177
Views
0
CrossRef citations to date
0
Altmetric
Review

A comprehensive overview of investigational elastase inhibitors for the treatment of acute respiratory distress syndrome

, , ORCID Icon, & ORCID Icon
Pages 793-802 | Received 30 Jul 2023, Accepted 22 Sep 2023, Published online: 26 Sep 2023

References

  • Definition Task Force ARDS, Ranieri VM, Rubenfeld GD, et al. Acute respiratory distress syndrome: the Berlin definition. JAMA. 2012;307(23):2526–2533.
  • Matera MG, Rogliani P, Bianco A, et al. Pharmacological management of adult patients with acute respiratory distress syndrome. Expert Opin Pharmacother. 2020;21(17):2169–2183. doi: 10.1080/14656566.2020.1801636
  • Pham T, Rubenfeld GD. Fifty years of research in ARDS. The epidemiology of acute respiratory distress syndrome. A 50th birthday review. Am J Respir Crit Care Med. 2017;195(7):860–870. doi: 10.1164/rccm.201609-1773CP
  • Rubenfeld GD, Caldwell E, Peabody E, et al. Incidence and outcomes of acute lung injury. N Engl J Med. 2005;353(16):1685–1693. doi: 10.1056/NEJMoa050333
  • Bellani G, Laffey JG, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315(8):788–800. doi: 10.1001/jama.2016.0291
  • Caser EB, Zandonade E, Pereira E, et al. Impact of distinct definitions of acute lung injury on its incidence and outcomes in Brazilian ICUs: prospective evaluation of 7,133 patients*. Crit Care Med. 2014;42(3):574–582. doi: 10.1097/01.ccm.0000435676.68435.56
  • Manzano F, Yuste E, Colmenero M, et al. Incidence of acute respiratory distress syndrome and its relation to age. J Crit Care. 2005;20(3):274–280. doi: 10.1016/j.jcrc.2005.05.008
  • Hendrickson KW, Peltan ID, Brown SM. The epidemiology of acute respiratory distress syndrome before and after coronavirus disease 2019. Crit Care Clin. 2021;37(4):703–716. doi: 10.1016/j.ccc.2021.05.001
  • Meyer NJ, Gattinoni L, Calfee CS. Acute respiratory distress syndrome. Lancet. 2021;398(10300):622–637. doi: 10.1016/S0140-6736(21)00439-6
  • Matthay MA, Zemans RL, Zimmerman GA, et al. Acute respiratory distress syndrome. Nat Rev Dis Primers. 2019;5(1):18. doi: 10.1038/s41572-019-0069-0
  • Tisoncik JR, Korth MJ, Simmons CP, et al. Into the eye of the cytokine storm. Microbiol Mol Biol Rev. 2012;76(1):16–32. doi: 10.1128/MMBR.05015-11
  • Potey PM, Rossi AG, Lucas CD, et al. Neutrophils in the initiation and resolution of acute pulmonary inflammation: understanding biological function and therapeutic potential. J Pathol. 2019;247(5):672–685. doi: 10.1002/path.5221
  • Kambas K, Markiewski MM, Pneumatikos IA, et al. C5a and TNF-alpha up-regulate the expression of tissue factor in intra-alveolar neutrophils of patients with the acute respiratory distress syndrome. J Immunol. 2008;180(11):7368–7375. doi: 10.4049/jimmunol.180.11.7368
  • Caudrillier A, Kessenbrock K, Gilliss BM, et al. Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury. J Clin Invest. 2012;122(7):2661–2671. doi: 10.1172/JCI61303
  • Lefrançais E, Mallavia B, Zhuo H, et al. Maladaptive role of neutrophil extracellular traps in pathogen-induced lung injury. JCI Insight. 2018;3(3):e98178. doi: 10.1172/jci.insight.98178
  • Dries DJ. Acute respiratory distress syndrome and lung protection. Air Med J. 2016;35(2):59–62. doi: 10.1016/j.amj.2015.12.011
  • Thompson BT, Chambers RC, Liu KD, et al. Acute respiratory distress syndrome. N Engl J Med. 2017;377(6):562–572. doi: 10.1056/NEJMra1608077
  • Bastarache JA, Wang L, Geiser T, et al. The alveolar epithelium can initiate the extrinsic coagulation cascade through expression of tissue factor. Thorax. 2007;62(7):608–616. doi: 10.1136/thx.2006.063305
