221
Views
0
CrossRef citations to date
0
Altmetric
Review

Hepatic encephalopathy: investigational drugs in preclinical and early phase development

ORCID Icon, , , &
Pages 1055-1069 | Received 01 Sep 2023, Accepted 26 Oct 2023, Published online: 05 Nov 2023

References

  • Felipo V. Hepatic encephalopathy: effects of liver failure on brain function. Nat Rev Neurosci. 2013;14(12):851–858. doi: 10.1038/nrn3587
  • Rose CF, Amodio P, Bajaj JS, et al. Hepatic encephalopathy: novel insights into classification, pathophysiology and therapy. J Hepatol. 2020;73(6):1526–1547. doi: 10.1016/j.jhep.2020.07.013
  • Häussinger D, Dhiman RK, Felipo V, et al. Hepatic encephalopathy. Nat Rev Dis Primer. 2022;8(1):43. doi: 10.1038/s41572-022-00366-6
  • Vilstrup H, Amodio P, Bajaj J, et al. Hepatic encephalopathy in chronic liver disease: 2014 practice guideline by the American association for the study of liver diseases and the European association for the study of the liver. Hepatology. 2014;60(2):715–735. doi: 10.1002/hep.27210
  • Balzano T, Dadsetan S, Forteza J, et al. Chronic hyperammonemia induces peripheral inflammation that leads to cognitive impairment in rats: reversed by anti-TNF-α treatment. J Hepatol. 2020;73(3):582–592. doi: 10.1016/j.jhep.2019.01.008
  • Cabrera-Pastor A, Llansola M, Montoliu C, et al. Peripheral inflammation induces neuroinflammation that alters neurotransmission and cognitive and motor function in hepatic encephalopathy: underlying mechanisms and therapeutic implications. Acta Physiol Oxf Eng. 2019;226(2):e13270. doi: 10.1111/apha.13270
  • Zacharias HD, Zacharias AP, Gluud LL, et al. Pharmacotherapies that specifically target ammonia for the prevention and treatment of hepatic encephalopathy in adults with cirrhosis. Cochrane Database Syst Rev [Internet]; 2019 [cited 2023 Jul 28]. Available from: https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD012334.pub2/full.
  • Balzano T. Active clinical trials in hepatic encephalopathy: something old, something new and something borrowed. Neurochem Res. 2023;48(8):2309–2319. doi: 10.1007/s11064-023-03916-w
  • Bircher J, Müller J, Guggenheim P, et al. Treatment of chronic portal-systemic encephalopathy with lactulose. Lancet Lond Engl. 1966;1(7443):890–893. doi: 10.1016/S0140-6736(66)91573-X
  • Mukherjee S, John SL StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023. [cited 2023 Aug 25]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK536930/
  • Fallahzadeh MA, Rahimi RS. Hepatic encephalopathy: Current and emerging treatment modalities. Clin Gastroenterol Hepatol Off Clin Pract J Am Gastroenterol Assoc. 2022;20(8):S9–S19. doi: 10.1016/j.cgh.2022.04.034
  • Bajaj JS, Gillevet PM, Patel NR, et al. A longitudinal systems biology analysis of lactulose withdrawal in hepatic encephalopathy. Metab Brain Dis. 2012;27(2):205–215. doi: 10.1007/s11011-012-9303-0
  • Wang M-W, Ma W-J, Wang Y, et al. Comparison of the effects of probiotics, rifaximin, and lactulose in the treatment of minimal hepatic encephalopathy and gut microbiota. Front Microbiol [Internet]; 2023;14. [ cited 2023 Jul 28] Available from: https://www.frontiersin.org/articles/10.3389/fmicb.2023.1091167
  • Gluud LL, Vilstrup H, Morgan MY. Non-absorbable disaccharides versus placebo/no intervention and lactulose versus lactitol for the prevention and treatment of hepatic encephalopathy in people with cirrhosis. Cochrane Database Syst Rev. 2016;4:CD003044.
