215
Views
0
CrossRef citations to date
0
Altmetric
Review

Investigational treatment strategies in glioblastoma: progress made and barriers to success

& ORCID Icon
Pages 921-930 | Received 06 Aug 2023, Accepted 04 Oct 2023, Published online: 11 Oct 2023

References

  • Ostrom QT, Price M, Neff C, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2015–2019. Neuro Oncol. 2022 Oct 5;24(Supplement_5):v1–95. doi: 10.1093/neuonc/noac202
  • Grech N, Dalli T, Mizzi S, et al. Rising incidence of glioblastoma multiforme in a well-defined population. Cureus. 2020 May 19 [cited 2023 Jul 31]; Available from: https://www.cureus.com/articles/31024-rising-incidence-of-glioblastoma-multiforme-in-a-well-defined-population
  • Lin D, Wang M, Chen Y, et al. Trends in intracranial glioma incidence and mortality in the United States, 1975-2018. Front Oncol. 2021 Nov 1;11:748061. doi: 10.3389/fonc.2021.748061
  • Stupp R, Weller M, Belanger K, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–996. doi: 10.1056/NEJMoa043330
  • Stupp R, Wong ET, Kanner AA, et al. NovoTTF-100A versus physician’s choice chemotherapy in recurrent glioblastoma: a randomised phase III trial of a novel treatment modality. Eur J Cancer. 2012 Sep;48(14):2192–2202. doi: 10.1016/j.ejca.2012.04.011
  • Stupp R, Taillibert S, Kanner A, et al. Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: a randomized clinical trial. JAMA. 2017 Dec 19;318(23):2306. doi: 10.1001/jama.2017.18718
  • Lassman AB, Joanta-Gomez AE, Pan PC, et al. Current usage of tumor treating fields for glioblastoma. Neuro-Oncol Adv. 2020 Jan 1;2(1):vdaa069. doi: 10.1093/noajnl/vdaa069
  • Walker MD, Green SB, Byar DP, et al. Randomized comparisons of radiotherapy and nitrosoureas for the treatment of malignant glioma after surgery. N Engl J Med. 1980 Dec 4;303(23):1323–1329. doi: 10.1056/NEJM198012043032303
  • Yoshida J, Shibuya N, Kobayashi T, et al. Sensitivity to 1-(4-amino-2-methyl-5-pyrimidinyl)methyl-3-(2-chloroethyl)-3-nitrosourea hydrochloride (ACNU) of glioma cells in vivo and in vitro. Cancer. 1982 Aug 1;50(3):410–418. doi: 10.1002/1097-0142(19820801)50:3<410:AID-CNCR2820500305>3.0.CO;2-3
  • Wolff JEA, Trilling T, Mölenkamp G, et al. Chemosensitivity of glioma cells in vitro: a meta analysis. J Cancer Res Clin Oncol. 1999 Aug 6;125(8–9):481–486. doi: 10.1007/s004320050305
  • Brem H, Piantadosi S, Burger PC, et al. Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. Lancet. 1995 Apr;345(8956):1008–1012. doi: 10.1016/S0140-6736(95)90755-6
  • Brem H, Ewend MG, Piantadosi S, et al. The safety of interstitial chemotherapy with BCNU-loaded polymer followed by radiation therapy in the treatment of newly diagnosed malignant gliomas: phase I trial. J Neurooncol. 1995 Nov;26(2):111–123. doi: 10.1007/BF01060217
  • Westphal M, Hilt DC, Bortey E, et al. A phase 3 trial of local chemotherapy with biodegradable carmustine(BCNU) wafers (gliadel wafers) in patients with primary malignant glioma. Neuro Oncol. 2003;5(2):79–88. doi: 10.1093/neuonc/5.2.79
  • Barbarite E, Sick JT, Berchmans E, et al. The role of brachytherapy in the treatment of glioblastoma multiforme. Neurosurg Rev. 2017 Apr;40(2):195–211. doi: 10.1007/s10143-016-0727-6
  • Godard S, Getz G, Delorenzi M, et al. Classification of human astrocytic gliomas on the basis of gene expression: a Correlated group of Genes with angiogenic activity emerges as a strong predictor of Subtypes1,2. Canc resea. 2003 Oct;63(20):6613–25.