  • Wright TK, Gibson PG, Simpson JL, et al. Neutrophil extracellular traps are associated with inflammation in chronic airway disease. Respirology. 2016;21(3):467–475. doi: 10.1111/resp.12730
  • Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–1535. doi: 10.1126/science.1092385
  • Zemans RL, Matthay MA. What drives neutrophils to the alveoli in ARDS? Thorax. 2017;72(1):1–3. doi: 10.1136/thoraxjnl-2016-209170
  • Fischer BM, Pavlisko E, Voynow JA. Pathogenic triad in COPD: oxidative stress, protease-antiprotease imbalance, and inflammation. Int J Chron Obstruct Pulmon Dis. 2011;6:413–421. doi: 10.2147/COPD.S10770
  • Pham CT. Neutrophil serine proteases: specific regulators of inflammation. Nat Rev Immunol. 2006;6(7):541–550. doi: 10.1038/nri1841
  • Zeng W, Song Y, Wang R, et al. Neutrophil elastase: from mechanisms to therapeutic potential. J Pharm Anal. 2023;13(4):355–366. doi: 10.1016/j.jpha.2022.12.003
  • Metzler KD, Goosmann C, Lubojemska A, et al. A myeloperoxidase-containing complex regulates neutrophil elastase release and actin dynamics during NETosis. Cell Rep. 2014;8(3):883–896. doi: 10.1016/j.celrep.2014.06.044
  • Belaaouaj A, McCarthy R, Baumann M, et al. Mice lacking neutrophil elastase reveal impaired host defense against gram negative bacterial sepsis. Nat Med. 1998;4(5):615–618. doi: 10.1038/nm0598-615
  • Kawabata K, Hagio T, Matsuoka S. The role of neutrophil elastase in acute lung injury. Eur J Pharmacol. 2002;451(1):1–10. doi: 10.1016/S0014-2999(02)02182-9
  • Sandhaus RA, Turino G. Neutrophil elastase-mediated lung disease. COPD. 2013;10 (Suppl 1):60–63. doi: 10.3109/15412555.2013.764403
  • Ding Q, Wang Y, Yang C, et al. Clinical utility of the sivelestat for the treatment of ALI/ARDS: moving on in the controversy? Intensive Care Res. 2023;3(1):12–17. doi: 10.1007/s44231-022-00012-5
  • Ham J, Kim J, Ko YG, et al. The dynamic contribution of neutrophils in the chronic respiratory diseases. Allergy Asthma Immunol Res. 2022;14(4):361–378. doi: 10.4168/aair.2022.14.4.361
  • Owen CA, Campbell EJ. The cell biology of leukocyte-mediated proteolysis. J Leukocyte Biol. 1999;65(2):137–150. doi: 10.1002/jlb.65.2.137
  • Lucas SD, Costa E, Guedes RC, et al. Targeting COPD: advances on low-molecular-weight inhibitors of human neutrophil elastase. Med Res Rev. 2013;33(Suppl 1):E73–E101. doi: 10.1002/med.20247
  • Polverino E, Rosales-Mayor E, Dale GE, et al. The role of neutrophil elastase inhibitors in lung diseases. Chest. 2017;152(2):249–262. doi: 10.1016/j.chest.2017.03.056
  • Ma Y, Yang X, Chatterjee V, et al. Role of neutrophil extracellular traps and vesicles in regulating vascular endothelial permeability. Front Immunol. 2019;10:1037. doi: 10.3389/fimmu.2019.01037
  • Clancy DM, Sullivan GP, Moran HBT, et al. Extracellular neutrophil proteases are efficient regulators of IL-1, IL-33, and IL-36 cytokine activity but poor effectors of microbial killing. Cell Rep. 2018;22(11):2937–2950. doi: 10.1016/j.celrep.2018.02.062
  • Voynow JA, Shinbashi M. Neutrophil elastase and chronic lung disease. Biomolecules. 2021;11(8):1065. doi: 10.3390/biom11081065
  • Suzuki K, Okada H, Takemura G, et al. Neutrophil elastase damages the pulmonary endothelial glycocalyx in lipopolysaccharide-induced experimental endotoxemia. Am J Pathol. 2019;189(8):1526–1535. doi: 10.1016/j.ajpath.2019.05.002