  • Gluud LL, Vilstrup H, Morgan MY. Nonabsorbable disaccharides for hepatic encephalopathy: a systematic review and meta-analysis. Hepatology. 2016;64(3):908–922. doi: 10.1002/hep.28598
  • Jalan R, Rose CF. Heretical thoughts into hepatic encephalopathy. J Hepatol. 2022;77(2):539–548. doi: 10.1016/j.jhep.2022.03.014
  • Jesudian AB, Ahmad M, Bozkaya D, et al. Cost-effectiveness of rifaximin treatment in patients with hepatic encephalopathy. J Manag Care Spec Pharm. 2020;26(6):750–757. doi: 10.18553/jmcp.2020.26.6.750
  • Bajaj JS, Sanyal AJ, Bell D, et al. Predictors of the recurrence of hepatic encephalopathy in lactulose-treated patients. Aliment Pharmacol Ther. 2010;31:1012–1017. doi: 10.1111/j.1365-2036.2010.04257.x
  • Bass NM, Mullen KD, Sanyal A, et al. Rifaximin treatment in hepatic encephalopathy. N Engl J Med. 2010;362(12):1071–1081. doi: 10.1056/NEJMoa0907893
  • Han X, Luo Z, Wang W, et al. Efficacy and safety of rifaximin versus placebo or other active drugs in Critical ill patients with hepatic encephalopathy. Front Pharmacol. 2021 [cited 2023 Jul 31]; 12. InternetAvailable from: 10.3389/fphar.2021.696065
  • Mangas-Losada A, García-García R, Leone P, et al. Selective improvement by rifaximin of changes in the immunophenotype in patients who improve minimal hepatic encephalopathy. J Transl Med. 2019;17(1):293. doi: 10.1186/s12967-019-2046-5
  • Zacharias HD, Kamel F, Tan J, et al. Rifaximin for prevention and treatment of hepatic encephalopathy in people with cirrhosis. Cochrane Database Syst Rev [Internet]. 2023 Oct 16. Available from: https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD011585.pub2/full
  • Aby ES, Shen T-H, Murugappan MN, et al. High rifaximin out-of-pocket costs are associated with decreased treatment retention among patients with hepatic encephalopathy. Hepatol Commun. 2023;7(8):e0215. doi: 10.1097/HC9.0000000000000215
  • Balzano T, Leone P, Ivaylova G, et al. Rifaximin prevents T-Lymphocytes and macrophages infiltration in cerebellum and restores motor incoordination in rats with mild liver damage. Biomedicines. 2021;9(8):1002. doi: 10.3390/biomedicines9081002
  • Leone P, Mincheva G, Balzano T, et al. Rifaximin improves spatial learning and memory impairment in rats with liver damage-associated neuroinflammation. Biomedicines. 2022;10(6):1263. doi: 10.3390/biomedicines10061263
  • Kircheis G, Lüth S. Pharmacokinetic and pharmacodynamic properties of l-ornithine l-aspartate (LOLA) in hepatic encephalopathy. Drugs. 2019;79(S1):23–29. doi: 10.1007/s40265-018-1023-2
  • Goh ET, Stokes CS, Sidhu SS, et al. L‐ornithine L‐aspartate for prevention and treatment of hepatic encephalopathy in people with cirrhosis. Cochrane Database Syst Rev [Internet]. 2018 [cited 2023 Jul 31]. Available from: https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD012410.pub2/full.
  • Jain A, Sharma BC, Mahajan B, et al. L‐ornithine L‐aspartate in acute treatment of severe hepatic encephalopathy: a double‐blind randomized controlled trial. Hepatology. 2022;75(5):1194. doi: 10.1002/hep.32255
  • Gorissen SHM, Phillips SM Chapter 17 - branched-chain amino acids (leucine, isoleucine, and Valine) and skeletal muscle. In: Walrand S, editor. Nutr skelet muscle [internet]. Academic Press; 2019 [cited 2023 Aug 1]; p. 283–298. Available from:https://www.sciencedirect.com/science/article/pii/B9780128104224000166
  • Fischer J, Baldessarini R. FALSE NEUROTRANSMITTERS and HEPATIC FAILURE. Lancet. 1971;298(7715):75–80. doi: 10.1016/S0140-6736(71)92048-4
  • Fischer JE, Yoshimura N, Aguirre A, et al. Plasma amino acids in patients with hepatic encephalopathy. Effects of amino acid infusions. Am J Surg. 1974;127(1):40–47. doi: 10.1016/0002-9610(74)90009-9
  • Holecek M. Glutamine and branched-chain amino acids–practical importance of their metabolic relations. Cas Lek Cesk. 2005;144(3):9–12.