  • Lamszus K, Ulbricht U, Matschke J, et al. Levels of soluble vascular endothelial growth factor (VEGF) receptor 1 in Astrocytic tumors and its relation to malignancy, Vascularity, and VEGF-A. 2003 Apr;9(4): 1399–405.
  • Jain HV, Nör JE, Jackson TL. Modeling the VEGF–Bcl-2–CXCL8 pathway in intratumoral agiogenesis. Bull Math Biol. 2008 Jan;70(1):89–117. doi: 10.1007/s11538-007-9242-9
  • Gilbert MR, Dignam JJ, Armstrong TS, et al. A randomized trial of Bevacizumab for newly diagnosed glioblastoma. N Engl J Med. 2014 Feb 20;370(8):699–708. doi: 10.1056/NEJMoa1308573
  • Vredenburgh JJ, Desjardins A, Herndon JE, et al. Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J Clin Oncol. 2007 Oct 20;25(30):4722–4729. doi: 10.1200/JCO.2007.12.2440
  • Chauffert B, Feuvret L, Bonnetain F, et al. Randomized phase II trial of irinotecan and bevacizumab as neo-adjuvant and adjuvant to temozolomide-based chemoradiation compared with temozolomide-chemoradiation for unresectable glioblastoma: final results of the TEMAVIR study from ANOCEF. Ann Oncol. 2014 Jul;25(7):1442–1447. doi: 10.1093/annonc/mdu148
  • Balana C, De Las Penas R, Sepúlveda JM, et al. Bevacizumab and temozolomide versus temozolomide alone as neoadjuvant treatment in unresected glioblastoma: the GENOM 009 randomized phase II trial. J Neurooncol. 2016 May;127(3):569–579. doi: 10.1007/s11060-016-2065-5
  • Wick W, Gorlia T, Bendszus M, et al. Lomustine and Bevacizumab in progressive glioblastoma. N Engl J Med. 2017 Nov 16;377(20):1954–1963. doi: 10.1056/NEJMoa1707358
  • Patel KS, Everson RG, Yao J, et al. Diffusion Magnetic Resonance Imaging Phenotypes Predict overall survival benefit from Bevacizumab or surgery in recurrent glioblastoma with large tumor burden. Neurosurgery. 2020 Nov;87(5):931–938. doi: 10.1093/neuros/nyaa135
  • De Groot JF, Fuller G, Kumar AJ, et al. Tumor invasion after treatment of glioblastoma with bevacizumab: radiographic and pathologic correlation in humans and mice. Neuro Oncol. 2010 Mar 1;12(3):233–242. doi: 10.1093/neuonc/nop027
  • Jain RK. Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers. J Clin Oncol. 2013 Jun 10;31(17):2205–2218. doi: 10.1200/JCO.2012.46.3653
  • Vredenburgh JJ, Cloughesy T, Samant M, et al. Corticosteroid use in patients with glioblastoma at first or second relapse treated with Bevacizumab in the BRAIN study. Oncology. 2010 Dec 1;15(12):1329–1334. doi: 10.1634/theoncologist.2010-0105
  • Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with Metastatic Melanoma. N Engl J Med. 2010 Aug 19;363(8):711–723. doi: 10.1056/NEJMoa1003466
  • Rini BI, Plimack ER, Stus V, et al. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med. 2019 Mar 21;380(12):1116–1127. doi: 10.1056/NEJMoa1816714
  • Borghaei H, Paz-Ares L, Horn L, et al. Nivolumab versus Docetaxel in advanced Nonsquamous non–small-Cell lung cancer. N Engl J Med. 2015 Oct 22;373(17):1627–1639. doi: 10.1056/NEJMoa1507643
  • Garon EB, Rizvi NA, Hui R, et al. Pembrolizumab for the treatment of non–small-Cell lung cancer. N Engl J Med. 2015 May 21;372(21):2018–2028. doi: 10.1056/NEJMoa1501824
  • Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015 Jul 2;373(1):23–34. doi: 10.1056/NEJMoa1504030
  • Hendriks LEL, Henon C, Auclin E, et al. Outcome of patients with non–small cell lung cancer and brain metastases treated with checkpoint inhibitors. J Thorac Oncol. 2019 Jul;14(7):1244–1254. doi: 10.1016/j.jtho.2019.02.009
  • Crinò L, Bronte G, Bidoli P, et al. Nivolumab and brain metastases in patients with advanced non-squamous non-small cell lung cancer. Lung Cancer. 2019 Mar;129:35–40.