  • Kodama T, Yukioka H, Kato T, et al. Neutrophil elastase as a predicting factor for development of acute lung injury. Intern Med. 2007;46(11):699–704. doi: 10.2169/internalmedicine.46.6182
  • McGuire WW, Spragg RG, Cohen AB, et al. Studies on the pathogenesis of the adult respiratory distress syndrome. J Clin Invest. 1982;69(3):543–553. doi: 10.1172/JCI110480
  • Cazzola M, Hanania NA, Page CP, et al. Novel anti-inflammatory approaches to COPD. Int J Chron Obstruct Pulmon Dis. 2023;18:1333–1352. doi: 10.2147/COPD.S419056
  • Pott GB, Beard KS, Bryan CL, et al. Alpha-1 antitrypsin reduces severity of pseudomonas pneumonia in mice and inhibits epithelial barrier disruption and pseudomonas invasion of respiratory epithelial cells. Front Public Health. 2013;1:19. doi: 10.3389/fpubh.2013.00019
  • Chapman KR, Burdon JG, Piitulainen E, et al. Intravenous augmentation treatment and lung density in severe α1 antitrypsin deficiency (RAPID): a randomised, double-blind, placebo-controlled trial. Lancet. 2015;386(9991):360–368. doi: 10.1016/S0140-6736(15)60860-1
  • von Nussbaum F, Li VM. Neutrophil elastase inhibitors for the treatment of (cardio)pulmonary diseases: into clinical testing with pre-adaptive pharmacophores. Bioorg Med Chem Lett. 2015;25(20):4370–4381. doi: 10.1016/j.bmcl.2015.08.049
  • Sallenave JM. Secretory leukocyte protease inhibitor and elafin/trappin-2: versatile mucosal antimicrobials and regulators of immunity. Am J Respir Cell Mol Biol. 2010;42(6):635–643. doi: 10.1165/rcmb.2010-0095RT
  • Chotirmall SH, Al-Alawi M, McEnery T, et al. Alpha-1 proteinase inhibitors for the treatment of alpha-1 antitrypsin deficiency: safety, tolerability, and patient outcomes. Ther Clin Risk Manag. 2015;11:143–151. doi: 10.2147/TCRM.S51474
  • Owen CA, Campbell MA, Sannes PL, et al. Cell surface-bound elastase and cathepsin G on human neutrophils: a novel, non-oxidative mechanism by which neutrophils focus and preserve catalytic activity of serine proteinases. J Cell Bio. 1995;131(3):775–789. doi: 10.1083/jcb.131.3.775
  • Voynow JA, Zheng S, Kummarapurugu AB. Glycosaminoglycans as multifunctional anti-elastase and anti-inflammatory drugs in cystic fibrosis lung disease. Front Pharmacol. 2020;11:1011. doi: 10.3389/fphar.2020.01011
  • Shute JK. Heparin, low molecular weight heparin, and non-anticoagulant derivatives for the treatment of inflammatory lung disease. Pharmaceuticals (Basel). 2023;16(4):584. doi: 10.3390/ph16040584
  • Kummarapurugu AB, Afosah DK, Sankaranarayanan NV, et al. Molecular principles for heparin oligosaccharide-based inhibition of neutrophil elastase in cystic fibrosis. J Biol Chem. 2018;293(32):12480–12490. doi: 10.1074/jbc.RA118.002644
  • Morla S, Sankaranarayanan NV, Afosah DK, et al. On the process of discovering leads that target the heparin-binding site of neutrophil elastase in the sputum of cystic fibrosis patients. J Med Chem. 2019;62(11):5501–5511. doi: 10.1021/acs.jmedchem.9b00379
  • Crocetti L, Quinn MT, Schepetkin IA, et al. A patenting perspective on human neutrophil elastase (HNE) inhibitors (2014-2018) and their therapeutic applications. Expert Opin Ther Pat. 2019;29(7):555–578. doi: 10.1080/13543776.2019.1630379
  • Ohbayashi H. Current synthetic inhibitors of human neutrophil elastase in 2005. Expert Opin Ther Pat. 2005;15(7):759–771. doi: 10.1517/13543776.15.7.759
  • Dahl R, Titlestad I, Lindqvist A, et al. Effects of an oral MMP-9 and -12 inhibitor, AZD1236, on biomarkers in moderate/severe COPD: a randomised controlled trial. Pulm Pharmacol Ther. 2012;25(2):169–177. doi: 10.1016/j.pupt.2011.12.011