  • Gluud LL, Dam G, Les I, et al. Branched‐chain amino acids for people with hepatic encephalopathy. Cochrane Database Syst Rev. 2017;2017:CD001939. doi: 10.1002/14651858.CD001939.pub4
  • Butterworth RF. Ammonia removal by metabolic scavengers for the prevention and treatment of hepatic encephalopathy in cirrhosis. Drugs RD. 2021;21(2):123–132. doi: 10.1007/s40268-021-00345-4
  • Misel ML, Gish RG, Patton H, et al. Sodium Benzoate for Treatment of Hepatic Encephalopathy. Gastroenterol Hepatol. 2013;9:219–227.
  • Mahpour NY, Pioppo-Phelan L, Reja M, et al. Pharmacologic management of hepatic encephalopathy. Clin Liver Dis. 2020;24(2):231–242. doi: 10.1016/j.cld.2020.01.005
  • Rose CF. Ammonia-lowering strategies for the treatment of hepatic encephalopathy. Clin Pharmacol Ther. 2012;92(3):321–331. doi: 10.1038/clpt.2012.112
  • Dalal R, McGee RG, Riordan SM, et al. Probiotics for people with hepatic encephalopathy. Cochrane Database Syst Rev [Internet]. 2017. [cited 2023 Aug 1]. Available from: https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD008716.pub3/abstract?cookiesEnabled.
  • Wang W-W, Zhang Y, Huang X-B, et al. Fecal microbiota transplantation prevents hepatic encephalopathy in rats with carbon tetrachloride-induced acute hepatic dysfunction. World J Gastroenterol. 2017;23(38):6983–6994. doi: 10.3748/wjg.v23.i38.6983
  • Bajaj JS, Kassam Z, Fagan A, et al. Fecal microbiota transplant from a rational stool donor improves hepatic encephalopathy: a randomized clinical trial. Hepatology. 2017;66(6):1727–1738. doi: 10.1002/hep.29306
  • Bajaj JS, Salzman N, Acharya C, et al. Microbial functional change is linked with clinical outcomes after capsular fecal transplant in cirrhosis. JCI Insight. 2019;4(24):e133410, 133410. doi: 10.1172/jci.insight.133410
  • Bajaj JS, Salzman NH, Acharya C, et al. Fecal microbial transplant capsules are safe in hepatic encephalopathy: a phase 1, randomized, placebo-controlled trial. Hepatology. 2019;70(5):1690–1703. doi: 10.1002/hep.30690
  • Dadsetan S, Balzano T, Forteza J, et al. Infliximab reduces peripheral inflammation, neuroinflammation, and extracellular GABA in the cerebellum and improves learning and motor coordination in rats with hepatic encephalopathy. J Neuroinflammation. 2016;13(1):245. doi: 10.1186/s12974-016-0710-8
  • Dadsetan S, Balzano T, Forteza J, et al. Reducing peripheral inflammation with infliximab reduces neuroinflammation and improves cognition in rats with hepatic encephalopathy. Front Mol Neurosci. 2016;9:106. doi: 10.3389/fnmol.2016.00106
  • Chastre A, Bélanger M, Beauchesne E, et al. Inflammatory cascades driven by tumor necrosis factor-alpha play a major role in the progression of acute liver failure and its neurological complications. PLoS One. 2012;7(11):e49670. doi: 10.1371/journal.pone.0049670
  • Roy S, Chakrabarti M, Dasgupta H, et al. Inhibition of Autotaxin Ameliorates LPA-Mediated Neuroinflammation and Alleviates Neurological Dysfunction in Acute Hepatic Encephalopathy. ACS Chem Neurosci. 2022;13(19):2829–2841. doi: 10.1021/acschemneuro.2c00046
  • Sepehrinezhad A, Shahbazi A, Joghataei MT, et al. Inhibition of autotaxin alleviates pathological features of hepatic encephalopathy at the level of gut–liver–brain axis: an experimental and bioinformatic study. Cell Death Dis. 2023;14(8):1–13. doi: 10.1038/s41419-023-06022-5
  • Gillessen A, Schmidt H-J. Silymarin as supportive treatment in liver diseases: a narrative review. Adv Ther. 2020;37(4):1279–1301. doi: 10.1007/s12325-020-01251-y
  • Abdelghffar EAR, El-Nashar HAS, Fayez S, et al. Ameliorative effect of oregano (origanum vulgare) versus silymarin in experimentally induced hepatic encephalopathy. Sci Rep. 2022;12(1):17854. doi: 10.1038/s41598-022-20412-3