  • Tringale KR, Reiner AS, Sehgal RR, et al. Efficacy of immunotherapy for melanoma brain metastases in patients with concurrent corticosteroid exposure. CNS Oncol. 2023 Mar 1;12(1):CNS93. doi: 10.2217/cns-2022-0014
  • Reardon DA, Brandes AA, Omuro A, et al. Effect of nivolumab vs Bevacizumab in patients with recurrent glioblastoma: the CheckMate 143 phase 3 randomized clinical trial. JAMA Oncol. 2020 Jul 1;6(7):1003. doi: 10.1001/jamaoncol.2020.1024
  • Omuro A, Brandes AA, Carpentier AF, et al. Radiotherapy combined with nivolumab or temozolomide for newly diagnosed glioblastoma with unmethylated MGMT promoter: an international randomized phase III trial. Neuro Oncol. 2023 Jan 5;25(1):123–134. doi: 10.1093/neuonc/noac099
  • Lim M, Weller M, Idbaih A, et al. Phase III trial of chemoradiotherapy with temozolomide plus nivolumab or placebo for newly diagnosed glioblastoma with methylated MGMT promoter. Neuro Oncol. 2022 Nov 2;24(11):1935–1949. doi: 10.1093/neuonc/noac116
  • Zhao J, Chen AX, Gartrell RD, et al. Immune and genomic correlates of response to anti-PD-1 immunotherapy in glioblastoma. Nat Med. 2019 Mar;25(3):462–469. doi: 10.1038/s41591-019-0349-y
  • Almairac F, Turchi L, Sakakini N, et al. ERK-Mediated loss of miR-199a-3p and induction of EGR1 act as a “toggle switch” of GBM cell dedifferentiation into NANOG- and OCT4-positive cells. Cancer Res. 2020 Aug 15;80(16):3236–3250. doi: 10.1158/0008-5472.CAN-19-0855
  • Wu A, Wei J, Kong LY, et al. Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro Oncol. 2010 Nov;12(11):1113–1125. doi: 10.1093/neuonc/noq082
  • Venkataramani V, Tanev DI, Strahle C, et al. Glutamatergic synaptic input to glioma cells drives brain tumour progression. Nature. 2019 Sep 26;573(7775):532–538. doi: 10.1038/s41586-019-1564-x
  • Venkatesh HS, Tam LT, Woo PJ, et al. Targeting neuronal activity-regulated neuroligin-3 dependency in high-grade glioma. Nature. 2017 Sep;549(7673):533–537. doi: 10.1038/nature24014
  • Venkatesh HS, Morishita W, Geraghty AC, et al. Electrical and synaptic integration of glioma into neural circuits. Nature. 2019 Sep 26;573(7775):539–545. doi: 10.1038/s41586-019-1563-y
  • Cassidy JW, Caldas C, Bruna A. Maintaining tumor heterogeneity in patient-derived tumor xenografts. Cancer Res. 2015 Aug 1;75(15):2963–2968. doi: 10.1158/0008-5472.CAN-15-0727
  • Lee JH, Lee JE, Kahng JY, et al. Human glioblastoma arises from subventricular zone cells with low-level driver mutations. Nature. 2018 Aug;560(7717):243–247. doi: 10.1038/s41586-018-0389-3
  • Chow DS, Horenstein CI, Canoll P, et al. Glioblastoma induces vascular dysregulation in nonenhancing peritumoral regions in humans. Am J Roentgenol. 2016 May;206(5):1073–1081. doi: 10.2214/AJR.15.14529
  • Montgomery MK, Kim SH, Dovas A, et al. Glioma-induced alterations in neuronal activity and neurovascular coupling during disease progression. Cell Rep. 2020 Apr;31(2):107500. doi: 10.1016/j.celrep.2020.03.064