  • Watz H, Nagelschmitz J, Kirsten A, et al. Safety and efficacy of the human neutrophil elastase inhibitor BAY 85-8501 for the treatment of non-cystic fibrosis bronchiectasis: a randomized controlled trial. Pulm Pharmacol Ther. 2019;56:86–93. doi: 10.1016/j.pupt.2019.03.009
  • Barth P, Bruijnzeel P, Wach A, et al. Single dose escalation studies with inhaled POL6014, a potent novel selective reversible inhibitor of human neutrophil elastase, in healthy volunteers and subjects with cystic fibrosis. J Cyst Fibros. 2020;19(2):299–304. doi: 10.1016/j.jcf.2019.08.020
  • Honoré S, Attalah HL, Azoulay E, et al. Beneficial effect of an inhibitor of leukocyte elastase (EPI-hNE-4) in presence of repeated lung injuries. Shock. 2004;22(2):131–136. doi: 10.1097/01.shk.0000126861.77543.d0
  • Delacourt C, Hérigault S, Delclaux C, et al. Protection against acute lung injury by intravenous or intratracheal pretreatment with EPI-HNE-4, a new potent neutrophil elastase inhibitor. Am J Respir Cell Mol Biol. 2002;26(3):290–297. doi: 10.1165/ajrcmb.26.3.4611
  • Takayama M, Ishibashi M, Ishii H, et al. Effects of neutrophil elastase inhibitor (ONO-5046) on lung injury after intestinal ischemia-reperfusion. J Appl Physiol (1985). 2001;91(4):1800–1807. doi: 10.1152/jappl.2001.91.4.1800
  • Inoue Y, Seiyama A, Tanaka H, et al. Protective effects of a selective neutrophil elastase inhibitor (sivelestat) on lipopolysaccharide-induced acute dysfunction of the pulmonary microcirculation. Crit Care Med. 2005;33(8):1814–1822. doi: 10.1097/01.CCM.0000172547.54086.AD
  • Zhang H, Zeng J, Li J, et al. Sivelestat sodium attenuates acute lung injury by inhibiting JNK/NF-κB and activating Nrf2/HO-1 signaling pathways. Biomol Biomed. 2023;23(3):457–470. doi: 10.17305/bb.2022.8549
  • Yang T, Zhang J, Sun L, et al. Combined effects of a neutrophil elastase inhibitor (sivelestat sodium) and a free radical scavenger (edaravone) on lipopolysaccharide-induced acute lung injury in rats. Inflamm Res. 2012;61(6):563–569. doi: 10.1007/s00011-012-0445-7
  • Hagio T, Kishikawa K, Kawabata K, et al. Inhibition of neutrophil elastase reduces lung injury and bacterial count in hamsters. Pulm Pharmacol Ther. 2008;21(6):884–891. doi: 10.1016/j.pupt.2008.10.002
  • Lee JM, Yeo CD, Lee HY, et al. Inhibition of neutrophil elastase contributes to attenuation of lipopolysaccharide-induced acute lung injury during neutropenia recovery in mice. J Anesth. 2017;31(3):397–404. doi: 10.1007/s00540-017-2311-9
  • Lemke G, Rothlin CV. Immunobiology of the TAM receptors. Nat Rev Immunol. 2008;8(5):327–336. doi: 10.1038/nri2303
  • Stevens T, Ekholm K, Gränse M, et al. AZD9668: pharmacological characterization of a novel oral inhibitor of neutrophil elastase. J Pharmacol Exp Ther. 2011;339(1):313–320. doi: 10.1124/jpet.111.182139
  • Li H, Zhou X, Tan H, et al. Neutrophil extracellular traps contribute to the pathogenesis of acid-aspiration-induced ALI/ARDS. Oncotarget. 2017;9(2):1772–1784. doi: 10.18632/oncotarget.22744
  • von Nussbaum F, Li VM, Allerheiligen S, et al. Freezing the bioactive conformation to boost potency: the identification of BAY 85-8501, a selective and potent inhibitor of human neutrophil elastase for pulmonary diseases. ChemMedchem. 2015;10(7):1163–1173. doi: 10.1002/cmdc.201500131
  • Carnini C, Brogin G, Patacchini R, et al. CHF6333: pharmacological and pharmacokinetic characterization of a novel potent inhaled inhibitor of neutrophil elastase. Am J Respir Crit Care Med. 2017;195:A4420.