  • Ghobadi Pour M, Mirazi N, Alaei H, et al. The effects of concurrent treatment of silymarin and lactulose on memory changes in cirrhotic male rats. Bioimpacts. 2020;10(3):177–186. doi: 10.34172/bi.2020.22
  • Saad MA, Rastanawi AA, El-Yamany MF. Alogliptin abates memory injuries of hepatic encephalopathy induced by acute paracetamol intoxication via switching-off autophagy-related apoptosis. Life Sci. 2018;215:11–21. doi: 10.1016/j.lfs.2018.10.069
  • Hernández-Rabaza V, Cabrera-Pastor A, Taoro-González L, et al. Hyperammonemia induces glial activation, neuroinflammation and alters neurotransmitter receptors in hippocampus, impairing spatial learning: reversal by sulforaphane. J Neuroinflammation. 2016;13(1):41. doi: 10.1186/s12974-016-0505-y
  • Hernandez-Rabaza V, Cabrera-Pastor A, Taoro-Gonzalez L, et al. Neuroinflammation increases GABAergic tone and impairs cognitive and motor function in hyperammonemia by increasing GAT-3 membrane expression. Reversal by sulforaphane by promoting M2 polarization of microglia. J Neuroinflammation. 2016;13(1):83. doi: 10.1186/s12974-016-0549-z
  • Agusti A, Cauli O, Rodrigo R, et al. p38 MAP kinase is a therapeutic target for hepatic encephalopathy in rats with portacaval shunts. Gut. 2011;60(11):1572–1579. doi: 10.1136/gut.2010.236083
  • McMillin M, Frampton G, Grant S, et al. Bile acid-mediated sphingosine-1-phosphate receptor 2 signaling promotes neuroinflammation during hepatic encephalopathy in mice. Front Cell Neurosci. 2017;11:191. doi: 10.3389/fncel.2017.00191
  • Arenas YM, Balzano T, Ivaylova G, et al. The S1PR2-CCL2-BDNF-TrkB pathway mediates neuroinflammation and motor incoordination in hyperammonaemia. Neuropathol Appl Neurobiol. 2022;48(4):e12799. doi: 10.1111/nan.12799
  • Arenas YM, Felipo V. Sustained hyperammonemia activates NF-κB in purkinje neurons through activation of the TrkB-PI3K-AKT pathway by microglia-derived BDNF in a rat model of minimal hepatic encephalopathy. Mol Neurobiol. 2023;60(6):3071–3085. doi: 10.1007/s12035-023-03264-4
  • Hsu S-J, Zhang C, Jeong J, et al. Enhanced meningeal lymphatic drainage ameliorates neuroinflammation and hepatic encephalopathy in cirrhotic rats. Gastroenterology. 2021;160(4):1315–1329.e13. doi: 10.1053/j.gastro.2020.11.036
  • Erceg S, Monfort P, Hernández-Viadel M, et al. Oral administration of sildenafil restores learning ability in rats with hyperammonemia and with portacaval shunts. Hepatology. 2005;41(2):299–306. doi: 10.1002/hep.20565
  • Hernandez-Rabaza V, Agusti A, Cabrera-Pastor A, et al. Sildenafil reduces neuroinflammation and restores spatial learning in rats with hepatic encephalopathy: underlying mechanisms. J Neuroinflammation. 2015;12(1):195. doi: 10.1186/s12974-015-0420-7
  • Agusti A, Hernández-Rabaza V, Balzano T, et al. Sildenafil reduces neuroinflammation in cerebellum, restores GABAergic tone, and improves motor in-coordination in rats with hepatic encephalopathy. CNS Neurosci Ther. 2017;23(5):386–394. doi: 10.1111/cns.12688
  • França MER, Ramos RKLG, Oliveira WH, et al. Tadalafil restores long-term memory and synaptic plasticity in mice with hepatic encephalopathy. Toxicol Appl Pharmacol. 2019;379:114673. doi: 10.1016/j.taap.2019.114673
  • Erceg S, Monfort P, Hernandez-Viadel M, et al. Restoration of learning ability in hyperammonemic rats by increasing extracellular cGMP in brain. Brain Res. 2005;1036(1–2):115–121. doi: 10.1016/j.brainres.2004.12.045
  • Izquierdo-Altarejos P, Cabrera-Pastor A, Martínez-García M, et al. Extracellular vesicles from mesenchymal stem cells reduce neuroinflammation in hippocampus and restore cognitive function in hyperammonemic rats. J Neuroinflammation. 2023;20(1):1. doi: 10.1186/s12974-022-02688-4