  • Tesileanu CMS, Dirven L, Wijnenga MMJ, et al. Survival of diffuse astrocytic glioma, IDH1/2 wildtype, with molecular features of glioblastoma, WHO grade IV: a confirmation of the cIMPACT-NOW criteria. Neuro Oncol. 2020 Apr 15;22(4):515–523. doi: 10.1093/neuonc/noz200
  • Hartmann C, Hentschel B, Wick W, et al. Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas. Acta Neuropathol (Berl). 2010 Dec;120(6):707–718. doi: 10.1007/s00401-010-0781-z
  • Parsons DW, Jones S, Zhang X, et al. An Integrated genomic Analysis of human glioblastoma multiforme. Science. 2008 Sep 26;321(5897):1807–1812. doi: 10.1126/science.1164382
  • Bagley SJ, Kothari S, Rahman R, et al. Glioblastoma clinical trials: Current landscape and opportunities for improvement. Clin Cancer Res. 2022 Feb 15;28(4):594–602. doi: 10.1158/1078-0432.CCR-21-2750
  • June CH, Sadelain M. Chimeric antigen receptor therapy. N Engl J Med. 2018 Jul 5;379(1):64–73. doi: 10.1056/NEJMra1706169
  • Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children and young adults with B-Cell Lymphoblastic Leukemia. N Engl J Med. 2018 Feb;378(5):439–448. doi: 10.1056/NEJMoa1709866
  • Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene ciloleucel CAR T-Cell therapy in refractory large B-Cell Lymphoma. N Engl J Med. 2017 Dec 28;377(26):2531–2544. doi: 10.1056/NEJMoa1707447
  • Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015 Apr 3;348(6230):69–74. doi: 10.1126/science.aaa4971
  • Li Y, Yang X, Wu Y, et al. B7-H3 promotes gastric cancer cell migration and invasion. Oncotarget. 2017 Sep 22;8(42):71725–71735. doi: 10.18632/oncotarget.17847
  • Brown CE, Aguilar B, Starr R, et al. Optimization of IL13Rα2-targeted chimeric antigen receptor T cells for improved anti-tumor efficacy against glioblastoma. Mol Ther. 2018 Jan;26(1):31–44. doi: 10.1016/j.ymthe.2017.10.002
  • Deshane J, Garner CC, Sontheimer H. Chlorotoxin inhibits glioma cell invasion via matrix metalloproteinase-2. J Biol Chem. 2003 Feb;278(6):4135–4144. doi: 10.1074/jbc.M205662200
  • Flugel CL, Majzner RG, Krenciute G, et al. Overcoming on-target, off-tumour toxicity of CAR T cell therapy for solid tumours. Nat Rev Clin Oncol. 2023 Jan;20(1):49–62. doi: 10.1038/s41571-022-00704-3
  • Mahdi J, Dietrich J, Straathof K, et al. Tumor inflammation-associated neurotoxicity. Nat Med. 2023 Apr;29(4):803–810. doi: 10.1038/s41591-023-02276-w
  • Spiess C, Zhai Q, Carter PJ. Alternative molecular formats and therapeutic applications for bispecific antibodies. Mol Immunol. 2015 Oct;67(2):95–106. doi: 10.1016/j.molimm.2015.01.003
  • Perez P, Hoffman RW, Shaw S, et al. Specific targeting of cytotoxic T cells by anti-T3 linked to anti-target cell antibody. Nature. 1985 Jul;316(6026):354–356. doi: 10.1038/316354a0