  • Sellier Kessler O, Lemercier G, Schmitt M, et al. Effect of POL6014, a potent and selective inhaled neutrophil elastase inhibitor, in a rat model of lung neutrophil activation. Am J Respir Crit Care Med. 2018;197:A2988.
  • Lagente V, Guenon I, Morel I, et al. A novel protein epitope mimetic (PEM) neutrophil elastase (NE) inhibitor, POL6014, inhibits human NE-induced acute lung injury in mice. Am J Respir Crit Care Med. 2009;179:A5668.
  • Sakashita A, Nishimura Y, Nishiuma T, et al. Neutrophil elastase inhibitor (sivelestat) attenuates subsequent ventilator-induced lung injury in mice. Eur J Pharmacol. 2007;571(1):62–71. doi: 10.1016/j.ejphar.2007.05.053
  • Kim DH, Chung JH, Son BS, et al. Effect of a neutrophil elastase inhibitor on ventilator-induced lung injury in rats. J Thorac Dis. 2014;6(12):1681–1689. doi: 10.3978/j.issn.2072-1439.2014.11.10
  • Kinoshita M, Ono S, Mochizuki H. Neutrophils mediate acute lung injury in rabbits: role of neutrophil elastase. Eur Surg Res. 2000;32(6):337–346. doi: 10.1159/000052215
  • Okeke EB, Louttit C, Fry C, et al. Inhibition of neutrophil elastase prevents neutrophil extracellular trap formation and rescues mice from endotoxic shock. Biomaterials. 2020;238:119836. doi: 10.1016/j.biomaterials.2020.119836
  • Tamakuma S, Shiba T, Hirasawa H, et al. A phase III clinical study of neutrophil elastase inhibitor ONO–5046*Na in SIRS patients. Rinsho Iyaku. 1998;14:289–318. (in Japanese).
  • Okayama N, Kakihana Y, Setoguchi D, et al. Clinical effects of a neutrophil elastase inhibitor, sivelestat, in patients with acute respiratory distress syndrome. J Anesth. 2006;20(1):6–10. doi: 10.1007/s00540-005-0362-9
  • Tamakuma S, Ogawa M, Aikawa N, et al. Relationship between neutrophil elastase and acute lung injury in humans. Pulm Pharmacol Ther. 2004;17(5):271–279. doi: 10.1016/j.pupt.2004.05.003
  • Aikawa N, Ishizaka A, Hirasawa H, et al. Reevaluation of the efficacy and safety of the neutrophil elastase inhibitor, Sivelestat, for the treatment of acute lung injury associated with systemic inflammatory response syndrome; a phase IV study. Pulm Pharmacol Ther. 2011;24(5):549–554. doi: 10.1016/j.pupt.2011.03.001
  • Kido T, Muramatsu K, Yatera K, et al. Efficacy of early sivelestat administration on acute lung injury and acute respiratory distress syndrome. Respirology. 2017;22(4):708–713. doi: 10.1111/resp.12969
  • Miyoshi S, Ito R, Katayama H, et al. Combination therapy with sivelestat and recombinant human soluble thrombomodulin for ARDS and DIC patients. Drug Des Devel Ther. 2014;8:1211–1219. doi: 10.2147/DDDT.S68030
  • Zeiher BG, Artigas A, Vincent JL, et al. Neutrophil elastase inhibition in acute lung injury: results of the STRIVE study. Crit Care Med. 2004;32(8):1695–1702. doi: 10.1097/01.CCM.0000133332.48386.85
  • Iwata K, Doi A, Ohji G, et al. Effect of neutrophil elastase inhibitor (sivelestat sodium) in the treatment of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS): a systematic review and meta-analysis. Intern Med. 2010;49(22):2423–2432. doi: 10.2169/internalmedicine.49.4010
  • Wang Y, Wang M, Zhang H, et al. Sivelestat improves clinical outcomes and decreases ventilator-associated lung injury in children with acute respiratory distress syndrome: a retrospective cohort study. Transl Pediatr. 2022;11(10):1671–1681. doi: 10.21037/tp-22-441