  • Ahboucha S, Jiang W, Chatauret N, et al. Indomethacin improves locomotor deficit and reduces brain concentrations of neuroinhibitory steroids in rats following portacaval anastomosis. Neurogastroenterol Motil. 2008;20(8):949–957. doi: 10.1111/j.1365-2982.2008.01132.x
  • Johansson M, Agusti A, Llansola M, et al. GR3027 antagonizes GABAA receptor-potentiating neurosteroids and restores spatial learning and motor coordination in rats with chronic hyperammonemia and hepatic encephalopathy. Am J Physiol Gastrointest Liver Physiol. 2015;309(5):G400–409. doi: 10.1152/ajpgi.00073.2015
  • Mincheva G, Gimenez‐Garzo C, Izquierdo‐Altarejos P, et al. Golexanolone, a GABAA receptor modulating steroid antagonist, restores motor coordination and cognitive function in hyperammonemic rats by dual effects on peripheral inflammation and neuroinflammation. CNS Neurosci Ther. 2022;28(11):1861–1874. doi: 10.1111/cns.13926
  • Johansson M, Månsson M, Lins L-E, et al. GR3027 reversal of neurosteroid-induced, GABA-A receptor-mediated inhibition of human brain function: an allopregnanolone challenge study. Psychopharmacol (Berl). 2018;235(5):1533–1543. doi: 10.1007/s00213-018-4864-1
  • Ahluwalia V, Wade JB, Heuman DM, et al. Enhancement of functional connectivity, working memory and inhibitory control on multi-modal brain MR imaging with rifaximin in cirrhosis: implications for the gut-liver-brain axis. Metab Brain Dis. 2014;29(4):1017–1025. doi: 10.1007/s11011-014-9507-6
  • Bajaj JS, Heuman DM, Hylemon PB, et al. Altered profile of human gut microbiome is associated with cirrhosis and its complications. J Hepatol. 2014;60(5):940–947. doi: 10.1016/j.jhep.2013.12.019
  • Yang W, Cong Y. Gut microbiota-derived metabolites in the regulation of host immune responses and immune-related inflammatory diseases. Cell Mol Immunol. 2021;18(4):866–877. doi: 10.1038/s41423-021-00661-4
  • Rocco A, Sgamato C, Compare D, et al. Gut microbes and hepatic encephalopathy: from the old concepts to new perspectives. Front Cell Dev Biol[Internet]. 2021 [cited 2023 Aug 1]; 9. Available from: https://www.frontiersin.org/articles/10.3389/fcell.2021.748253
  • Cauli O, Rodrigo R, Piedrafita B, et al. Neuroinflammation contributes to hypokinesia in rats with hepatic encephalopathy: ibuprofen restores its motor activity. J Neurosci Res. 2009;87(6):1369–1374. doi: 10.1002/jnr.21947
  • Rodrigo R, Cauli O, Gomez–Pinedo U, et al. Hyperammonemia induces neuroinflammation that contributes to cognitive impairment in rats with hepatic encephalopathy. Gastroenterology. 2010;139(2):675–684. doi: 10.1053/j.gastro.2010.03.040
  • Perrakis A, Moolenaar WH. Autotaxin: structure-function and signaling. J Lipid Res. 2014;55(6):1010–1018. doi: 10.1194/jlr.R046391
  • Zhang X, Li M, Yin N, et al. The expression Regulation and biological function of Autotaxin. Cells. 2021;10(4):939. doi: 10.3390/cells10040939
  • Pleli T, Martin D, Kronenberger B, et al. Serum Autotaxin is a parameter for the severity of liver cirrhosis and overall survival in patients with liver cirrhosis – a prospective cohort study. PLoS One. 2014;9(7):e103532. doi: 10.1371/journal.pone.0103532
  • Maher TM, van der AE, de SO, et al. Safety, tolerability, pharmacokinetics, and pharmacodynamics of GLPG1690, a novel autotaxin inhibitor, to treat idiopathic pulmonary fibrosis (FLORA): a phase 2a randomised placebo-controlled trial. Lancet Respir Med. 2018;6(8):627–635. doi: 10.1016/S2213-2600(18)30181-4
  • de AC, Pereira EM, de F CP, et al. Effect of silymarin on biochemical indicators in patients with liver disease: systematic review with meta-analysis. WJG. 2017;23(27):5004–5017. doi: 10.3748/wjg.v23.i27.5004
