Navarro H, Garcia-Martin E, et al. Coenzyme Q10 and parkinsonian syndromes: a systematic review. J Pers Med. 2022;12(6):975. doi: 10.3390/jpm12060975
  • Storch A, Jost WH, Vieregge P, et al. Randomized, double-blind, placebo-controlled trial on symptomatic effects of coenzyme Q(10) in Parkinson disease. Arch Neurol. 2007;64(7):938–944. doi: 10.1001/archneur.64.7.nct60005
  • Flores-Torres MH, Christine CW, Bjornevik K, et al. Long-term intake of folate, vitamin B6, and vitamin B12 and the incidence of Parkinson’s disease in a sample of U.S. Women and men. Mov Disord. 2023;38(5):866–879. doi: 10.1002/mds.29383
  • Marras C, McDermott MP, Rochon PA, et al. Survival in Parkinson disease: thirteen-year follow-up of the DATATOP cohort. Neurology. 2005;64(1):87–93. doi: 10.1212/01.WNL.0000148603.44618.19
  • Przuntek H, Conrad B, Dichgans J, et al. SELEDO: a 5-year long-term trial on the effect of selegiline in early Parkinsonian patients treated with levodopa. Eur J Neurol. 1999;6(2):141–150. doi: 10.1111/j.1468-1331.1999.tb00007.x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.