  • Gao X, Zhang R, Lei Z, et al. Efficacy, safety, and pharmacoeconomics of sivelestat sodium in the treatment of septic acute respiratory distress syndrome: a retrospective cohort study. Ann Palliat Med. 2021;10(11):11910–11917. doi: 10.21037/apm-21-3164
  • Ding Q, Wang Y, Yang C, et al. Effect of sivelestat in the treatment of acute lung injury and acute respiratory distress syndrome: a systematic review and meta-analysis. Intensive Care Res. 2023;3:1–10
  • Miyoshi S, Hamada H, Ito R, et al. Usefulness of a selective neutrophil elastase inhibitor, sivelestat, in acute lung injury patients with sepsis. Drug Des Devel Ther. 2013;7:305–316. doi: 10.2147/DDDT.S42004
  • Ozawa T, Mihara K, Yasuno N. Predictors of the therapeutic effect of sivelestat in patients with acute lung injury associated with systemic inflammatory response syndrome. J Pharm Health Care Sci. 2016;2(1):19. doi: 10.1186/s40780-016-0051-x
  • Mohamed MMA, El-Shimy IA, Hadi MA. Neutrophil elastase inhibitors: a potential prophylactic treatment option for SARS-CoV-2-induced respiratory complications? Crit Care. 2020;24(1):311. doi: 10.1186/s13054-020-03023-0
  • Aikawa N, Kawasaki Y. Clinical utility of the neutrophil elastase inhibitor sivelestat for the treatment of acute respiratory distress syndrome. Ther Clin Risk Manag. 2014;10:621–629. doi: 10.2147/TCRM.S65066
  • Bernard GR, Artigas A, Brigham KL, et al. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med. 1994;149(3 Pt 1):818–824. doi: 10.1164/ajrccm.149.3.7509706
  • Zemans RL. Chapter 10 - acute respiratory distress syndrome. In: Sidhaye V Koval M, editors. Lung epithelial biology in the pathogenesis of pulmonary disease. Academic Press; 2017. p. 185–209. doi: 10.1016/B978-0-12-803809-3.00010-5
  • Zemans RL, Briones N, Campbell M, et al. Neutrophil transmigration triggers repair of the lung epithelium via beta-catenin signaling. Proc Natl Acad Sci U S A. 2011;108(38):15990–15995. doi: 10.1073/pnas.1110144108
  • Hirche TO, Atkinson JJ, Bahr S, et al. Deficiency in neutrophil elastase does not impair neutrophil recruitment to inflamed sites. Am J Respir Cell Mol Biol. 2004;30(4):576–584. doi: 10.1165/rcmb.2003-0253OC
  • Tarhini M, Fessi H, Greige-Gerges H, et al. A potential new strategy for using elastase and its inhibitor as therapeutic agents. J Transl Sci. 2018;6:1–8.
  • Sinha P, Calfee CS. Phenotypes in acute respiratory distress syndrome: moving towards precision medicine. Curr Opin Crit Care. 2019;25(1):12–20. doi: 10.1097/MCC.0000000000000571
  • Silva PL, Pelosi P, Rocco PRM. Personalized pharmacological therapy for ARDS: a light at the end of the tunnel. Expert Opin Investig Drugs. 2020;29(1):49–61. doi: 10.1080/13543784.2020.1699531
  • Wick KD, Aggarwal NR, Curley MAQ, et al. Opportunities for improved clinical trial designs in acute respiratory distress syndrome. Lancet Respir Med. 2022;10(9):916–924. doi: 10.1016/S2213-2600(22)00294-6
  • Grasselli G, CS C, Camporota L, et al. ESICM guidelines on acute respiratory distress syndrome: definition, phenotyping and respiratory support strategies. Intensive care Med. 2023;49(7):727–759. doi: 10.1007/s00134-023-07050-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.