  • Innamorato NG, Rojo AI, García-Yagüe AJ, et al. The transcription factor Nrf2 is a therapeutic target against brain inflammation. J Immunol Baltim Md 1950. 2008;181(1):680–689. doi: 10.4049/jimmunol.181.1.680
  • Lee JY, Jin HK, Bae J-S. Sphingolipids in neuroinflammation: a potential target for diagnosis and therapy. BMB Rep. 2020;53(1):28–34. doi: 10.5483/BMBRep.2020.53.1.278
  • Aspelund A, Antila S, Proulx ST, et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med. 2015;212(7):991–999. doi: 10.1084/jem.20142290
  • Iliff JJ, Wang M, Liao Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med. 2012;4(147):147ra111. doi: 10.1126/scitranslmed.3003748
  • Aldridge DR, Tranah EJ, Shawcross DL. Pathogenesis of hepatic encephalopathy: role of ammonia and systemic inflammation. J Clin Exp Hepatol. 2015;5:S7–S20. doi: 10.1016/j.jceh.2014.06.004
  • Balzano T, Hiba OE Metal toxicity and brain-liver axis: the good, the bad, and the neurodegenerated. Handb Res Glob Environ Chang Hum Health [Internet]. IGI Global; 2019 [cited 2023 Jul 27]; p. 216–235. Available from: https://www.igi-global.com/chapter/metal-toxicity-and-brain-liver-axis/www.igi-global.com/chapter/metal-toxicity-and-brain-liver-axis/222038
  • Hadjihambi A, Harrison IF, Costas-Rodríguez M, et al. Impaired brain glymphatic flow in experimental hepatic encephalopathy. J Hepatol. 2019;70(1):40–49. doi: 10.1016/j.jhep.2018.08.021
  • Galipeau J, Sensébé L. Mesenchymal stromal cells: clinical challenges and therapeutic opportunities. Cell Stem Cell. 2018;22(6):824–833. doi: 10.1016/j.stem.2018.05.004
  • Squillaro T, Peluso G, Galderisi U. Clinical trials with mesenchymal stem cells: an update. Cell Transplant. 2016;25(5):829–848. doi: 10.3727/096368915X689622
  • Bagno L, Hatzistergos KE, Balkan W, et al. Mesenchymal stem cell-based therapy for cardiovascular disease: progress and challenges. Mol Ther J Am Soc Gene Ther. 2018;26(7):1610–1623. doi: 10.1016/j.ymthe.2018.05.009
  • Lou G, Chen Z, Zheng M, et al. Mesenchymal stem cell-derived exosomes as a new therapeutic strategy for liver diseases. Exp Mol Med. 2017;49(6):e346. doi: 10.1038/emm.2017.63
  • Heldring N, Mäger I, Wood MJA, et al. Therapeutic potential of multipotent mesenchymal stromal cells and their extracellular vesicles. Hum Gene Ther. 2015;26(8):506–517. doi: 10.1089/hum.2015.072
  • Augello A, Tasso R, Negrini SM, et al. Cell therapy using allogeneic bone marrow mesenchymal stem cells prevents tissue damage in collagen-induced arthritis. Arthritis Rheum. 2007;56(4):1175–1186. doi: 10.1002/art.22511
  • Kim H-S, Shin T-H, Lee B-C, et al. Human umbilical cord blood mesenchymal stem cells reduce colitis in mice by activating NOD2 signaling to COX2. Gastroenterology. 2013;145(6):1392–1403.e8. doi: 10.1053/j.gastro.2013.08.033
  • Zappia E, Casazza S, Pedemonte E, et al. Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood. 2005;106(5):1755–1761. doi: 10.1182/blood-2005-04-1496
  • Reza-Zaldivar EE, Hernández-Sapiéns MA, Gutiérrez-Mercado YK, et al. Mesenchymal stem cell-derived exosomes promote neurogenesis and cognitive function recovery in a mouse model of Alzheimer’s disease. Neural Regen Res. 2019;14(9):1626–1634. doi: 10.4103/1673-5374.255978
  • Zhang Y, Chopp M, Meng Y, et al. Effect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury. J Neurosurg. 2015;122(4):856–867. doi: 10.3171/2014.11.JNS14770
  • Malaguarnera M, Llansola M, Balzano T, et al. Bicuculline reduces neuroinflammation in hippocampus and improves spatial learning and anxiety in hyperammonemic rats. Role of glutamate receptors. Front Pharmacol. 2019;10:132. doi: 10.3389/fphar.2019.00132