  • Przepiorka D, Ko CW, Deisseroth A, et al. FDA approval: Blinatumomab. Clin Cancer Res. 2015 Sep 15;21(18):4035–4039. doi: 10.1158/1078-0432.CCR-15-0612
  • Zhu Z, Presta LG, Zapata G, et al. Remodeling domain interfaces to enhance heterodimer formation: domain interjace remodeling. Protein Sci. 1997 Apr;6(4):781–788. doi: 10.1002/pro.5560060404
  • Lu RM, Hwang YC, Liu IJ, et al. Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci. 2020 Dec;27(1):1. doi: 10.1186/s12929-019-0592-z
  • Palucka K, Banchereau J. Cancer immunotherapy via dendritic cells. Nat Rev Cancer. 2012 Apr;12(4):265–277. doi: 10.1038/nrc3258
  • Datsi A, Sorg RV. Dendritic cell vaccination of glioblastoma: road to success or dead end. Front Immunol. 2021 Nov 2;12:770390. doi: 10.3389/fimmu.2021.770390
  • Yang T, Shi Y, Liang T, et al. Peptide vaccine against glioblastoma: from bench to bedside. Holist Integr Oncol. 2022 Dec 16;1(1):21. doi: 10.1007/s44178-022-00021-w
  • Ahluwalia MS, Reardon DA, Abad AP, et al. Phase IIa study of SurVaxM plus adjuvant temozolomide for newly diagnosed glioblastoma. J Clin Oncol. 2023 Mar 1;41(7):1453–1465. doi: 10.1200/JCO.22.00996
  • Liau LM, Ashkan K, Brem S, et al. Association of autologous tumor lysate-loaded dendritic cell vaccination with extension of survival among patients with newly diagnosed and recurrent glioblastoma: a phase 3 prospective externally controlled cohort trial. JAMA Oncol. 2023 Jan 1;9(1):112. doi: 10.1001/jamaoncol.2022.5370
  • Liau LM, Ashkan K, Tran DD, et al. First results on survival from a large phase 3 clinical trial of an autologous dendritic cell vaccine in newly diagnosed glioblastoma. J Transl Med. 2018 May 29;16(1):142. doi: 10.1186/s12967-018-1507-6
  • Agnihotri S, Zadeh G. Metabolic reprogramming in glioblastoma: the influence of cancer metabolism on epigenetics and unanswered questions. Neuro Oncol. 2016 Feb;18(2):160–172. doi: 10.1093/neuonc/nov125
  • Wang X, Prager BC, Wu Q, et al. Reciprocal signaling between glioblastoma stem cells and differentiated tumor cells promotes malignant progression. Cell Stem Cell. 2018 Apr;22(4):514–528.e5. doi: 10.1016/j.stem.2018.03.011
  • Venkatesh HS, Johung TB, Caretti V, et al. Neuronal activity promotes glioma growth through neuroligin-3 secretion. Cell. 2015 May;161(4):803–816. doi: 10.1016/j.cell.2015.04.012
  • Tirrò E, Massimino M, Romano C, et al. Prognostic and therapeutic roles of the insulin growth factor system in glioblastoma. Front Oncol. 2021 Feb 2;10:612385. doi: 10.3389/fonc.2020.612385
  • Langhans J, Schneele L, Trenkler N, et al. The effects of PI3K-mediated signalling on glioblastoma cell behaviour. Oncogenesis. 2017 Nov 29;6(11):398. doi: 10.1038/s41389-017-0004-8
  • Zohrabian VM, Forzani B, Chau Z, et al. Rho/ROCK and MAPK signaling pathways are involved in glioblastoma cell migration and proliferation. Anticancer Res. 2009;29(1):119–123.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.