  • Malaguarnera M, Balzano T, Castro MC, et al. The dual role of the GABAA receptor in peripheral inflammation and neuroinflammation: a study in hyperammonemic rats. Int J Mol Sci. 2021;22(13):6772. doi: 10.3390/ijms22136772
  • Gonzalez-Usano A, Cauli O, Agusti A, et al. Pregnenolone sulfate restores the glutamate-nitric-oxide-cGMP pathway and extracellular GABA in cerebellum and learning and motor coordination in hyperammonemic rats. ACS Chem Neurosci. 2014;5(2):100–105. doi: 10.1021/cn400168y
  • Montagnese S, Lauridsen M, Vilstrup H, et al. A pilot study of golexanolone, a new GABA-A receptor-modulating steroid antagonist, in patients with covert hepatic encephalopathy. J Hepatol. 2021;75(1):98–107. doi: 10.1016/j.jhep.2021.03.012
  • Nation RL, Garonzik SM, Li J, et al. Updated US and European dose recommendations for intravenous Colistin: how do They perform? Clin Infect Dis Off Publ Infect Dis Soc Am. 2016;62:552–558. doi: 10.1093/cid/civ964
  • Andrade FF, Silva D, Rodrigues A, et al. Colistin update on its mechanism of action and resistance, present and future challenges. Microorganisms. 2020;8(11):1716. doi: 10.3390/microorganisms8111716
  • Louie T, Golan Y, Khanna S, et al. VE303, a defined bacterial consortium, for prevention of recurrent Clostridioides difficile infection: a randomized clinical trial. JAMA. 2023;329(16):1356–1366. doi: 10.1001/jama.2023.4314
  • Bloom PP, Donlan J, Torres Soto M, et al. Fecal microbiota transplant improves cognition in hepatic encephalopathy and its effect varies by donor and recipient. Hepatol Commun. 2022;6(8):2079–2089. doi: 10.1002/hep4.1950
  • Mohty M. Mechanisms of action of antithymocyte globulin: T-cell depletion and beyond. Leukemia. 2007;21(7):1387–1394. doi: 10.1038/sj.leu.2404683
  • Schimpl G, Pesendorfer P, Steinwender G, et al. Allopurinol and glutamine attenuate bacterial translocation in chronic portal hypertensive and common bile duct ligated growing rats. Gut. 1996;39(1):48–53. doi: 10.1136/gut.39.1.48
  • Spahr L, Bresson-Hadni S, Amann P, et al. Allopurinol, oxidative stress and intestinal permeability in patients with cirrhosis: an open-label pilot study. Liver Int Off J Int Assoc Study Liver. 2007;27(1):54–60. doi: 10.1111/j.1478-3231.2006.01382.x
  • Beckman JA, Creager MA. The nonlipid effects of statins on endothelial function. Trends Cardiovasc Med. 2006;16(5):156–162. doi: 10.1016/j.tcm.2006.03.003
  • Kim RG, Loomba R, Prokop LJ, et al. Statin use and risk of cirrhosis and related complications in patients with chronic liver diseases: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2017;15(10):1521–1530.e8. doi: 10.1016/j.cgh.2017.04.039
  • Gerriets V, Goyal A, Khaddour K Tumor necrosis factor inhibitors. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 [cited 2023 Oct 16]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK482425/
  • McInnes IB, Gravallese EM. Immune-mediated inflammatory disease therapeutics: past, present and future. Nat Rev Immunol. 2021;21(10):680–686. doi: 10.1038/s41577-021-00603-1
  • Placha D, Jampilek J. Chronic inflammatory diseases, anti-inflammatory agents and their delivery nanosystems. Pharmaceutics. 2021;13(1):64. doi: 10.3390/pharmaceutics13010064
  • Vidal-Cevallos P, Chávez-Tapia NC, Uribe M. Current approaches to hepatic encephalopathy. Ann Hepatol. 2022;27(6):100757. doi: 10.1016/j.aohep.2022.100757
  • Nardelli S, Gioia S, Faccioli J, et al. Hepatic encephalopathy – recent advances in treatment and diagnosis. Expert Rev Gastroenterol Hepatol. 2023;17(3):225–235. doi: 10.1080/17474124.2023.2183386

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.